31. Synthesis of a Masked p - Quinone Methide β - Lactam as an Active Metabolite of Nocardicins by Gholam H. Hakimelahia)*, Shwu-Chen Tsaya)b), and Jih Ru Hwua)c)* - a) Organosilicon and Synthesis Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China - ^b) Pharmaceutical R&D Laboratories, Development Center for Biotechnology, Taipei, Taiwan 10671, Republic of China - c) Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China (31.X.94) Nocardicin A analogues 30, 34, and 38 as well as the highly strained quinone methide 43 were synthesized. β -Lactam 34 was found biologically active against several *Gram*-negative microorganisms *in vitro*; pyridinium N-oxide derivative 38 possessed activity against *Gram*-positive S. aureus bacterium. Masked p-quinone methide β -lactam 43 exhibited significant antimicrobial activity *in vitro*. A mechanism involving an oxidation *in vivo* is proposed for the unprecedented biological properties of nocardicins. **Introduction.** – Nocardicins are the only monocyclic azetidinones with significant antibacterial activity [1]. They are more active against *Gram*-negative than *Gram*-positive microorganisms in vivo [2]. Considerable evidence exists indicating that their primary mechanism of action is different from that of the classical β -lactam antibiotics [3]; the relatively unstrained β -lactam in nocardicin makes it comparatively stable towards nucleophilic attack. When additional ring strain is placed on nocardicin (3), the resultant analogues, e.g. 1 and 2, do not exhibit greater potency nor a broader spectrum of antimicrobial activities [4] [5]. We speculated that the monocyclic, nonclassical β -lac- $$\begin{array}{c} \text{NH}_2 \\ \text{HO}_2\text{CCHCH}_2\text{CH}_2\text{O} - \\ \\ \text{OH} \text{$$ tams in this series could be readily recognized and oxidized by an oxidative enzyme *in vivo* to give the corresponding highly strained quinone methide metabolites (*i.e.* 4, *Scheme 1*). Those metabolites may inhibit the cell-wall synthesis of bacteria. We also considered an alternative mechanism for their mode of action in biological systems, in which epoxidation of the phenolic moiety of nocardicins takes place *in vivo* (*e.g.* 5) followed by their conversion to the corresponding cyclohexadienylidenes (*e.g.* 6). Herein we report our synthetic efforts on the preparation of dehydroxynocardicin A 30 and the quinone methide derivative 44. Furthermore, we investigated the importance of the phenolic OH group of nocardicin A by preparing its phosphonate derivative 34 and pyridinium N-oxide analogue 38. These two compounds were found biologically active. **Results and Discussion.** – We synthesized β -lactams 30, 34, and 38 from methyl (RS)-phenylglycinate (13) [10] as well as aminophosphonate precursors 14 and 15 [6], respectively. Thus, 4-[(tert-butyl)dimethylsilyloxy]benzaldehyde (7) and pyridine-4-carbaldehyde (8) were converted to their respective Schiff bases 9 (95%) and 10 (98%) by use of benzylamine in benzene (Scheme 2). Addition of diethyl phosphite to 9 or 10 at 80° afforded compounds 11 (98%) and 12 (99%), respectively. Ready removal of the benzyl group from 11 and 12 by catalytic reduction [7] afforded the corresponding aminophosphonates 14 and 15 in excellent yields. Reactions of 13, 14, or 15 with cinnamaldehyde gave the corresponding Schiff bases, which upon treatment with azidoacetyl chloride and Et₃N afforded the β -lactams 16 (80%), 17 (85%), and 18 (80%), respectively (stereoisomer mixtures). These β -lactams possessed *cis*-configuration, as determined by ¹H-NMR spectrometry (J(H-C(3),H-C(4)) = 5.0 Hz) [8]. Individual ozonolysis of 16, 17, and 18, followed by Me₂S treatment, gave the expected aldehydes 19 (90%), 22 (95%), and 25 (90%), respectively. Decarbonylation of 19, 22, and 25 with tris(triphenylphosphine)rhodium chloride [9] afforded compounds 20 (36%), 23 (20%), and 26 (28%). Conversions of $20 \rightarrow 21$, $23 \rightarrow 24$, and $26 \rightarrow 27$ were achieved in 95–98% yields with H, at 35–40 psi and Pd/C in MeOH. We then acylated amines 21, 24, and 27 with the protected glyoxylic acid of the nocardicin side chain in the presence of ethyl 2-ethoxy-1,2-dihydroquinoline-1-carboxylate (EEDQ) to afford