November 1984 Communications 929

todesilylierung in hohem Maße verlangsamt oder blockiert, so daß es gelingt, N-Alkylpyrrole 1 und N-substituierte Indole 5 in die Heteroarylsilane 3, 4 bzw. 6 umzuwandeln.

$$R^{2} \xrightarrow{N} R^{2} \xrightarrow{F_{3}C - SO_{2} - O - Si(CH_{3})_{3}} (2)/R^{2} \xrightarrow{(C_{2}H_{5})_{3}N, 5 - 12^{\circ}C \longrightarrow r.t.} R^{2} \xrightarrow{R^{2}} R^{2}$$

$$1a - d \qquad 3a - d$$

$$(2)/(C_{2}H_{5})_{3}N, R^{2} = H \longrightarrow (H_{3}C)_{3}Si \xrightarrow{N} R^{2}$$

$$(H_{3}C)_{3}Si \xrightarrow{N} R^{2}$$

$$(H_{3}C)_{3}Si \xrightarrow{N} R^{2}$$

$$(H_{3}C)_{3}Si \xrightarrow{N} R^{2}$$

1,3,4	R ¹	R ²
а	CH₃	Н
b	C ₂ H ₅	н
С	C ₆ H ₅ CH ₂	Н
d	CH ₃	CH ₃

Elektrophile Silylierung elektronenreicher Heteroaromaten

Ulrich FRICK, Gerhard SIMCHEN*

Institut für Organische Chemie, Biochemie und Isotopenforschung der Universität Stuttgart, Pfaffenwaldring 55, D-7000 Stuttgart 80, Bundesrepublik Deutschland

Aryl- und Heteroarylsilane haben vor allem wegen ihrer Selektivität in S_E -Reaktionen Bedeutung erlangt. Bevorzugt werden sie durch Umsetzung metallierter Spezies mit Halotrialkylsilanen hergestellt¹. Der elektrophile Ersatz von Wasserstoff durch Silylreste an Aromaten gelingt wegen der außerordentlich raschen Protodesilylierung nur, wenn die freigesetzten Protonen irreversibel entfernbar sind (z. B. als H_2)^{1,2}. Mit Trimethylsilyltriflat (2) können elektrophile Reaktionen auch in basischen Medien, wie Triethylamin vorgenommen werden³. Unter diesen Bedingungen ist die Pro-

Vermutlich wegen der hohen Raumbeanspruchung des Trimethylsilyltriflat-Triethylamin-Komplexes, dem eigentlichen elektrophilen Agens⁴, führt die Substitution zunächst ausschließlich zu den 3-Trimethylsilylpyrrolen (3). In einem langsameren Folgeschritt werden diese durch noch vorhandenes 2 in geringerer Ausbeute zu den 3,5-Bis[trimethylsilyl]pyrrolen (4) umgesetzt.

Tabelle. 3-Trimethylsilylpyrrole (3a-d), 3,5-Bis[trimethylsilyl]pyrrole (4a, b) und 3-Trimethylsilylindole (6a-c) aus Pyrrolen (1) bzw. Indolen (5)

Edukt	Reaktions- zeit [h]	Produkt	Ausbeute [%]	$K_p[^{\circ}C]/$ torr	Summen- formel ^a	1 H-N.M.R. (CDCl ₃) δ [ppm]
1a	14	3a +	57 ^b	64-65°/15	C ₈ H ₁₅ NSi (153.3)	0.23 [s, 9H, Si(CH ₃) ₃]; 3.63 (s. 3H, CH ₃); 6.27 (dd, 1H, $J_{2,4} = 1.5$ Hz, $J_{4,5} = 2.5$ Hz, H-4); 6.67 (m, 2H, H-2, H-5)
		4a	10	105°/15	C ₁₁ H ₂₃ NSi ₂ (225.5)	0.20 [s, 9 H, Si(CH ₃) ₃]; 0.30 [s, 9 H, Si(CH ₃) ₃]; 6.40 (d, 1 H, $J = 1.5$ Hz, H-4); 6.77 (d, 1 H, $J = 1.5$ Hz, H-2)
1b	18	3b	60	74 °/ 10	C ₉ H ₁₇ NSi (167.3)	0.22 [s, 9H, Si(CH ₃) ₃]; 1.38 (t, 3H, $J = 7$ Hz, CH ₃); 3.90 (q, 2H, $J = 7$ Hz, CH ₂); 6.23 (dd, 1H, $J_{2,4} = 1.5$ Hz, $J_{4,5} = 2.5$ Hz, H-4); 6.72 (m, 2H, H-2, H-5)
1b	72°	3b +	71	74°/10	wie oben	- 1.5111, 54,5 - 2.5112, 11-4), 0.72 (III, 211, 11-2, 11-3)
		4b	18	109°/10	C ₁₂ H ₂₅ NSi (239.5)	0.22 [s, 9 H, Si (CH ₃) ₃]; 0.33 [s, 9 H, Si(CH ₃) ₃]; 1.43 (t, 3 H, $J = 7$ Hz, CH ₃); 4.03 (q, 2 H, $J = 7$ Hz, CH ₂); 6.42 (d, 1 H, $J = 1.5$ Hz, H-4); 6.93 (d, 1 H, $J = 1.5$ Hz, H-2)

