A Facile Synthesis of Fluoroalkylisoxazoles

YANCHANG SHEN*, JIANHUA ZHENG, YAOZENG HUANG
Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai, People's Republic of China

Fluorinated isoxazoles are synthesized from aromatic nitrile oxides and methyl perfluoro-2-alkynoates.

The 1,3-dipolar cycloaddition of nitrile oxides and C—C unsaturated dipolarophiles is a useful method for the synthesis of several heterocyclic compounds having biological properties¹. Because of the large frontier orbital separations, the dipolarophilic activity of alkynes is usually reduced as compared with that of alkenes². Fluorinated alkynes have been found to be good dipolarophiles as exemplified by the reaction of aromatic nitrile oxides with hexafluoro-2-butyne³. However, no 1:1-cycloadduct was isolated from that reaction. We describe here a facile route to fluoroalkylisoxazoles using functionalized fluoroalkynes as dipolarophiles.

Table 1. Yields and Regioselectivity of the Reaction $1+2 \rightarrow 3+4$

Product	R	R ^F	Yield [%]	Ratio 3:4	1 H-N.M.R. (CCl ₄ /TMS _{int}) δ [ppm] of OCH ₃
3a 4a	Н	CF ₃	92	90:10	3.20 (s) 3.30 (s)
3b 4b	Н	C_2F_5	94	90:10	3.28 (s) 3.38 (s)
3e 4e	Н	<i>n</i> -C ₃ F ₇	94	90:10	3.27 (s) 3.38 (s)
3d 4d	2-Cl	CF ₃	97	90:10	3.77 (s) 4.00 (s)
3e 4e	2-C1	C_2F_5	95	86:14	3.37 (s) 3.57 (s)
3f 4f	2-Cl	<i>n</i> -C ₃ F ₇	94	88:12	3.33 (s) 3.53 (s)
3g 4g	4-Cl	CF ₃	97	88:12	3.83 (s) 4.00 (s)
3h 4h	4-Cl	C_2F_5	90	86:14	3.81 (s) 4.00 (s)
3i 4i	4-C)	<i>n</i> -C ₃ F ₇	94	88:12	3.80 (s) 4.00 (s)
3j 4j	4-CH ₃	CF ₃	92	92:8	3.23 (s) 3.33 (s)
3k 4k	4-CH ₃	C_2F_5	91	89:11	3.87 (s) 3.97 (s)
31 41	4-CH ₃	<i>n</i> -C ₃ F ₇	89	89:11	3.87 (s) 4.02 (s)

