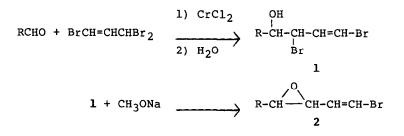
A CONVENIENT AND STEREOSELECTIVE CONVERSION OF ALDEHYDES INTO β -BROMOVINYLOXIRANES MEDIATED BY CHROMIUM(II) CHLORIDE


Jacques Augé

Institut de Chimie Moléculaire d'Orsay, Laboratoire de Chimie Organique Multifonctionnelle, Université de Paris-Sud, Bt 420, F91405 Orsay Cédex

<u>Abstract</u>. The monoreduction of 1,3,3-tribromopropene by chromium(II) chloride gave a chromium(III) species converting aldehydes into β -bromovinyloxiranes. The stereochemistry of this new reaction is mainly temperature dependent.

The conversion of aldehydes into vinyloxiranes can be mediated by sulfur,¹ selenium² or organometallic³ species. More difficult seems to be the preparation of β -bromovinyloxiranes.⁴ These compounds should be good intermediates in carbon-carbon coupling reactions, but difficulties to obtain pure stereoisomers have prohibited their use. This led us to investigate a chromium(II) methodology.

The reduction of allyl halides or gem-diiodoalkanes (but not gem-dibromoalkanes) by chromium(II) chloride gives chromium or geminal dichromium species which undergo highly selective additions on aldehydes, leading respectively to homoallyl alcohols^{5,6} or (E)-olefins.⁷ We took advantage of these results and studied the reduction of 1,3,3-tribromopropene⁸ by chromium(II) chloride in the presence of an aldehyde. Bromohydrins 1 were isolated as mixtures of stereoisomers, then allowed to react with a base:

Bromovinyloxiranes 2 were separated by preparative HPLC and identified by NMR spectroscopy.⁹ The percentage of each stereoisomer was dependent on experimental conditions (see following table).

The salient features of the process are as follows:

(1) the (trans,Z) stereoisomer is always the major product in THF solution,

(2) temperature is a key factor for stereoselectivity (runs 3, 4, 5 and 6).

Run	R	Method	Temp.	Time I	solated	% Products			
			°C	2	yield %	trans,E	trans,Z	cis,Z	cis,E
1	Ph	В	-28	6 h	66	 17	63		20
2	Ph	A	-28	3 h	76	11	80		9
3	Ph	A	-28	5 h	81	14	75		11
4	Ph	A	-12	35 min	88	6	83	7	4
5	Ph	А	0	30 min	67	3	83	13	1
6	Ph	A	+20	30 min	51	4	59	36	l
7	СH ₃ (СH ₂) 6	А	-25	3 h	79	22	66	1	11
8	Ph $(CH_2)_2$	A	-12	6 h	40	10	79	7	4
	сн3								
9	СН СН	Α	-12	5 hr	57		90		

Method A: addition of tribromopropene to an aldehyde-CrCl₂ (2:1:4 molar ratio) suspension in THF.

Method B : addition of aldehyde-tribromopropene mixture to a CrCl₂ (1:2:2 molar ratio) suspension in THF.

We expect the trans/cis ratios in bromovinyloxiranes 2 to reflect the anti/syn ratios in bromhydrins 1. Thus the trans selectivity in THF may be interpreted in terms of a chair transition state.⁶ When an aldehyde-CrCl₂ complexe is preformed (method A), the coordination may be the origin of both the rate enhancement and the trans selectivity¹¹ (compare runs 1 and 2).

Acknowledgements. The author thanks Professors S. David and A. Lubineau for their interest, Université de Paris-Sud and C.N.R.S.(U.A.462) for financial support.

References and notes

- J.C. Paladini and J. Chuche, Bull. Soc. Chim. Fr. 1974, 192. 1.
- 2.
- 3.
- 4.
- 5.
- M. Pohmakotr, K.H. Geiss and D. Seebach, Chem. Ber. 1979, 112, 1420.
 D. Van Ende and A. Krief, <u>Tetrahedron Lett.</u> 1976, 17, 457.
 J. Augé and S. David, <u>Tetrahedron Lett.</u> 1983, 24, 4009 and references cited therein.
 J.P. Bény, J.C. Pommelet and J. Chuche, <u>Bull. Soc. Chim. Fr.</u> 1981, II-369.
 Y. Okude, S. Hirano, T. Hiyama and H. Nozaki, <u>J. Am. Chem. Soc.</u> 1977, <u>99</u>, 3179.
 T. Hiyama, K. Kimura and H. Nozaki, <u>Tetrahedron Lett.</u> 1981, 22, 1037. 6.
- 7.
- T. Okazoe, K. Takai and K. Utimoto, J. Am. Chem. Soc. 1987, 109, 951. This new compound was easily prepared from 1-bromopropene and 2 equivalents of N-8 bromosuccinimide; the mixture was refluxing overnight in CCl4 in presence of a radical initiator. Distillation (bp₁₆ = 88-92°C) gave 1,3,3-tribromopropene (E/Z = 50:50, 69% yield). The composition found (C, H, Br) was satisfactory for the formula $C_3H_3Br_3$. NMR-¹H (250 MHz, CDCl₃) parameters for Ph-CH_d-CH_c-CH_b=CH_a-Br were given as an example: ۹.

(trans,E): $J_{ab} = 13.8$ Hz, $J_{cd} = 2$ Hz; (cis,E): $J_{ab} = 13.8$ Hz, $J_{cd} = 4.2$ Hz (trans,Z): $J_{ab} = 7.5$ Hz, $J_{cd} = 2$ Hz; (cis,Z): $J_{ab} = 7.5$ Hz, $J_{cd} = 2$ Hz Identical J_{cd} coupling constants were observed for the (trans,Z) and (cis,Z) stereoisomers; this problem was resolved by converting (trans,Z)B-bromovinyloxirane into (trans)ethynyloxirane. Indeed the ethynyloxirans display a 2 Hz coupling constant for the trans isomer and a 4 Hz coupling constant for the cis one.¹⁰

- J.P. Bény, J.C. Pommelet and J. Chuche, <u>Bull. Soc. Chim. Fr.</u> 1981, II-377.
 When DMF, which is an effective ligand for chromium(II)^{0,7}, was used as the solvent, yield is low and selectivity is reverse; (cis,Z) is the major product.

(Received in France 3 August 1988)