the corresponding amides 28 (90%), 31 (85%), and 35 (80%), respectively [10]. Hydrolysis of diastereoisomeric racemates **28** with NaOH in aqueous MeOH and subsequent removal of the *tert*-butoxycarbonyl group by use of CF₃CO₂H gave **29** in 65% overall yield. On the other hand, removal of the silyl group in **31** with Bu₄NF in THF gave **32** in 98% yield. Dealkylation of **32** afforded **33** (20%) by use of Me₃SiBr in CH₂Cl₂ [11]. Oxidation of 35 with 3-chloroperbenzoic acid yielded the corresponding pyridinium N-oxide 36 (90%). Reaction of 36 with Me₃SiBr in CH₂Cl₂ afforded 37 in 15% yield. We then treated 29, 33, and 37 with NH₂OH·HCl in H₂O under neutral conditions [10] and purified the products by ion-exchange chromatography to give the corresponding nocardicin-A analogues 30 (70%), 34 (65%), and 38 (50%), respectively. The quinone-methide derivative 44 was prepared from β -lactam 39 [12] by ozonolysis which gave aldehyde 40 in 98% yield (*Scheme 3*). Decarbonylation of 40 by use of tris(triphenylphosphine)rhodium chloride [9] yielded 41 (55%), which was allowed to react with 4,4-dimethoxycyclohexa-2,5-dien-1-one in the presence of NaH in THF to produce the desired masked p-quinone methide 42 in 45% yield. We then removed the t-Bu group from 42 by using CF_3CO_2H and a trace amount of Bu_4NClO_4 in CH_2Cl_2 to a) PhCH₂NH₂, PhH; 95% (9), 98% (10). b) (EtO)₂POH, 80°; 98% (11), 99% (12). c) PdCl₂/cyclohexene; 90% (14), 95% (15). d) 1. (E)-PhCH=CHCHO; 2. N₃CH₂COCl/Et₃N, -20°; 80% (16), 85% (17), 80% (18). e) 1. O₃; 2. Me₂S, CH₂Cl₂; 90% (19), 95% (22), 90% (25). f) [RhCl(Ph₃P)₃]; 36% (20), 20% (23), 28% (26). g) Pd/C, H₂, MeOH; 95% (21), 95% (24), 98% (27). h) (RS)-MeO₂CCH(NHCO₂Bu¹)CH₂CH₂OC₆H₄COCO₂H/EEDQ, CH₂Cl₂; 90% (28), 85% (31), 80% (35). i) 1. NaOH; 2. CF₃CO₂H; 65%. j) NH₂OH; 70% (30), 65% (34), 50% (38). k) Bu₄NF, THF, 0°; 98%. l) Me₃SiBr, CH₂Cl₂, 25°; 20% (33), 15% (37). m) 3-ClC₆H₄CO₃H; 90%. ## Scheme 3 a) 1. O₃, CH₂Cl₂; 2. Me₂S. b) [RhCl(Ph₃P)₃], benzene. c) 4,4-Dimethoxycyclohexa-2,5-dien-1-one, THF, NaH. d) CF₃CO₂H, Bu₄NClO₄, CH₂Cl₂. give the corresponding carboxylic acid 43 (25%). All attempts to convert 43 to quinone methide 44 failed and resulted in the destruction of the β -lactam ring. **Biological Activity.** We tested the biological activities of nocardicin-A analogues 30, 34, 38, and 43 as well as of carbenicillin *in vitro* against five pathogenic microorganisms up to a level of $800 \mu g/ml$. The results are summarized in the *Table*. | | S. aureus
FDA-209P | S. lutea
PCI-1001 | P. vulgaris
IAM-1025 | P. mirabilis
1432-75 | P. aeruginosa
1101-75 | |-----------------------------|-----------------------|----------------------|-------------------------|-------------------------|--------------------------| | 30 | a) | a) | a) | a) | a) | | 34 | ^a) | 38.56 | 21.34 | 15.63 | 18.79 | | 38 | 48.75 | a) | a) | a) | a) | | 43 | 176.80 | 4.65 | 1.87 | 0.86 | 6.25 | | Carbenicillin | 0.56 | 0.42 | 0.25 | 0.78 | 70.36 | | Nocardicin A ^b) | 800 | 6.25 | 1.56-3.13 | 1.56 | 12.50 | Table. Minimal Inhibitory Concentrations [µg/ml] In contrast with the notable antimicrobial property of nocardicin A and its phosphonate derivative 34, dehydroxy derivative 30 did not exhibit any biological activity. These results indicate that the phenolic OH group plays an important role in biological activity of nocardicins. Pronounced antimicrobial effect resulting from β -lactam 43 indicates the possibility of oxidation of the phenolic moiety in nocardicins to the corresponding quinone methide metabolites. This process could be responsible for their remarkable antibacterial effect in vivo (see Scheme 1). Our postulation was further supported by the lack of activity of pyridinium N-oxide 38 against Gram-negative microorganisms. On the other hand, we found that β -lactam 38 exhibited moderate activity against Gram-positive S. aureus bacterium. For financial support, we thank the *National Science Council of Republic of China* (research grants NSC-83-0208-M-001-031 and NSC-84-2311-B-001-092) as well as *Academia Sinica*. We are grateful to Dr. *A. Kohanteb* for performing antimicrobial screening experiments. ## **Experimental Part** General. Chemicals were purchased from Fluka Chemical