ORGANOMETALLICS

Z-Selective Hydrostannylation of Terminal and Internal C–C Triple Bonds Initiated by the Trityl Cation

Cite This: Organometallics XXXX. XXX. XXX–XXX

Francis Forster,[®] Victoria M. Rendón López,[®] and Martin Oestreich^{*®}

Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany

Supporting Information

ABSTRACT: A metal-free method for the *anti*-addition of *n*-Bu₃SnH across terminal and internal alkynes, including related α,β -unsaturated carboxyl compounds, is reported. The reaction is initiated by the trityl salt $[Ph_3C]^+[B(C_6F_5)_4]^$ and proceeds through β -tin-stabilized vinyl cations. Their reduction by hydride transfer from *n*-Bu₃SnH explains the high *Z*-selectivity in the formation of the vinyl stannanes.

A n R₃Sn group attached to an alkene is a versatile linchpin in synthetic chemistry, e.g., in Stille-type cross-coupling reactions.¹ Methods for the stereoselective preparation of these vinyl stannanes have therefore always been in demand. Known procedures are diverse, and a direct way of their formation is by the addition of hydrostannanes R₃SnH across alkynes.² These hydrostannylations can be either catalyzed by transition metals³ or initiated by radical starters,⁴ often affording the vinyl stannane with high *E*-selectivity despite their different mechanisms. Conversely, hydrostannylations promoted by Lewis acids arrive at *Z*-configuration of the vinyl stannane.⁵

We recently disclosed a dehydrogenative coupling of various terminal alkynes I and n-Bu₃SnH catalyzed by tethered Ru-S complexes (I \rightarrow III, Scheme 1, top).⁶ This transformation proceeds through the intermediacy of bridged β -tin-stabilized vinyl cations⁷ II (gray box, Scheme 1, middle). Intermediates II emerge from I and the stannylium-ion-like tin electrophile $[n-Bu_3Sn-S]^+$ that, in turn, is generated by cooperative Sn-H bond activation at the Ru-S bond.8 The chemoselectivity of the reaction is determined at the stage of II: deprotonation II \rightarrow III (left) versus hydride reduction II \rightarrow IV (right). The neutral Ru-H formed is not sufficiently hydridic,9 but the sulfur atom is able to abstract the proton from II, resulting in the formation of alkynyl stannane III (Scheme 1, top). In the light of this insight, we imagined that the chemoselectivity could be reversed in the absence of this internal Brønsted base, thereby forcing *n*-Bu₃SnH into the role of the hydride source^{4c} and at the same time regenerating the tin electrophile for the next formation of II from I. The trityl cation could fulfill this purpose as it is typically employed for the generation of stannylium ions by hydride abstraction,¹⁰ and the resulting triphenylmethane would not participate further in reaction. Consequently, the trityl cation could initiate the hydrostannylation of alkynes ($I \rightarrow IV$, Scheme 1, bottom). Herein, we report the Z-selective hydrostannylation of a broad range of terminal and internal alkynes involving cationic intermediates.¹¹

Initial experiments using the readily available trityl salt $[Ph_3C]^+[B(C_6F_5)_4]^-$ as initiator for the hydrostannylation of phenyl acetylene (1a) furnished desired vinyl stannane Z-2a in complex mixtures. A systematic screening of reaction conditions revealed a dramatic influence of the solvent and reaction time on the outcome (Table 1). Reactions performed in CH₂Cl₂ largely yielded *E*-2a and substantial amounts *n*-Bu₄Sn; however, *Z*-to-*E* isomerization and decomposition occurred at prolonged reaction times (entries 1–3). ¹H and

Received: June 13, 2018

Table 1. Reaction Optimization: The Crucial Role of Solvent and Reaction Time a

	[Ph ₃ C]⁺[E	B(C ₆ F ₅) ₄] ⁻		
(1.0 mol %)			H.	н
H <i>n</i> Bu ₃ Sn–H (1.0 equiv)				SnnBu ₃
Ph	solv	vent [~]	Ph Y	* Ph Y
	temperatu	re for time	SnnBu	з Й
1a (1.1 equiv) – <i>n</i> Bu		u ₄ Sn	Z- 2a	<i>E-</i> 2a
entry	solvent	T (°C)	t	Z-2/ E -2/ n -Bu ₄ Sn ^b
1	CH_2Cl_2	RT	5 min	15:51:34
2	CH_2Cl_2	RT	1 h	0:54:46
3	CH_2Cl_2	RT	20 h	0:52:47
4	PhH	RT	1 h	0:1:99
5	PhF	RT	1 h	0:42:58
6	PhCl	RT	1 h	6:38:56
7	<i>n</i> -pentane	RT	5 min	95:0:5
8	<i>n</i> -pentane	RT	1 h	89:0:11
9	<i>n</i> -pentane	RT	48 h	0:47:53
10	<i>n</i> -pentane	0	24 h	>95:0:<5

"All reactions were performed according to general procedure 1 or 2 (see the Supporting Information for details). ^bRatios were estimated by ¹¹⁹Sn{¹H} NMR analysis. Full conversion of *n*-Bu₃SnH was observed in all reactions.

