Chemistry Letters 1998

Asymmetric 1,3-Dipolar Cycloaddition of Nitrile Oxides to γ-Substituted Allylic Alcohols

Yayoi Yoshida,† Yutaka Ukaji,*†,†† Shuhei Fujinami,† and Katsuhiko Inomata*†,††
†Department of Chemistry, Faculty of Science, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192
††Department of Chemical Science, Graduate School of Natural Science and Technology, Kanazawa University,

Kakuma, Kanazawa, Ishikawa 920-1192

(Received July 13, 1998; CL-980531)

The asymmetric 1,3-dipolar cycloaddition of nitrile oxides to γ -substituted allylic alcohols was achieved by the use of disopropyl (R,R)-tartrate as a chiral auxiliary to afford the corresponding 3,4,5-trisubstituted-2-isoxazolines with high regio- and enantioselectivities. 4,5-trans-2-Isoxazolines derived from ethyl (E)-4-hydroxy-2-butenoate were transformed to the corresponding 4,5-cis-2-isoxazolines by the treatment with a base through isomerization and lactonization.

Asymmetric 1,3-dipolar cycloadditions have been the focus of great attention in synthetic organic chemistry. The 1,3-dipolar cycloaddition is influenced by the steric interaction, and thus the control of the stereochemistry in the 1,3-dipolar cycloaddition to the internal olefin was difficult. For example, regio- and diastereoselectivities in the cycloaddition of nitrile oxide to crotonoyl derivatives of Oppolzer's chiral sultam were lower compared with those to acryloyl derivative. Recently we reported highly enantioselective 1,3-dipolar cycloadditions of nitrile oxides and nitrones to a terminal olefin, 2-propen-1-ol. Herein, we describe the regio- and enantioselective 1,3-dipolar cycloaddition of nitrile oxides to γ -substituted allylic alcohols utilizing (R,R)-diisopropyl tartrate (DIPT) as a chiral auxiliary.

First the 1,3-dipolar cycloaddition of p-methoxybenzonitrile oxide to (E)-2-buten-1-ol (1E) using (R,R)-DIPT was examined paying attention to the molar amounts of the reagents and the reaction temperature. When 1E was treated with Et₂Zn (1.0 molar amount), (R,R)-DIPT (1.0 molar amount), a second Et₂Zn (1.0 molar amount), and p-methoxybenzohydroximoyl chloride (1.0 molar amount) successively at 0 °C in CHCl₃, the corresponding optically active 4,5-trans-2-isoxazoline 2a was obtained with high enantioselectivity, but in poor chemical yield (Entry 1 in Table 1). Increasing the molar amounts of hydroximoyl chloride and/or the reaction temperature slightly improved the chemical yield (Entries 2, 3). enantioselective cycloaddition of benzonitrile oxide to 1E also gave an optically active 2-isoxazoline 2b in 59% yield with the selectivity of 94% ee (Entry 4). In the case of the 1,3-dipolar cycloaddition of p-methoxybenzonitrile oxide to (Z)-2-buten-1ol (1Z), 4,5-cis-2-isoxazoline 2c was obtained in 63% yield with the selectivity of 96% ee when the reaction was carried out at 25 °C (Entry 6), but in lower chemical yield at 0 or 45 °C (Entries 5,7). Benzonitrile oxide also afforded the corresponding cycloaddition product 2d with high enantioselectivity (Entry 8).5 The regioisomer of 2 was

$$\begin{array}{c} \text{Me}_{\text{N}} & \text{OH} & \begin{array}{c} \text{1) 1.0 Et}_2\text{Zn} \\ \hline 2) 1.0 \ (\textit{R},\textit{R})\text{-DIPT} \\ \hline 3) \ \textit{n Et}_2\text{Zn} \\ \hline 4) \ \textit{n RC(CI)=NOH} \\ \hline \\ \textbf{1} & \text{T °C in CHCI}_3, \text{ overnight} \end{array} \quad \begin{array}{c} \text{N-O} \\ \text{Me} \\ \hline \\ \textbf{2} \end{array}$$

Table 1. The asymmetric 1,3-dipolar cycloaddition of nitrile oxides to 2-buten-1-ol (1)