Co. Solvents were of reagent grade unless otherwise specified. Column chromatography (CC): short column of silica gel 60 Merck (230–400 mesh) were packed in glass columns (\varnothing 2 or 3 cm) by use of 25 g of silica gel/g of crude mixture. TLC: Merck silica gel 60 F 254 anal. sheets. M.p.: Büchi 510. UV Spectra: Cary 118 spectrophotometer; λ_{max} in nm (ε). IR Spectra: Beckman IR 8 spectrophotometer; in cm⁻¹. ¹H-NMR Spectra: Bruker-WH-90; δ in ppm rel. to Me₄Si, J in Hz. Elemental analyses were performed by Midwest Microlab. Ltd. N- $\{\{4-[(\text{tert-}Butyl)\ dimethylsilyloxy\]phenyl\}$ methylidene $\}$ benzylamine (9). To a soln. of 7 (2.36 g, 10.0 mmol) in benzene (250 ml) was added benzylamine (1.17 g, 10.9 mmol). The soln. was heated at reflux (*Dean-Stark* trap) and H₂O removed (*ca.* 7 h). Then it was cooled, and MgSO₄ was added. After 1 h, the mixture was filtered and the filtrate evaporated. CC (silica gel, CCl₄): 3.10 g (95%) of 9. Oil. IR (CH₂Cl₂): 1645 (C=N). ¹H-NMR (CDCl₃): 0.13 (*s*, Me₂Si); 1.06 (*s*, Me₃C); 4.85 (*s*, CH₂); 6.99, 7.54 (*AA'BB'*, J = 9.0, C₆H₄); 7.25 (*s*, C₆H₅); 7.45 (*s*, HC=N). Anal. calc. for C₂₀H₂₇NOSi (325.53): C 73.79, H 8.36, N 4.30; found: C 73.70, H 8.29, N 4.38. a) Not active up to 800 μg/ml. b) Data taken from [1] and [3]. - N-[(Pyridin-4-yl)methylidene]benzylamine (10). As described for 9, 10 was obtained from 8 in 98% yield. IR (CH₂Cl₂): 1655 (C=N). ¹H-NMR (CDCl₃): 4.98 (s, CH₂); 7.30 (s, C₆H₅); 7.45, 8.56 (AA'BB', J = 6.0, C₅H₄N); 7.59 (s, HC=N). Anal. calc. for C₁₃H₁₂N₂ (196.25): C 79.56, H 6.16, N 14.27; found: C 79.47, H 6.20, N 14.30. - (\pm)-Diethyl {(Benzylamino) {4-f(tert-butyl)dimethylsilyloxy]phenyl}methyl}phosphonate (11). To 9 (3.25 g, 9.98 mmol) was added diethyl phosphite (1.40 g, 12.0 mmol) at 80°. After 1 h stirring, the reaction was complete. CC (silica gel, CH₂Cl₂/CHCl₃ 1:1) gave 4.54 g (98%) of 11. Oil. IR (CH₂Cl₂): 3370 (NH). ¹H-NMR (CDCl₃): 0.10 (s, Me₂Si); 1.98 (s, Me₃C); 1.04-1.45 (2t, 2 MeC); 2.95 (br., NH); 3.57-4.17 (m, 2 CH₂O); 4.18 (br. s, CH₂N); 4.25 (d, J=20.0, CHP); 6.80, 7.33 (AA'BB', J=8.5, C_6H_4); 7.15 (s, C_6H_5). Anal. calc. for $C_{24}H_{38}NO_4PSi$ (463.63): C 62.18, H 8.26, N 3.02; found: C 62.20, H 8.19, N 3.11. Compound 11 was dissolved in Et_2O , and dry HCl gas was bubbled into the soln. After 5 min, the solvent was evaporated to give 11·HCl (100%) as a foam. (\pm) -Diethyl [(Benzylamino) (pyridin-4-yl)methyl]phosphonate (12). As described for 11, 12 was prepared from 10 in 99% yield. IR (CH₂Cl₂): 3360–3380 (NH). ¹H-NMR (CDCl₃): 1.02–1.43 (2t, 2 Me); 3.01 (br., NH); 3.58–4.20 (m, 2 CH₂O, CH₂N); 4.51 (d, J = 18.0, CHP); 7.20 (s, C_6H_5); 7.30–8.45 (AA'BB', J = 8.5, C_6H_4). Anal. calc. for $C_{17}H_{23}N_2O_3P$ (334.36): C 61.07, H 6.93, N 8.38; found: C 61.10, H 6.99, N 8.42. Conversion of 12 to 12 · HCl (100%) was achieved by use of HCl gas in Et₂O. - (\pm) -Diethyl $\{(Amino)\{4-[(\text{tert-butyl})\ dimethylsilyloxy]\ phenyl\}\ phenyl\}\ phosphonate}$ (14). Compound 11·HCl (464 mg, 1.00 mmol) was dissolved in EtOH (40 ml) upon heating at reflux. Cyclohexene (25 ml) and PdCl₂ (300 mg) were added; refluxing was continued for 15 h. The mixture was filtered and the filtrate treated with NH₃ gas and evaporated. The residue was chromatographed (silica gel, AcOEt): 14 (336 mg, 90%). Oil. IR (CH₂Cl₂): 3340–3450 (NH₂). 1 H-NMR (CDCl₃): 0.11 (s, Me₂Si); 1.01 (s, Me₃C); 1.03–1.51 (2t, 2 Me); 3.08 (br., NH₂); 3.50–4.21 (m, 2 CH₂O); 4.35 (br., CHP); 6.82, 7.36 (AA'BB', J=9.0, C_6H_4). Anal. calc. for $C_{17}H_{32}NO_4PSi$ (373.51): C 54.67, H 8.64, N 3.75; found: C 54.57, H 8.59, N 3.83. - (\pm)-Diethyl [Amino(pyridin-4-yl)methyl]phosphonate (15) was prepared from 12·HCl in 95% yield as described for 14. IR (CH₂Cl₂): 3400–3350 (NH₂), 1580 (py). ¹H-NMR (CDCl₃/D₂O): 1.01–1.49 (2t, 2 Me); 3.69–4.22 (m, 2 CH₂O); 4.50 (d, J=18.5, CHP); 7.33, 8.50 (AA'BB', J=6.3, C_5H_4N). Anal. calc. for $C_{10}H_{17}N_2O_3P$ (244.23): C 49.18, H 7.02, N 11.47; found: C 40.22, H 7.12, N 11.57. - (±)-Methyl 2-{cis-3-Azido-2-oxo-4-[(E)-2-phenylethenyl]azetidin-1-yl}-2-phenylacetates (diastereoisomer mixture; **16**). To a soln. of **13** (1.65 g, 10.0 mmol) in CH₂Cl₂ (120 ml) was added (E)-3-phenylprop-2-enal (1.32 g, 10.0 mmol). The soln. was heated to reflux, and CH₂Cl₂ was stilled slowly with the constant addition of CH₂Cl₂ to maintain the same volume of liquid. After H₂O in the mixture had been removed (*ca.