¹¹⁹Sn NMR analysis showed full conversion of n-Bu₃SnH after 5 min, and the 15% of Z-2a present after this short reaction time then quickly disappeared. The same trend was seen in aromatic solvents such as benzene, fluorobenzene, and chlorobenzene (entries 4–6). This situation changed drastically with the use of *n*-pentane as solvent: Almost exclusive formation of Z-2a was observed at short reaction times, and isomerization to E-2a along with generation of *n*-Bu₄Sn was slowed down (entries 7–9). Lowering the reaction temperature to 0 °C gave Z-2a as the only product (entry 10).

Having identified the optimized setup, we explored the scope for phenyl acetylene derivatives $(1a-k \rightarrow Z-2a-k, Table 2)$. Regardless of the electronic property of the aryl group in 1a-i, almost all vinyl stannanes Z-2a-i were formed with high control of the double bond geometry and in good to excellent yields (entries 1-9). To secure high diastereoselectivities, the hydrostannylation of electron-deficient 1b-e had to be run at 0 °C rather than RT (entries 2-5; see Table 2, footnote e). Importantly, the formation of n-Bu₄Sn was suppressed at that temperature. Electron-rich 1f with an MeO group converted smoothly into Z-2f, whereas Me₂N-substituted 1g did not afford Z-2g even at 60 °C (entries 6 and 7). Steric hindrance was tolerated as verified for the three isomeric tolyl-substituted acetylenes $(1i-k \rightarrow Z-2i-k, entries 9-11)$.

Next, we turned our attention to alkyl-substituted terminal alkynes $(11-p \rightarrow Z-21-p, Table 3)$. Depending on the R group, we observed the formation of alkynyl stannane 3 as the product of dehydrogenative coupling. Linear hex-1-yne (11) gave only low conversion at RT but a higher reaction temperature only led to a complex mixture (entry 1). In turn, benzyl- and cyclopropyl-substituted 1m and 1n both formed vinyl stannanes Z-2m and Z-2n chemoselectively (entries 2 and 3). In contrast, cyclopentyl-substituted 10 reacted to an almost equimolar mixture of Z-20 and 30, and that ratio could not be improved at lower temperatures due to insufficient conversion (entry 4). The same applied to another branched substrate, cyclohexyl-substituted 1p, although the effect was less pronounced (entry 5). It seems that branching

Table 2. Hydrostannylation of Phenyl Acetylene Derivatives Initiated by the Trityl Cation a

×	II H <u>nB</u> te	Ph ₃ C] ⁺ [B(C ₆ (1.0 mol ⁰ u ₃ Sn−H (1.0 <i>n</i> -pentar mperature f	F ₅)₄] [−] %) D equiv) ne or time	×	H H SnnBu ₃
1a	a–k (1.1 equiv)			Z -2 a–k	
entry	alkyne 1	$T(^{\circ}C)$	<i>t</i> (h)	Z/E^{b}	yield of $2 (\%)^c$
1	1a (X = H)	0	24	>95:5	96 (2a) ^d
2	1b $(X = 4-F)$	0	2	92:8 ^e	79 (2b)
3	$1c (X = 4-CF_3)$	0	2	88:12	74 (2 c)
4	1d (X = 4-Cl)	0	2	89:11	77 $(2d)^d$
5	1e (X = 4-Br)	0	2	87:13	74 $(2e)^d$
6	1f (X = 4-OMe)	RT	1	>95:5	86 (2f)
7	$1g (X = 4-NMe_2)$	60 ^f	24		(2g) ^g
8	1h (X = 4-Ph)	0	2	>95:5	78 (2h)
9	1i (X = 4-Me)	0	2	>95:5	78 (2i)
10	1j (X = 3-Me)	RT	1	91:9	95 (2j) ^d
11	1k (X = 2-Me)	0	2	>95:5 ^h	82 (2 k)

^{*a*}All reactions were performed according to general procedure 1 or 2 (see the Supporting Information for details). ^{*b*}Ratios were determined by ¹H NMR analysis. ^{*c*}Isolated yield after filtration over a plug of basic Al₂O₃. ^{*d*}Along with trace amounts of *n*-Bu₄Sn. ^{*c*}E/Z = 75:25 at RT for 1 h. ^{*f*}Reaction performed in *n*-hexane instead of *n*-pentane. ^{*g*}Only low conversion of *n*-Bu₃SnH was observed. ^{*h*}E/Z = 80:20 at RT for 1 h.