Entry	1	R	2	(4,5-)	n	T	Yield/%	ee/%
1	E	p-MeOC ₆ H ₄	a	(trans)	1.0	0	20	93a
2		-			1.5	0	35	89a
3					1.5	25	37	88a
4	\boldsymbol{E}	Ph	b	(trans)	1.5	25	59b	94b
5	\boldsymbol{Z}	p-MeOC ₆ H ₄	c	(cis)	1.5	0	30	97a
6					1.5	25	63	96a
7					1.5	45	44	94a
8	Z	Ph	d	(cis)	1.5	25	51	98a

^aOptical yields were determined by HPLC analysis (Daicel Chiralcel OD-H). ^bChemical and optical yields were determined by HPLC analysis (Daicel Chiralcel OD-H) of the mixture of **2b** and its regioisomer *trans*-4-(hydroxymethyl)-5-methyl-3-phenyl-2-isoxazoline (2% yield).

scarcely produced in these reactions except for the reaction of benzonitrile oxide to 1E (Entry 4).⁶

The enantioselective preparation of highly functionalized 2-isoxazolines, which are versatile synthetic intermediates, is strongly required. Then, asymmetric 1,3-dipolar cycloaddition to an allylic alcohol possessing an ethoxycarbonyl group was investigated. It was found that the asymmetric cycloaddition of nitrile oxides to ethyl (E)-4-hydroxy-2-butenoate (3) proceeded to afford the corresponding 4.5-trans-2-isoxazolines 4 with high enantioselectivity as shown in Table 2.5

Table 2. The asymmetric 1,3-dipolar cycloaddition of nitrile oxides to ethyl (*E*)-4-hydroxy-2-butenoate (3)

			4		5	
Entry	R		Yield/%	ee/%	Yield/%	ee/%
1	p-MeOC ₆ H ₄	a	82	92a		
2	Ph	b	75	92b	trace	
3	p-BrC ₆ H ₄	c	71	92b	trace	
4¢	Heptyl	d	35	96 ^b		
5	t-Bu	e	74	91b		

^aOptical yield was determined by HPLC analysis (Daicel Chiralcel OB-H). ^bOptical yields were determined by HPLC analysis (Daicel Chiralcel OD-H). ^c Two molar amounts of hydroximoyl chloride were used.

1024 Chemistry Letters 1998

During the purification of the reaction products 4 by TLC on silica gel, the production of the lactone 5, which was not observed before the purification, was confirmed. It indicated that the 4,5-trans-2-isoxazoline 4 could be readily isomerized to 4,5-cis-2-isoxazoline followed by lactonization to afford 5. In order to promote the isomerization, trans-2-isoxazolines 4 were treated with a small amount of DBU to furnish the optically active 4,5-cis-2-isoxazolines 5 in high yields without loss of optical purity (Table 3).5

Table 3. The transformation of 4 to 5

Ent	ry R		ee/% of 4	m	T	Yield/%	ee/% of 5
1	p-MeOC ₆ H ₄	a	92	0.3	25	93	92a
2	Ph	b	91	0.1	0	98	91a
3	p-BrC ₆ H ₄	c	92	0.1	-20→-10	97	92a
4	Heptyl	d	96	0.3	25	90	96 ^b
5	t-Bu	e	91	0.3	25	92	94a

aOptical yields were determined by HPLC analysis (Daicel Chiralcel OD-H). bOptical yield was determined by HPLC analysis (Daicel Chiralcel OB-H).

Catalytic asymmetric cycloaddition of p-methoxybenzonitrile oxide to 3 was also carried out4b to give the 2isoxazoline 4a with the enantioselectivity of 84% ee.

The absolute configuration of 4,5-trans-2-isoxazoline 2b $(98\% \text{ ee}; [\alpha])^{25} -124^{\circ} \text{ (c 0.14, MeOH))}$ was confirmed to be 4R.5R by the comparison of specific optical rotation and the spectral data with those of the authentic sample 2b (91% ee; $[\alpha]$ D²⁵ -113° (c 0.50, MeOH)) derived from the known (R)-2isoxazoline 6^{4a} (91% ee).⁷ On the other hand, the absolute configuration of 5b was revealed to be 4S,5R by X-ray crystallographic analysis of its derivative: The treatment of 5b (87% ee) with (R)-1-phenylethylamine gave an amide 7 (69%)as a major product through ring opening and isomerization. The stereochemistry of 7 was determined to be 4R,5R by X-ray crystallographic analysis of its single crystal as shown in Figure

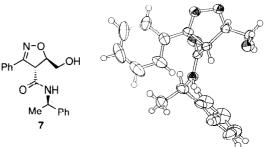


Figure 1. Molecular structure of 7.