* 10 h), the remaining soln. was cooled and MgSO₄ added. The mixture was filtered. To the filtrate was added Et₃N (2.02 g, 20.0 mmol) and then azidoacetyl chloride (1.20 g, 10.0 mmol), dropwise at -20° . After stirring at -20° for 1 h, the soln. was washed with H₂O, dried (MgSO₄), and evaporated. The crude product was purified by CC (silica gel, CH₂Cl₂): **16** (2.90 g, 80%) as an oily mixture of diastereoisomers. IR (CH₂Cl₂): 2100 (N₃), 1760 (β-lactam), 1740 (ester). ¹H-NMR (CDCl₃): 3.98, 3.81 (2s, Me); 4.21–4.39 (m, H–C(4)); 4.73, 4.82 (2d, J = 5.0, H–C(3)); 5.50, 5.62 (2s, CHCO₂); 6.53 (m, CH=CH); 6.78–7.71 (m, 2 C₆H₅). MS: 334 ([M N₂]⁺). Anal. calc. for C₂₀H₁₃N₄O₃ (362.39): C 66.29, H 5.01, N 15.46; found: C 66.36, H 4.93, N 15.49. - (\pm) -Diethyl {{cis-3-Azido-2-oxo-4-f (E)-2-phenylethenyl}azetidin-1-yl}{4-f (tert-butyl) dimethylsilyloxyl-phenyl}methyl}phosphonates (diastereoisomer mixture; 17) were obtained from 14 in 85% yield as described for 16. IR (CH₂Cl₂): 2100 (N₃), 1755 (β-lactam). ¹H-NMR (CDCl₃): 0.12 (2s, Me₂Si); 0.99 (s, Me₃C); 1.11-1.48 (2t, 2 Me); 3.80-4.48 (m, 2 CH₂O); 4.45 (br., H-C(4)); 4.98 (d, d = 20.0, CHP); 5.09 (br. d, d = 5.0, H-C(3)); 6.40 (dd, d = 6.5, 16.0, PhCH=CH); 6.63 (d, d = 16.0, PhCH=CH); 6.85-7.52 (d, C₆H₄, C₆H₅). Anal. calc. for C₂₈H₃₉N₄O₅PSi (570.71): C 58.93, H 6.89, N 9.82; found: C 58.88, H 6.78, N 9.80. - (\pm)-Methyl 2-(cis-3-Azido-2-formyl-4-oxoazetidin-1-yl)-2-phenylacetates (diastereoisomer mixture; 19). Ozone was passed through a soln. of 16 (3.70 g, 10.2 mmol) in CH₂Cl₂ (100 ml) at -78° for 2 h. After the soln. was purged with N₂, Me₂S (1.86 g, 30.0 mmol) was added and the soln. allowed to warm up to 25° within 1.5 h. The solvent was removed and the residue purified by CC (silica gel, CH₂Cl₂): 19 (2.60 g, 90%). Oil. IR (CHCl₃): 2100 (N₃), 1773 (β -lactam), 1740 (ester), 1720 (aldehyde). ¹H-NMR (CDCl₃): 3.79, 3.81 (2s, Me); 4.65–4.84 (m, H–C(3), - H–C(4)); 5.55 (br. s, CHCO₂); 7.20 (s, C_6H_5); 9.65 (d, J = 1.5, CHO). Anal. calc. for $C_{13}H_{12}N_4O_4$ (288.26): C 54.17, H 4.20, N 19.44; found: C 54.20, H 4.19, N 19.60. - (\pm) -Methyl 2-(3-Azido-2-oxoazetidin-1-yl)-2-phenylacetates (diastereoisomer mixture; **20**). [RhCl(Ph₃P)₃] (4.66 g, 5.06 mmol) was added to **19** (1.44 g, 5.00 mmol) in O₂-free benzene (100 ml). The mixture was heated at reflux under Ar for 2 h, then cooled, filtered, and evaporated and the residue chromatographed (silica gel, CH₂Cl₂): 0.46 g (36%) of **20**. Oil. IR (CH₂Cl₂): 2100 (N₃), 1758 (β-lactam), 1743 (ester). ¹H-NMR (CDCl₃): 3.21 (dd, $J = 2.0, 6.6, H_{\beta}$ -C(4)); 3.71 (s, Me); 3.99 (dd, $J = 5.0, 6.6, H_{\alpha}$ -C(4)); 4.75 (m, H-C(3)); 5.50 (s, CHCO₂); 7.10 (s, C₆H₅). Anal. calc. for C₁₂H₁₂N₄O₃ (260.25): C 55.38, H 4.65, N 21.53; found: C 55.41, H 4.79, N 21.59. - (±)-Methyl 2-(3-Amino-2-oxoazetidin-1-yl)-2-phenylacetates (diastereoisomer mixture; **21**). To a soln. of **20** (2.69 g, 10.3 mmol) in MeOH (70 ml) was added Pd/C (400 mg), and the mixture was hydrogenated at 35–40 psi and 25° for 1.5 h. The soln. was then filtered and evaporated and the residue chromatographed (silica gel, CHCl₃): 2.22 g (95%) of **21**. Foam. IR (CH₂Cl₂): 3350–3400 (NH₂), 1760–1750 (β-lactam, ester). ¹H-NMR (CDCl₃): 3.16 (br., NH₂, exchange with D₂O); 3.27 (dd, J = 2.1, 6.6, H_β–C(4)); 3.63 (s, Me); 4.02 (dd, J = 5.0, 6.6, H_α–C(4)); 4.49 (m, H–C(3)); 5.37, 5.38 (2s, CHCO₂); 7.15 (s, C₆H₅). Anal. calc. for C₁₂H₁₄N₂O₃ (234.26): C 61.53, H 6.02, N 11.96; found: C 61.63, H 6.05, N 11.85. - (\pm) -Diethyl $\{(\text{cis-}3\text{-}Azido\text{-}2\text{-}formyl\text{-}4\text{-}oxoazetidin\text{-}}l\text{-}yl)\}$ $\{4\text{-}[(\text{tert-}butyl)\text{dimethylsilyloxy}]$ phenyl $\}$ methyl $\}$ -phosphonates (diastereoisomer mixture; **22**) were obtained from **17** in 95 % yield as described for **19**. IR (CH₂Cl₂): 2110 (N₃), 1770 (β-lactam), 1720 (aldehyde). 