in the propargylic position hampers the hydride transfer from n-Bu₃SnH to the β -tin-stabilized vinyl cation, turning proton release or even protonation of n-Bu₃SnH into a viable alternative. Triisopropylsilyl-protected propargylic alcohol **1q** was afflicted with the same problem (entry 6). In addition to that, there was no regiocontrol, and Z-**2q** and α -**2q** (not shown) formed in almost equimolar ratio. Propiolic acid methyl ester reacted cleanly but with opposite regioselectivity (**1r** $\rightarrow \alpha$ -**2r**):

Application of the standard protocol to internal alkynes and related $\alpha_{,\beta}$ -unsaturated carboxyl compounds¹² was largely satisfactory (Figure 1). No reaction was found for tolan despite full conversion of *n*-Bu₃SnH but this merely led to the formation of *n*-Bu₄Sn (not shown). However, the hydrostannylation of 1-phenylprop-1-yne (1s) yielded corresponding vinyl stannane Z-2s diastereoselectively and with excellent regioselectivity. An internal aliphatic alkyne was far less reactive; It transformed slowly into Z-2t, barely reaching 50% conversion after 24 h at 60 °C. Silylated alkynes such as Iu generally resulted in complex reaction mixtures. Alkynones Iv and Iw afforded Z-2v and Z-2w with superb control of the alkene geometry.

To conclude, we have introduced here a straightforward method for the Z-selective preparation of vinyl stannanes by alkyne hydrostannylation. The reaction is simply initiated by catalytic amounts of the trityl cation, that is by its hydride abstraction from the hydrostannane to formally generate a stannylium ion. The hydrostannane adds *anti* across the C–C

Table 3. Hydrostannylation of Alkyl-Substituted Terminal Alkynes Initiated by the Trityl Cation^a

^{*a*}All reactions were performed according to general procedure 1 or 2 (see the Supporting Information for details). ^{*b*}Ratios were estimated by ¹¹⁹Sn{¹H} NMR analysis. ^{*c*}Isolated yields after filtration over a plug of basic Al₂O₃. ^{*d*}Only low conversion of *n*-Bu₃SnH was observed at 0 °C and RT, respectively. ^{*e*}Reaction performed in *n*-hexane instead of *n*-pentane. ^{*f*}Complex mixture was observed. ^{*g*}Combined yield of *Z*-**2q** (24%) and *α*-isomer *α*-**2q** (27%); the ratio of these regioisomers was nearly 1:1 prior to their separation by flash chromatography on silica gel.

Figure 1. Vinyl stannanes prepared by hydrostannylation of representative internal C–C triple bonds.

triple bond by a mechanism that involves a bridged β -tinstabilized vinyl cation as an intermediate. Its sterically controlled hydride reduction by the hydrostannane affords the vinyl stannane with Z-configuration and regenerates the tin electrophile.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.organo-met.8b00409.

Experimental details, characterization, and ¹H, ¹³C, ¹⁹F, ²⁹Si, and ¹¹⁹Sn NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: martin.oestreich@tu-berlin.de. ORCID [©]

Francis Forster: 0000-002-0364-5491 Victoria M. Rendón López: 0000-0002-0056-5787 Martin Oestreich: 0000-0002-1487-9218

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by the Cluster of Excellence Unifying Concepts in Catalysis of the Deutsche Forschungsgemeinschaft (EXC 314/2). V.M.R.L. (on leave from the University of Guanajuato, Mexico) thanks the Consejo Nacional de Ciencia y Tecnología for a predoctoral fellowship (No. 295157). M.O. is indebted to the Einstein Foundation Berlin for an endowed professorship.

REFERENCES

(1) Farina, V., Krishnamurthy, V., Scott, W. J. *The Stille Reaction*; Wiley: New York, 2004.

(2) For reviews of hydrostannylation reactions, see (a) Yoshida, H. Stannylation Reactions under Base Metal Catalysis: Some Recent Advances. *Synthesis* **2016**, *48*, 2540–2552. (b) Trost, B. M.; Ball, Z. T. Addition of Metalloid Hydrides to Alkynes: Hydrometallation with Boron, Silicon, and Tin. *Synthesis* **2005**, 853–887. (c) Smith, N. D.; Mancuso, J.; Lautens, M. Metal-Catalyzed Hydrostannations. *Chem. Rev.* **2000**, *100*, 3257–3282.