As described above, the present method provides a useful way for the enantioselective synthesis of the 3,4,5trisubstituted-2-isoxazolines. Especially by the asymmetric 1,3-dipolar cycloaddition of nitrile oxides to ethyl (E)-4hydroxy-2-butenoate, not only 4,5-trans- but also 4,5-cis-2isoxazolines were simply prepared with high enantioselectivity. Furthermore, this method provides a useful way to prepare both enantiomers of 3,4,5-trisubstituted-2-isoxazolines because of easy availability of (R,R)- and (S,S)-DIPT, ultimately allowing to provide all of the possible four optically active stereoisomers.

The present work was partially supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture.

References and Notes

- Recently enantioselective 1,3-dipolar cycloadditions of nitrones and trimethylsilyldiazomethane were reported: K. V. Gothelf and K. A. Jørgensen, *Acta Chem. Scand.*, **50**, 652 (1996); A. I. Sanchez-Blanco, K. V. Gothelf, and K. A. Jørgensen, *Tetrahedron Lett.*, **38**, 7923 (1997); K. Hori, H. Kodama, T. Ohta, and I. Furukawa, *Tetrahedron Lett.*, **37**, 5947 (1996); S. Kobayashi, R. Akiyama, M. Kawamura, and H. Ishitani, Chem. Lett., 1997, 1039; S. Kanemasa and Y. Oderaotoshi, J. Synth. Org. Chem. Jpn., **56**, 368 (1998); J.-P. G. Seerden, M. M. Kuypers, and H. W. Scheeren, Tetrahedron: Asymmetry, **6**, 1441 (1995). D. P. Curran and T. A. Heffner, J. Org. Chem., **55**, 4585 (1990).
- Diastereo- and regioselective 1,3-dipolar cycloaddition of nitrile oxides coordinated to magnesium to allylic alcohols was reported: a) S. Kanemasa, M. Nishiuchi, A. Kamimura, and K. Hori, J. Am. Chem. Soc., 116, 2324 (1994); b) S. Kanemasa, K. Okuda, H. Yamamoto, and S. Kaga, *Tetrahedron Lett.*, 38, 4095 (1997).
- a) Y. Ukaji, K. Sada, and K. Inomata, Chem. Lett., 1993, 1847; b) M. Shimizu, Y. Ukaji, and K. Inomata, Chem. Lett., 1996, 455; c) Y. Ukaji, K. Taniguchi, K. Sada, and K. Inomata, Chem. Lett., 1997, 547
- All new isoxazolines and the known isoxazoline 2b3a were characterized by ¹H NMR spectra, IR spectra, and elemental analyses or MS spectra. Coupling constants J₄₋₅ of trans-isoxazolines 2a,2b,4,7 were smaller than those of the corresponding cis-isomers 2c,2d,5. J_{4-5} /Hz (CDCl₃): 5.12 (2a), 9.27 (2c); 5.12 (2b), 9.27 (2d); 5.34 (4a), 9.27 (5a); 6.42 (4b), 9.54 (5b), 5.85 (7); 6.42 (4c), 9.51 (5c); 8.07 (4d), 9.72 (5d); 5.87 (4e), 9.54 (5e).
- The regio- and enantioselectivities in the reaction of benzonitrile oxide to $\emph{1E}$ were improved by optimization of the molar amounts of reagents and the reaction temperature. 4a
- V. Jäger and W. Schwab, Tetrahedron Lett., 1978, 3129.
- Single crystal of 7, obtained by recrystallization from AcOEt, contained AcOEt (AcOEt/7 was 1/5 by its ¹H NMR spectral analysis). mp: 129.5-130.0 °C. Found: C. 69.54; H, 6.39; N, 8.16%. Calcd for C₁₉H₂₀N₂O₃·1/5AcOEt: C. 69.54; H, 6.37; N, 8.19%. The difference Fourier maxima revealed that the AcOEt was disordered along 65 axes. Taking AcOEt into account in each asymmetric unit with a scattering factor of one nitrogen atom improved the structure refinement: Crystal data: C₁₉H₂₀N₃O₃, FW. 338.39, hexagonal, P6₅, a = 18.800(2) Å, c = 8.871(1) Å, V = 2715.1(5) Å³, Z = 6. D_{calc} = 1.242 g/cm³. R = 0.054 (R_{w} = 0.071) for 1012 reflections with I > 3.00 σ (I) and 222 variable parameters. Leaving AcOEt out of account, R value was 0.078 ($R_w =$