1 H-NMR (CDCl₃): 0.10 (2s, Me₂Si); 1.03 (2s, Me₃C); 1.18–1.50 (2t, 2 Me); 3.86–4.44 (m, 2 CH₂O); 4.86–5.01 (m, H–C(3), H–C(4), CHP); 7.00–7.49 (AA'BB', J = 8.5, C₆H₄); 9.56 (d, J = 1.8, CHO). Anal. calc. for C₂₁H₃₃N₄O₆PSi (496.58): C 50.79, H 6.70, N 11.28; found: C 50.83, H 6.79, N 11.17. - (\pm) -Diethyl $\{(3\text{-}Azido\text{-}2\text{-}oxoazetidin\text{-}l\text{-}yl)\{4\text{-}\{(\text{tert-}butyl)\ dimethylsilyloxy\ phenyl\}\ phosphonates\}$ (diastereoisomer mixture; 23) were prepared from 22 in 20% yield as described for 20. IR (CH₂Cl₂): 2100 (N₃), 1752 (β-lactam). H-NMR (CDCl₃): 0.12 (2s, Me₂Si); 1.01 (s, Me₃C); 1.22–1.45 (2t, 2 Me); 3.19 (dd, $J=2.0, 6.5, H_g-C(4)$); 3.86–4.45 (m, 2 CH₂O, $H_{\pi}-C(4)$); 4.78 (d, J=20.0, CHP); 4.89 (dd, J=2.0, 5.0, H-C(3)); 6.82, 7.34 (AA'BB', $J=8.9, C_6H_4$). Anal. calc. for $C_{20}H_{33}N_4O_5$ PSi (468.57): C 51.27, H 7.10, N 11.96; found: C 51.31, H 7.18, N 12.03. - (\pm) -Diethyl $\{(3\text{-}Amino\text{-}2\text{-}oxoazetidin\text{-}1\text{-}yl)\{4\text{-}\{(\text{tert-}butyl)\ dimethylsilyloxy}\}phenyl\}phosphonates$ (diastereoisomer mixture; **24**) were prepared from **23** in 95% yield as described for **21** (EtOH instead of MeOH). IR (CH₂Cl₂): 3350–3410 (NH₂), 1750 (β -lactam). 1 H-NMR (CDCl₃): 0.11 (s, Me₂Si); 1.02 (s, Me₃C); 1.25–1.50 (2t, 2 Me); 3.20 (br., NH₂); 3.28 (dd, J = 2.1, 6.0, H_β–C(4)); 3.84–4.51 (m, 2 CH₂O, H_α–C(4), H–C(3)); 4.79 (d, J = 19.5, CHP); 6.81, 7.34 (AA'BB', J = 8.5, C₆H₄). Anal. calc. for C₂₀H₃₅N₂O₅PSi (442.57): C 54.28, H 7.97, N 6.33; found: C 54.35, H 8.05, N 6.44. - (\pm) -Diethyl $[(\text{cis-}3\text{-}Azido\text{-}2\text{-}formyl\text{-}4\text{-}oxoazetidin\text{-}1\text{-}yl)(pyridin\text{-}4\text{-}yl)methyl]phosphonates}$ (diastereoisomer mixture; **25**) were prepared from **18** in 90% yield as described for **19**. IR (CH₂Cl₂): 2100 (N₃), 1770 (β-lactam), 1722 (aldehyde). ¹H-NMR (CDCl₃): 1.10–1.58 (2t, 2 Me); 3.89–4.48 (m, 2 CH₂O); 4.76–5.58 (m, H–C(3), H–C(4), CHP); 7.32, 8.65 (AA'BB', J = 5.8, C₅H₄N); 9.60 (d, J = 1.5, CHO). Anal. calc. for C₁₄H₁₈N₅O₅P (367.30): C 45.78, H 4.94, N 19.07; found: C 45.73, H 4.89, N 19.10. - (±)-Diethyl [(3-Azido-2-oxoazetidin-1-yl) (pyridin-4-yl)methyl]phosphonates (diastereoisomer mixture; **26**) were obtained from **25** in 28% yield as described for **20**. IR (CH₂Cl₂): 2100 (N₃), 1756 (β-lactam). ¹H-NMR (CDCl₃): 1.12–1.40 (2t, 2 Me); 3.20 (dd, J = 2.0, 6.5, H_β-C(4)); 3.80–4.46 (m, 2 CH₂O, H_α-C(4)); 5.05 (d, J = 20.0, CHP); 5.18 (dd, J = 2.0, 5.0, H-C(3)); 7.30, 8.50 (AA'BB', J = 6.2, C₅H₄N). Anal. calc. for C₁₃H₁₈N₅O₄P (339.29): C 46.02, H 5.35, N 20.64; found: C 45.98, H 5.39, N 20.58. - (\pm)-Diethyl [(3-Amino-2-oxoazetidin-1-yl)(pyridin-4-yl)methyl]phosphonates (diastereoisomer mixture; **27**) were obtained from **26** in 98% yield as described for **21**. IR (CH₂Cl₂): 3350-3400 (NH₂), 1756 (β -lactam). ¹H-NMR (CDCl₃): 1.18-1.49 (2t, 2 Me); 3.30 (br., NH₂); 3.23 (dd, $J=2.1, 6.5, H_{\beta}$ —C(4)); 3.82-4.40 (m, 2 CH₂O, H₂—C(4), H—C(3)); 5.16 (d, J=20.0, CHP); 7.26, 8.49 (AA'BB', J=6.1, C₅H₄N). Anal. calc. for C₁₃H₂₀N₃O₄P (313.30): C 49.84, H 6.43, N 13.41; found: C 49.73, H 6.39, N 13.52. - (±)-Methyl 3-{{ $4-{3-[(\text{tert-Butoxy})carbonylamino]-3-(methoxycarbonyl)propoxy}}phenyl}glyoxyl}-amino}-2-oxo-α-phenylazetidine-I-acetates (diastereoisomer mixture;$ **28**). To a CH₂Cl₂ (35 ml) soln. containing**21** $(1.17 g, 4.99 mmol) and {<math>4-{3-[(tert-butoxy)carbonylamino]-3-(methoxycarbonyl)propoxy}}phenyl}glyoxylic acid (0.20 g, 0.52 mmol) was added ethyl 2-ethoxy-1,2-dihydroquinoline-1-carboxylate (EEDQ; 0.13 g, 0.52 mmol), and the mixture was stirred at 25° for 17 h. The soln. was washed with 5% aq. HCl soln. (30 ml) and 5% aq. NaHCO₃ soln. (40 ml), dried (MgSO₄), filtered, and evaporated. The residue was chromatographed (silica gel, CH₂Cl₂ and then CHCl₃): 2.68 g (90%) of$ **28**. Foam. IR (CH₂Cl₂): 3200–3340 (NH), 1746–1760 (esters, β-lactam), 1717 (Boc), 1670–1685 (amide, ketone). H-NMR (CDCl₃): 1.41 (s, Me₃C); 2.15–2.42 (m, CH₂); 3.18 (dd, <math>J = 2.0, 6.5, H_B–C(4)); 3.72, 3.77 (2s, 2 Me); 4.05 (m, O₂CCHNCO₂, H₂–C(4)); 4.52 (t, J = 6.0, CH₂O); 5.28 (m, H–C(3)); 5.78 $(s, CHCO_2)$; 6.72 (br., 2 NH); 6.90 (s, C_6H_5) ; 7.52, 8.30 $(AA'BB', J = 8.0, C_6H_4)$. Anal. calc. for $C_{30}H_{35}N_3O_{10}$ (597.63); C 60.29, H 5.90, N 7.03; found: C 60.38, H 5.73, N 