(3) Selected examples: (a) Darwish, A.; Lang, A.; Kim, T.; Chong, J. M. The Use of Phosphine Ligands to Control the Regiochemistry of Pd-Catalyzed Hydrostannations of 1-Alkynes: Synthesis of (E)-1-Tributylstannyl-1-alkenes. Org. Lett. 2008, 10, 861-864. (b) Hamze, A.; Veau, D.; Provot, O.; Brion, J.-D.; Alami, M. Palladium-Catalyzed Markovnikov Terminal Arylalkynes Hydrostannation: Application to the Synthesis of 1,1-Diarylethylenes. J. Org. Chem. 2009, 74, 1337-1340. (c) Rummelt, S. M.; Fürstner, A. Ruthenium-Catalyzed trans-Selective Hydrostannation of Alkynes. Angew. Chem., Int. Ed. 2014, 53, 3626-3630. (d) Rummelt, S. M.; Radkowski, K.; Roşca, D.-A.; Fürstner, A. Interligand Interactions Dictate the Regioselectivity of trans-Hydrometalations and Related Reactions Catalyzed by [Cp*RuCl]. Hydrogen Bonding to a Chloride Ligand as a Steering Principle in Catalysis. J. Am. Chem. Soc. 2015, 137, 5506-5519. (e) Roşca, D.-A.; Radkowski, K.; Wolf, L. M.; Wagh, M.; Goddard, R.; Thiel, W.; Fürstner, A. Ruthenium-Catalyzed Alkyne trans-Hydrometalation: Mechanistic Insights and Preparative Implications. J. Am. Chem. Soc. 2017, 139, 2443-2455. (f) Mandla, K. A.; Moore, C. E.; Rheingold, A. L.; Figueroa, J. S. Regioselective Formation of (E)- β -Vinylstannanes with a Topologically Controlled Molybdenum-Based Alkyne Hydrostannation Catalyst. Angew. Chem., Int. Ed. 2018, 57, 6853-6857.

(4) (a) Nozaki, K.; Oshima, K.; Uchimoto, K. Et₃B-Induced Radical Addition of R₃SnH to Acetylenes and Its Application to Cyclization Reaction. *J. Am. Chem. Soc.* **1987**, *109*, 2547–2549. (b) Nakamura, E.; Imanishi, Y.; Machii, D. Sonochemical Initiation of Radical Chain Reactions. Hydrostannation and Hydroxystannation of C–C Multiple Bonds. *J. Org. Chem.* **1994**, *59*, 8178–8186. (c) Oderinde, M. S.; Froese, R. D. J.; Organ, M. G. 2,2'-Azobis(2-methylpropionitrile)-Mediated Alkyne Hydrostannylation: Reaction Mechanism. *Angew. Chem.*, *Int. Ed.* **2013**, *52*, 11334–11338.

(5) (a) Asao, N.; Liu, J.-X.; Sudoh, T.; Yamamoto, Y. Lewis Acid-Catalyzed Hydrostannation of Acetylenes. Regio- and Stereoselective *Trans*-Addition of Tributyltin Hydride and Dibutyltin Dihydride. *J. Org. Chem.* **1996**, *61*, 4568–4571. (b) Gevorgyan, V.; Liu, J.-X.; Yamamoto, Y. Hydrostannation of C–C multiple bonds with Bu₃SnH prepared *in situ* from Bu₃SnCl and Et₃SiH in the presence of Lewis acid catalysts. *Chem. Commun.* **1998**, 37–38.

(6) Forster, F.; Rendón López, V. M.; Oestreich, M. Catalytic Dehydrogenative Stannylation of C(sp)–H Bonds Involving Cooperative Sn–H Bond Activation of Hydrostannanes. J. Am. Chem. Soc. **2018**, 140, 1259–1262.

(7) Wrackmeyer, B.; Kundler, S.; Boese, R. Routes to Stannoles, Stannolenes and 1-Stanna-4-bora-2,5-cyclohexadienes–Crystal Structure of a Triorganotin Cation Stabilized by π -Coordination. *Chem. Ber.* **1993**, *126*, 1361–1370.

(8) Omann, L.; Königs, C. D. F.; Klare, H. F. T.; Oestreich, M. Cooperative Catalysis at Metal–Sulfur Bonds. *Acc. Chem. Res.* 2017, *50*, 1258–1269.

(9) Bähr, S.; Oestreich, M. A Neutral Ru^{II} Hydride Complex for the Regio- and Chemoselective Reduction of *N*-Silylpyridinium Ions. *Chem. - Eur. J.* **2018**, *24*, 5613–5622.

(10) Kira, M.; Oyamada, T.; Sakurai, H. Trialkyltin cation in solution. J. Organomet. Chem. 1994, 471, C4–C5.

(11) Shibata, I.; Baba, A. Ionic Activation of Tin Hydrides. Curr. Org. Chem. 2002, 6, 665-693.

(12) Miao, R.; Li, S.; Chiu, P. Regioselective hydrostannation of activated alkynes catalyzed by in situ generated copper hydride. *Tetrahedron* **2007**, *63*, *6737*–6740.