Table 2. Fluoroalkylisoxazoles (3a-e) prepared

Product	m.p. [°C		Molecular Formula ^a	M.S. m/e	I.R. v[cm ⁻¹]	1 H-N.M.R. (CCl_{4}/TMS_{int}) δ [ppm]	19 F-N. M. R. (CCl ₄ /CF ₃ COOH _{ext}) δ [ppm]
3a	b.p. 10	9110°/1	C ₁₂ H ₈ F ₃ NO ₃ (271.2)	271; 212; 202; 143	1750 (s); 1610 (s); 1220 (s)	3.20 (s, 3H); 6.93-7.20 (m, 5H)	-14.5 (s)
3b	b.p. 9	4-96°/0.6	C ₁₃ H ₈ F ₅ NO ₃ (321.2)	321; 290; 202; 143	1750 (s); 1620 (s); 1170 (s)	3.28 (s, 3H); 6.95-7.20 (m, 5H)	6.3 (t, 3 F, $J = 2$ Hz); 37.3 (q, 2 F, $J = 2$ Hz)
3c	b.p. 10	2–104°/0.6	C ₁₄ H ₈ F ₇ NO ₃ (371.2)	371; 340; 202; 143	1750 (s); 1620 (s); 1210 (s)	3.27 (s, 3H); 6.92-7.23 (m, 5H)	4.7 (t, 3F, $J = 10 \text{ Hz}$); 35.7 (q, 2F, $J = 10 \text{ Hz}$); 49.8 (br.
3d	b.p. 11	3-115°/2	C ₁₂ H ₇ CIF ₃ NO ₃ (305.6)	305; 270; 177; 111	1750 (s); 1620 (s);	3.77 (s, 3H); 7.47 (br. s, 4H)	s, 2F) -14.7 (s)
3e	b.p. 10	1–103°/1	C ₁₃ H ₇ CIF ₅ NO ₃ (355.7)	355; 270; 177; 111	1170 (s) 1750 (s); 1620 (s);	3.37 (s, 3 H); 7.08 (br. s, 4 H)	7.5 (t, 3F, $J = 2$ Hz); 37.3 (q, 2F, $J = 2$ Hz)
3f	b.p. 116	6–118°/1	C ₁₄ H ₇ ClF ₇ NO ₃ (405.7)	405; 320; 177; 111	1220 (s) 1750 (s); 1620 (s);	3.33 (s, 3H); 7.03 (br. s, 4H)	4.3 (t, 3F, $J = 10 \text{ Hz}$); 35.0 (q, 2F, $J = 10 \text{ Hz}$); 49.7 (br.
3g	m.p. 41	1–42°	C ₁₂ H ₇ ClF ₃ NO ₃ (305.6)	305; 236; 177; 111	1220 (s) 1750 (s); 1610 (s);	3.83 (s, 3H); 7.37–7.47 (m, 4H)	s, 2F) -15.7 (s)
3h	m.p. 49		C ₁₃ H ₇ ClF ₅ NO ₃ (355.7)	355; 236; 177; 111	1170 (s) 1750 (s); 1600 (s);	3.81 (s, 3H); 7.40–7.73 (m, 4H)	4.7 (t, 3 F, $J = 2$ Hz); 35.5 (q, 2F, $J = 2$ Hz)
3i	m.p. 68		C ₁₄ H ₇ ClF ₇ NO ₃ (405.7)	405; 236; 177; 111	1220 (s) 1750 (s); 1600 (s);	3.80 (s, 3H); 7.40-7.73 (m, 4H)	2.0 (t, 3F, $J = 10$ Hz); 33.7 (q, 2F, $J = 10$ Hz); 47.8 (br.
3j	b.p. 106	,	C ₁₃ H ₁₀ F ₃ NO ₃ (285.2)	285; 216; 157; 91	1220 (s) 1750 (s); 1620 (s);	1.75 (s, 3H); 3.23 (s, 3H); 6.53-7.07 (m, 4H)	s, 2F) -13.0 (s)
3k	m.p. 42		$C_{14}H_{10}F_5NO_3$ (335.2)	335; 216; 157; 91	1170 (s) 1750 (s); 1620 (s);	2.43 (s, 3H); 3.87 (s, 3H); 7.18-7.65 (m, 4H)	7.0 (t, 3 F, $J = 2$ Hz); 37.7 (q, 2 F, $J = 2$ Hz)
31	m.p. 50		C ₁₅ H ₁₀ F ₇ NO ₃ (385.2)	385; 216; 157; 91	1220 (s) 1740 (s); 1620 (s); 1220 (s)	2.47 (s, 3H); 3.87 (s, 3H); 7.20–7.67 (m, 4H)	3.0 (t, 3 F, $J = 10$ Hz); 34.5 (q, 2 F, $J = 10$ Hz); 48.8 (br. s, 2 F)

^a Satisfactory microanalyses obtained: $C \pm 0.37$, $H \pm 0.17$, $F \pm 0.47$, except for **3b** (F + 0.99) and **3k** (F + 0.89).

The reaction of aromatic nitrile oxides (1) with methyl perfluoro-2-alkynoates (2) gave products 3 contaminated with 8-14% of 4 (Table) which was easily removed by column chromatography on silica gel. The ratios 3:4 were estimated by integration of the methoxy signals in the ¹H-N.M.R. spectra. On the basis of the data of similar compounds⁴, we assume that the OCH₃ signals of compounds 3 are shifted upfield while those of compounds 4 are shifted downfield. The structures of all products were ascertained by their M.S., I.R., and N.M.R. spectra and by their microanalyses which were satisfactorily consistent with the calculated values.

To a solution of a methyl perfluoro-2-alkynoates (2; 7.5 mmol)⁵ and an arylhydroximic acid chloride (5 mmol) in absolute ether (25 ml) is slowly added triethylamine (6 mmol) at 0 °C within 1 h. The mixture is stirred at 0 °C for 6 h, then warmed to room temperature, and triethylamine hydrochloride is filtered off. After removal of the solvent the residue is distilled under reduced pressure to give products 3 and 4 (in all cases $\sim 9:1$). The major regioisomer 3 is separated by column chromatography on silica gel using petroleum ether $(30-60\,^{\circ}\text{C})$ as eluent.

Thanks are due to the Science Fund of Academia Sinica for partial financial support.

Received: February 4, 1985

¹ Baldwin, J. E., Hoskins, C., Kruse, L. J. Chem. Soc. Chem. Commun. 1976, 795.

Hagedorn, A. A., Miller, B. J., Nagy, J. O. Tetrahedron Lett. 1980, 21, 229.

² Bast, K., Christl, M., Huisgen, R., Mack, W. Chem. Ber. 1973, 106, 3312.

³ Kobayashi, Y., Kumadaki, I., Fujino, S. Heterocycles 1977, 7, 871.

⁴ Christl, M., Huisgen, R. Chem. Ber. 1973, 106, 3282.

⁵ Huang, Y.-T., Shen, Y.-C., Chen, K.-T., Wang, C.-C. Acta Chimica Sinica 1979, 37, 47; C.A. 1979, 91, 19853.