7.12. (\pm) -3-{{{4-(3-Amino-3-carboxypropoxy)phenyl}glyoxyl}amino}-2-oxo-α-phenylazetidine-1-acetic Acids (diastereoisomer mixture; **29**). To a soln. of **28** (0.60 g, 1.0 mmol) in MeOH (30 ml) was added 1% aq. NaOH soln. (10 ml) within 10 min. The mixture was stirred at 25° for 13 min and then acidified with HCl soln. to pH 3.0. MeOH was evaporated and the aq. soln. extracted with AcOEt (20 ml). The org. layer was dried (MgSO₄) and evaporated to give a residue, which was dissolved in CF₃CO₂H (5.0 ml) containing a trace amount of KClO₄. After 1 h, Et₂O (35 ml) was added to afford a white precipitate which was filtered and washed with Et₂O (3.15 ml). Crystallization from MeOH/Et₂O 1:1 gave 0.30 g (65%) of **29**. M.p. 205–207° (dec.). IR (nujol): 3450–2650 (CO₂H, NH, NH₂), 1750–1725 (β-lactam, acid), 1670–1662 (amide, ketone). UV (EtOH): 226 (19000), 299 (16000). ¹H-NMR (D₂O/NaHCO₃): 2.02–2.40 (m, CH₂); 3.16 (dd, J = 2.0, 6.5, H_g-C(4)); 3.97 (t, J = 6.0, O₂CCHND₃); 4.12 (dd, J = 5.0, 6.5, H_g-C(4)); 4.41 (t, J = 6.0, CH₂O); 5.40 (br. m, H-C(3)); 5.52 (s, CHCO₂); 6.98 (s, C₆H₅); 7.43, 8.35 (AA'BB', J = 7.9, C₆H₄). Anal. calc. for C₂₃H₂₃N₃O₈ (469.46): C 58.85, H 4.94, N 8.95; found: C 58.67, H 4.79, N 9.12. (\pm) -(Z)-3-{{[4-(3-Amino-3-carboxypropoxy)phenyl](hydroxyimino)acetyl}amino}-2-oxo-α-phenylazeti-dine-1-acetic Acids (diastereoisomer mixture; **30**). To a H₂O (20 ml) soln. containing **29** (0.50 g, 1.1 mmol) was added hydroxylamine hydrochloride (0.36 g, 5.0 mmol). Then a sat. aq. NaHCO₃ soln. was added dropwise until pH 7.0 was reached. After 2 h heating at 50°, the mixture was cooled and acidified to pH 3.0 with conc. aq. HCl soln. The soln. was lyophilized and the residue dissolved in H₂O (4.0 ml) and poured into a column containing resin XAD_4 . All salts were removed by use of H₂O, and the product was eluted with MeOH: 0.34 g (70%) of **30**. M.p. 210–212° (dec.). IR (nujol): 3400–2500 (OH, CO₂H, NH₂, NH), 1735–1720 (β-lactam, acid), 1665 (amide). UV (EtOH/H₂O): 220 (20100), 274 (14000). UV (EtOH/0.1N NaOH): 222 (20500), 290 (12000). ¹H-NMR (D₂O/NaHCO₃): 2.20–2.46 (m, CH₂); 3.19 (dd, J = 2.0, 6.6, H_β-C(4)); 3.90 (t, J = 6.1, O₂CCHND₃); 4.08 (dd, J = 5.0, 6.6, H_α-C(4)); 4.35 (t, J = 6.0, CH₂O); 5.29 (m, H-C(3)); 5.48 (t, CHCO₂); 6.90–7.63 (t, C₆H₄). Anal. calc. for C₂₃H₂₄N₄O₈ (484.47): C 57.02, H 4.99, N 11.56; found: C 57.18, H 5.05, N 11.68. (\pm) -Diethyl {{3-{{4-{3-[(tert-Butoxy)carbonylamino]-3-(methoxycarbonyl)propoxy}phenyl}glyoxyl}-amino}-2-oxoazetidin-1-yl}(4-hydroxyphenyl)methyl}phosphonates (diastereosimer mixture; 32). To a soln. of 31 (0.81 g, 1.1 mmol) in dry THF (20 ml) was added anh. Bu₄NF (0.31 g, 1.2 mmol). The mixture was stirred at 0° for 1 h and then partitioned between Et₂O (35 ml) and H₂O (30 ml). The org. layer was dried (MgSO₄), filtered, and evaporated. Purification by CC (silica gel, CHCl₃/AcOEt 2:1) gave 0.68 g (98%) of 32. Foam. IR (CH₂Cl₂): 3150–3410 (NH, OH), 1750 (β-lactam), 1720 (Boc), 1670–1688 (amide, ketone). H-NMR (CDCl₃/D₂O): 1.20–1.51 (m, 2 Me, Me₃C); 2.14–2.42 (m, CH₂); 3.20 (dd, J = 2.0, 6.5, H_β–C(4)); 3.75 (s, MeO); 3.80–4.42 (m, 2 CH₂OP, O₂CCHNCO₂, H_x–C(4)); 4.59 (t, J = 6.0, CH₂O); 4.79 (d, J = 20.0, CHP); 5.26 (dd, J = 2.0, 5.0, H–C(3)); 6.79, 7.30 (AA'BB', J = 8.0, C₆H₄OD); 7.51, 8.30 (AA'BB', J = 8.9, C₆H₄CO). Anal. calc. for C₃₂H₄₂N₃O₁₂P (691.68): C 55.57, H 6.12, N 6.08; found: C 55.68, H 6.23, N 6.19 $\begin{array}{l} (\pm) - \left\{\left[3 - \left\{\left[4 - (3 - Amino - 3 - carboxypropoxy)phenyl\right]glyoxyl\right\}amino\right\} - 2 - oxoazetidin - 1 - yl\right\}(4 - hydroxyphenyl) - methyl phosphonic Acids (diastereoisomer mixture; 33). To a soln. of 32 (1.38 g, 1.99 mmol) in CH₂Cl₂ (30 ml) was added Me₃SiBr (3.06 g, 20.0 mmol). The mixture was stirred at 25° for 15 h, then MeOH (40 ml) and H₂O (10 ml) were added. After evaporation, the resultant precipitate was crystallized from MeOH/Et₂O 1:1: 0.20 g (20%) of 33. M.p. 249–251° (dec.). IR (nujol): 3500–2610 (OH, CO₂H, NH₂, NH), 1747 (β-lactam), 1670–1660 (amide, ketone). UV (EtOH): 230 (20100), 299 (14500). <math>^{1}$ H-NMR (D₂O/NaHCO₃): 2.01–2.39 (m, CH₂); 3.19 (dd, J = 2.0, 6.5, H_g-C(4)); 3.99 (t, J = 6.0, O₂CCHND₃); 4.14 (dd, J = 5.0, 6.5, H_g-C(4)); 4.40 (t, J = 2.0, 