Table 3. (Fortsetzung)

Edukt	Reaktions- zeit [h]	Produkt	Ausbeute [%]	K _p [°C]/ torr	Summen- formel ^a	1 H-N.M.R. (CDCl ₃) δ [ppm]
1e	23	3c	55	76°/10	C ₁₄ H ₁₉ NSi (229.4)	0.23 [s, 9H, Si(CH ₃) ₃]; 5.00 (s, 2H, CH ₂); 6.20 (dd, 1 H, $J_{2,4}$ = 1.5 Hz, $J_{4,5}$ = 2.0 Hz, H-4); 6,67 (m, 2 H, H-2, H-5); 6.93–7.40 (m, 5 H _{arom})
1d	16	3d	61	99°/15	C ₁₀ H ₁₉ NSi (181.3)	0.23 [s, 9 H, Si(CH ₃) ₃]; 2.20 (s, 3 H, CH ₃); 2.27 (s, 3 H, CH ₃); 3.37 (s, 3 H, N—CH ₃); 5.90 (s, 1 H, H-4)
5a	17	6a	81	93°/0.04	$C_{12}H_{17}NSi$ (203.4)	0.33 [s, 9 H, Si(CH ₃) ₃]; 3.67 (s, 3 H, CH ₃); 7.02 (s, 1 H, H-2); 7.07–7.87 (m, 4 H _{2ron})
5b	22	6b	69	107°/0.05 F: 83°	C ₁₈ H ₂₁ NSi (279.5)	0.37 [s, 9H, Si(CH ₃) ₃]; 5.20 (s, 2H, CH ₂); 7.0–7.9 (m, 10H, H-2 + 9H _{arom})
5c	192	6c	54	85°/0.05 F: 49°	C ₁₄ H ₂₃ NSi ₂ (261.5)	0.42 [s, 9H, Si(CH ₃) ₃]; 0.56 [s, 9H, Si(CH ₃) ₃]; 7.0-7.93 (m, 5H, H-2 + 4H _{arom})

^a Die Mikroanalysen stimmten mit den berechneten Werten zufriedenstellend überein: $C \pm 0.27$, $H \pm 0.19$, $N \pm 0.26$. Produkt **3a** konnte nicht analysenrein gewonnen werden.

3-Trimethylsilylpyrrole (3 a – d), 3,5-Bis[trimethylsilyl]pyrrole (4 a, b) und 3-Trimethylsilylindole (6 a – c); allgemeine Arbeitsvorschrift:

In einem 100 ml Dreihalskolben mit Tropftrichter, Kühler, Kaliumhydroxid-Trockenrohr und Magnetrührer gibt man zur Lösung des Pyrrols **1 a-d** oder Indols **5a-c** (27.5 mmol) in Triethylamin (25 ml) bei 5–12 °C allmählich Trimethylsilyltriflat (**2**; 6.22 g, 27.5 mmol). Anschließend rührt man bei Raumtemperatur (Tabelle). Die obere, organische Phase wird von der flüssigen Salzphase abgetrennt, das Solvens im Vakuum abdestilliert und das Rohprodukt im Vakuum fraktioniert.

Eingang: 18. Mai 1984.

b Enthält noch geringe Mengen 4a.

^c Mit doppelten Mengen Trimethylsilyltriflat (2) und Triethylamin.

^{*} Korrespondenz-Adresse.

D. Häbich, F. Effenberger, Synthesis 1979, 841.

² A. Wright, J. Organomet. Chem. 145, 307 (1978).

³ D. Schulz, G. Simchen, Synthesis 1984, 928.

⁴ H. Emde, G. Simchen et al., Synthesis 1982, 1.