5.0, H-C(3)); 6.80, 7.33 (AA'BB', J = 8.5, C₆H₄OD); 7.41, 8.32 (AA'BB', J = 9.0, C₆H₄CO). Anal. calc. for C₂₂H₂₄N₃O₁₀P (521.42): C 50.68, H 4.64, N 8.06; found: C 50.89, H 4.40, N 8.24. (\pm) -(Z)- $\{\{3-\{\{14-(3-Amino-3-carboxypropoxy)phenyl\}(hydroxyimino)acetyl\}amino\}$ -2-oxoazetidin-1-yl}- $(4-hydroxyphenyl)methyl\}$ phosphonic Acids (diastereisomer mixture; **34**) were prepared from **33** in 65% yield as described for **30**. M.p. 230–233° (dec.). IR (nujol): 3500–2500 (OH, CO₂H, NH₂, NH), 1726 (β -lactam), 1660 (amide), 1605. UV (EtOH/H₂O): 225 (18500), 272 (15000). UV (EtOH/0.1n NaOH): 226 (20000), 291 (12500). - ¹H-NMR (D₂O/NaHCO₃): 2.19–2.46 (m, CH₂); 3.20 (dd, J = 2.2, 7.0, H_{β}–C(4)); 3.90 (t, J = 6.0, O₂CCHND₃); 4.15 (dd, J = 4.5, 7.0, H_{α}–C(4)); 4.32 (t, J = 6.0, CH₂O); 4.44 (d, J = 19.5, CHP); 5.20 (dd, J = 2.2, 4.5, H–C(3)); 6.80–7.60 (m, 2 C₆H₄). Anal. calc. for C₂₂H₂₅N₄O₁₀P (536.44): C 49.26, H 4.70, N 10.44; found: C 49.14, H 4.88, N 10.49. - (\pm) -Diethyl {{3-{{4-{3-{(tert-Butoxy)carbonylamino}]-3-(methoxycarbonyl)propoxy}phenyl}glyoxyl}-amino}-2-oxoazetidin-I-yl}(pyridin-4-yl)methyl}phosphonates (diastereoisomer mixture; **35**) were prepared from **27** in 80% yield as described for **28**. IR (CH₂Cl₂): 3185–3330 (NH), 1760 (β-lactam), 1720 (Boc), 1670–1690 (amide, ketone). 1 H-NMR (CDCl₃): 1.14–1.46 (m, 2 Me, Me₃C); 2.14–2.40 (m, CH₂); 3.17 (dd, J = 2.0, 6.5, H_β-C(4)); 3.90 (s, MeO); 3.80–4.33 (m, 2 CH₂OP, O₂CCHNCO₂, H₂-C(4)); 4.60 (t, J = 6.0, CH₂O); 5.20 (d, J = 20.0, CHP); 5.28 (m, H-C(3)); 6.80, 7.02 (2 br., 2 NH); 7.48, 7.32, 8.28, 8.50 (2 AA'BB', C₆H₄, C₅H₄N). Anal. calc. for C₃₁H₄₁N₄O₁₁P (676.67): C 55.03, H 6.11, N 8.28; found: C 55.14, H 6.21, N 8.16. - $\begin{array}{l} (\pm)^{-}\{\{J^{-}\{\{I^{-}(J^{-}Amino^{-}3\text{-}carboxypropoxy)phenyl\}glyoxyl\}amino\}^{-}2\text{-}oxoazetidin^{-}1\text{-}yl\}(I^{-}oxidopyridin^{-}1\text{-}ium^{-}4\text{-}yl)methyl\}phosphonic Acids} \text{ (diastereoisomer mixture; 37) were obtained from 36 in 15% overall yield as described for 33. M.p. 228–230° (dec.). IR (nujol): 3450–2600 (2 OH, CO₂H, NH₂, NH), 1756 (β-lactam), 1675–1660 (amide, ketone). UV (EtOH): 229 (20000), 300 (14150). $^{1}\text{H-NMR}$ (D₂O): 2.02–2.40 (m, CH₂); 3.02 (dd, $J=2.2, 7.0, H_{\beta}-C(4)); 4.01 (t, $J=6.0$, O₂CCHND₃); 4.15 (dd, $J=5.4$, 7.0, H_{\alpha}-C(4)); 4.42 (t, $J=6.0$, CH₂O); 5.20 (dd, $J=2.2$, 5.4$, H-C(3)); 5.45 (d, $J=19.0$, CHP); 7.20, 8.40 ($AA'BB'$, $J=6.0$, C_5H_4NO); 7.41, 8.25 ($AA'BB'$, $J=6.0$, C_6H_4). Anal. calc. for $C_{21}H_{23}N_4O_{10}P$ (522.41): C 48.28, H 4.44, N 10.72; found: C 48.16, H 4.26, N 10.95. \\ \end{array}$ - $\begin{array}{l} (\pm)^-(Z)^-\{\{3^-\{\{4^-(3\text{-}Amino\text{-}3\text{-}carboxypropoxy)phenyl\}(hydroxyimino)acetyl\}amino\}\cdot 2\text{-}oxoazetidin-}1\text{-}yl\}\cdot (1\text{-}oxidopyridin-}1\text{-}ium\text{-}4\text{-}yl)methyl\}phosphonic Acids} \text{ (diastereoisomer mixture; } \textbf{38} \text{) were obtained from } \textbf{37} \text{ in } 50\% \text{ yield as described for } \textbf{30}. \text{ M.p. } 240^-242^\circ \text{ (dec.)}. \text{ IR (nujol): } 3550^-2400 \text{ (OH, CO}_2\text{H, NH}_2, \text{ NH}), 1740 (β-lactam), 1660 \text{ (amide), } 1610. \text{ UV (EtOH/H}_2\text{O}): 223 \text{ (}17000), 270 \text{ (}16500). \text{ UV (EtOH/0.1n NaOH); } 223 \text{ (}19000), 292 \text{ (}13000). \\ \text{1}^{1}\text{H-NMR} \text{ (D}_2\text{O}): 2.17^-2.42 \text{ (}m, \text{CH}_2\text{)}; 3.23 \text{ (}dd, J = 2.0, 6.6, \text{H}_{\beta}\text{-C(4)}); 3.91 \text{ (}t, J = 6.0, \text{O}_2\text{CCHND}_3\text{)}; 4.11 \text{ (}dd, J = 5.0, 6.6, \text{H}_{\alpha}\text{-C(4)}); 4.35 \text{ (}t, J = 6.0, \text{CH}_2\text{O}); 5.18 \text{ (}dd, J = 2.0, 5.0, \text{ H-C(3)}); 5.38 \text{ (}d, J = 18.0, \text{CHP}); 7.26\text{--}8.45 \text{ (}m, \text{C}_3\text{H}_4\text{NO}, \text{C}_6\text{H}_4\text{)}. \text{ Anal. calc. for C}_{21}\text{H}_{24}\text{N}_5\text{O}_{10}\text{P} \text{ (}537.43\text{)}: \text{C }46.93, \text{H }4.50, \text{N }13.03; \text{ found: C }46.80, \text{H }4.71, \text{N }12.86. \end{array}$ - (±)-tert-Butyl 2-[cis-2-Formyl-4-oxo-3-(phenylacetamido) azetidin-1-yl]-2-(dimethylphosphono) acetates (diastereoisomer mixture; **40**) were prepared from **39** in 98% yield as described for **19**. IR (CH₂Cl₂): 3420 (NH), 1770 (β-lactam), 1740 (ester), 1720 (aldehyde), 1680 (amide). ¹H-NMR (CDCl₃): 1.29, 1.34 (2s, Me₃C); 3.58 (br. s, CH₂CO); 3.78, 3.90 (2d, 2 Me); 4.78 (br., H-C(4)); 4.83, 5.03 (2d, J = 23.0, CHP); 5.40–5.80 (2dd, J = 5.0, 10.0, H-C(3)); 7.30 (br. s, NH, C_6 H₅); 9.65, 9.90 (2d, J = 1.6, CHO). MS: 454 (M⁺), 426 ([M CO]⁺). Anal. calc. for C_{20} H₂₇N₂O₈P (454.42): C 52.86, H 5.99, N 6.16; found: C 52.91, H 6.01, N 6.19. - (±)-tert-Butyl 2-[2-Oxo-3-(phenylacetamido) azetidin-1-yl]-2-(dimethylphosphono) acetates (diastereoisomer mixture; 41) were obtained from 40 in 55% yield as described for 20. IR (CH₂Cl₂): 3410 (NH), 1769 (β-lactam), 1740 (ester), 1685 (amide). 1 H-NMR (CDCl₃): 1.32 (s, Me₃C); 3.13 (dd, $J = 1.9, 6.5, H_{\beta}$ -C(4)); 3.59 (s, CH₂CO); 3.76, 3.89 (2d, 2 Me); 4.01 (dd, $J = 5.0, 6.5, H_{\alpha}$ -C(4)); 4.90 (d, J = 23.0, CHP); 4.97-5.05 (m, H-C(3)); 6.91 (d, J = 8.5, NH); 7.25 (s, C₆H₅). Anal. calc. for C₁₉H₂₇N₂O₇P (426.41): C 53.52, H 6.38, N 6.57; found: C 53.60, H 6.44, N 6.63. - (±)-tert-Butyl 2-[2-Oxo-3-(phenylacetamido) azetidin-1-yl]-2-(4,4-dimethoxycyclohexa-2,5-dienylidene) acetate (42). To a soln. of 41 (4.26 g, 10.0 mmol) and 4,4-dimethoxycyclohexa-2,5-dien-1-one (1.54 g, 10.0 mmol) in THF (70 ml) was added NaH (240 mg, 10.0 mmol). The soln. was stirred at -20° for 1 h and at 25° for 4 h. The mixture was quenched with 3% aq. NH₄Cl soln. (25 ml) and extracted with CH₂Cl₂. The org. layer was dried (MgSO₄) and evaporated. Purification by CC (silica gel, CH₂Cl₂) gave 2.04 g (45%) of 42. Oil. 1R (CH₂Cl₂): 3400 (NH), 1800 (β-lactam), 1756 (ester), 1680 (amide). ¹H-NMR (CDCl₃): 1.58 (s, Me₃C); 3.22 (dd, J = 2.1, 6.4, H_β-C(4)); 3.46 (br. s, 2 Me); 3.60 (s, CH₂CO); 4.16 (dd, J = 5.0, 6.4, H_β-C(4)); 5.17 (m, H-C(3)); 6.10, 6.24 (2d, J = 10.2, $(CH=CH)_2C(OMe)_2$; 6.63 (br. d, J = 10.2, $(CH=CH)_2C(OMe)_2$); 7.5 (s, C_6H_5); 7.70 (d, J = 8.0, NH). Anal. calc. for $C_{25}H_{10}N_2O_6$ (454.53); C 66.06, H 6.65, N 6.16; found: C 66.29, H 6.50, N 6.28. (\pm) -2-[2-Oxo-3-(phenylacetamido) azetidin-1-yl]-2-(4,4-dimethoxycyclohexa-2,5-dienylidene) acetic Acid (43). To a soln. of 42 (0.91 g, 2.0 mmol) in CH₂Cl₂/CF₃CO₂H 3:1 (12 ml) was added a trace amount of Bu₄NClO₄, and the soln. was stirred at 25° for 1 h. Purification by CC (silica gel, Et₂O) afforded 0.20 g (25%) of 43. Pale yellow precipitate. M.p. 60° (brown), 80° (dec.). IR (CH₂Cl₂): 3100–3420 (NH, CO₂H). 1798 (β-lactam), 1713 (acid), 1670 (amide). ¹H-NMR (CDCl₃/D₂O): 3.16 (dd, J = 2.0, 6.0, H_β–C(4)); 3.38 (s, 2 Me); 3.61 (s, CH₂CO); 4.01 (dd, J = 4.5, 6.0, H_α–C(4)); 5.06 (dd, J = 2.0, 4.5, H–C(3)); 5.91, 6.02 (2d, J = 10.0, (CH=CH)₂C(OMe)₂); 6.49 (d, J = 10.0, (CH=CH)₂C(OMe)₂); 7.40 (s, C₆H₅). Anal. calc. for C₂₁H₂₂N₂O₆ (398.42): C 63.31, H 5.57, N 7.03; found: C 63.54, H 5.30, N 6.82. ## REFERENCES - M. Hashimoto, T. Komori, T. Kamiya, J. Am. Chem. Soc 1976, 98, 3023; H. Aoki, H. Sakai, M. Kohsaka, T. Konomi, J. Hosoda, Y. Kubochi, E. Iguchi, H. Imanaka, J. Antibiot. 1976, 29, 492. - [2] Y. Mine, S. Nonoyama, H. Kojo, S. Fukada, M. Nishida, S. Goto, S. Kuwahara, J. Antibiot. 1977, 30, 932. - [3] M. Nishida, Y. Mine, S. Nonoyama, H. Kojo, S. Goto, S. Kuwahara, J. Antibiot. 1977, 30, 917; H. Kojo, Y. Mine, M. Nishida, T. Yokota, ibid. 1977, 30, 926. - [4] G. H. Hakimelahi, G. Just, Can. J. Chem. 1979, 57, 1939. - [5] J. V. Heck, B. G. Christensen, Tetrahedron Lett. 1981, 22, 5027. - [6] G. H. Hakimelahi, A. R. Sardarian, Helv. Chim. Acta 1990, 73, 180. - [7] E. A. Braude, R. P. Linstead, P. W. Mitchell, K. R. H. Woolridge, J. Chem. Soc. 1954, 3595; V.S. Rao, A. S. Perlin, Carbohydr. Res. 1980, 83, 175; S. Hanessian, T. J. Liak, B. Vanasse, Synthesis 1981, 396. - [8] H. B. Kagan, J.J. Basselier, J. L. Luche, Tetrahedron Lett. 1964, 941; P.J. Decazes, J. L. Luche, H. B. Kagan, ibid. 1970, 3661. - [9] J. Tsuji, K. Ohno, Tetrahedron Lett. 1965, 3969; ibid. 1967, 2173; K. Ohno, J. Tsuji, J. Am. Chem. Soc. 1968, 90, 99. - [10] G. H. Hakimelahi, G. Just, Can. J. Chem. 1979, 57, 1932. - [11] D. H. R. Barton, S. D. Géro, B. Quiclet-Sire, M. Samadi, Tetrahedron Lett. 1989, 30, 4969. - [12] G. H. Hakimelahi, G. Just, Helv. Chim. Acta 1982, 65, 1359.