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Structural modifications to the central portion of the N-arylamide oxadiazole scaffold led to the identifi-
cation of N-arylpiperidine oxadiazoles as conformationally constrained analogs that offered improved
stability and comparable potency and selectivity. The simple, modular scaffold allowed for the use of
expeditious and divergent synthetic routes, which provided two-directional SAR in parallel. Several
potent and selective agonists from this novel ligand class are described.

� 2008 Elsevier Ltd. All rights reserved.
The cannabinoid G-protein coupled receptors, CB1 and CB2,
play important roles in the transduction and perception of pain.1

The contribution of CB1 to the modulation of antinociception has
been well established.1 However, agonism of CB1, which is pre-
dominantly expressed in the CNS, results in undesirable psycho-
tropic effects, sedation, and catalepsy.2 Selective agonism of CB2,
which is predominantly expressed in immune cells and tissues,
presents an opportunity for pain management without the unfa-
vorable CNS side effects. Indeed, a number of CB2-selective ago-
nists have shown efficacy in rodent models of inflammatory and
neuropathic pain at doses that do not cause sedation or locomo-
tor impairment.3

In accordance with our ongoing efforts to identify small mole-
cule agonists of CB2 for use as therapeutic agents in the treatment
of pain, we recently disclosed the N-arylamide oxadiazoles.4 This
series is represented by 1 (Scheme 1), which exhibits full agonism5

of the CB2 receptor at low nanomolar concentrations with >200-
fold selectivity over CB1 in a functional GTP-Eu binding assay (Ta-
ble 1).6 Unfortunately, 1 suffered from high clearance in vivo (rat
i.v. CL = 5.7 L/h/kg). High clearance was also observed for several
ll rights reserved.

: +1 617 621 3907.
ro).
of its analogs, and hydrolysis of the amide bond was identified as
a major metabolic pathway in rats (Scheme 1).7

In an effort to improve the metabolic stability without compro-
mising the agonist potency and efficacy, we investigated reversed
amide 3 and propylamines 4–6 (Table 1).8 The reversed amide 3
proved to be significantly less potent and efficacious than 1. Next,
we explored the removal of the amide carbonyl leading to propyl-
amine 4,4 which was only 5-fold less potent and selective than the
corresponding amide (1). Unfortunately, 4 was metabolically
unstable in liver microsomes.7 Accordingly, a-methyl substituents
were introduced to block the potential oxidative metabolism,
affording secondary and tertiary propylamines ((±)-5 and 6). In
the case of the mono-methyl analog (±)-5 only a modest 7-fold loss
of potency was observed. The gem di-methyl analog 6 led to a
more significant 20-fold loss of potency and provided only a partial
agonist (Emax = 52%). Also, both compounds were still rapidly
metabolized in liver microsomes.

The data from propylamines 4–6 suggested that the carbonyl
functionality was not essential for potency and efficacy. Further-
more, the 20- to 100-fold selectivity afforded by 4–6 was unantic-
ipated since the vast majority of CB2-selective functional agonists
contain amide or sulfone moieties.3c–f,9 Encouraged by this discov-
ery, we sought to explore cyclic tethers that could presumably im-
prove the metabolic stability and intrinsic potency through
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Table 1
Functional GTP-Eu assay results for compounds 1–6 (EC50, lM; Emax, %) and CLint. in rat and human liver microsomes (RLM, HLM)a

R

N

NO
Cl

F

Compound R CB2 EC50 (Emax) CB1 EC50 (Emax) CLint. (lL/min/mg)

RLM HLM

1
N

H
N

O 0.002 (115) 0.403 (51) 126 49

2
HO

O
NA (10) NA (0.3) — —

3
N N

H

O

1.55 (87) NA (�1) — —

4
N

H
N

0.011 (104) 0.472 (103) 614 179

(±)-5
N

H
N

0.015 (112) 1.56 (69) >399 142

6
N

H
N

0.053 (52) 1.30 (70) 775 429

a The results are expressed as the means SEM for n = 2–20 independent measurements, and were calculated in Prism by use of a logistic fit. Emax, % is given in parentheses
(NA, not active).

N

H
N

O

N

NO
Cl

F

HO

O

N

NO
Cl

FN
NH2

+

2

R

R

1: R = H

Scheme 1. Amide oxadiazoles and hydrolysis products.
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increased conformational rigidity (Table 2). The cyclopentyl amine
derivatives, (±)-7 and (±)-8, displayed decreased potency and effi-
cacy. However, the trans-cyclopropyl amine (±)-9, pyrrolidines 10
and 11, and piperidine 12a all showed promising functional activ-
ity and selectivity. Of these, 12a afforded the best combination of
potency, selectivity, and low intrinsic clearance in vitro.
In light of the in vitro profile of lead compound 12a, we set out
to explore the structure–activity relationships around this novel N-
arylpiperidine oxadiazole scaffold. Molecular modeling revealed
that 1 and 12a adopt similar low energy conformations (Fig. 1),10

suggesting that these two series of molecules share similar binding
modes, and may therefore exhibit parallel SAR.4



Table 2
Functional GTP-Eu binding assay results for compounds (±)-7–12a (EC50, lM; Emax, %) and CLint. in rat and human liver microsomes (RLM, HLM)a

N

NO
Cl

F

N
R

Compound R CB2 EC50 (Emax) CB1 EC50 (Emax) CLint. (lL/min/mg)

RLM HLM

(±)-7
H
N 0.465 (73) 2.23 (39) — —

(±)-(8
H
N 1.60 (77) NA (4) — —

(±)-(9 H
N

0.099 (110) NA (8) 193 69

10

N

0.086 (116) 1.27 (46) 426 215

11

N

0.140 (109) 1.69 (24) 579 215

12a
N

0.089 (101) 3.03 (36) 80 92

a The results are expressed as the means SEM for n = 2–20 independent measurements, and were calculated in Prism by use of a logistic fit. Emax, % is given in parentheses
(NA, not active).

Figure 1. Overlay of amide oxadiazole 1 (green) and piperidine oxadiazole 12a
(purple).
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Taking advantage of a modular and divergent synthetic strat-
egy, we held the oxadiazole-aryl substituent (R2) constant as 2-
chloro-4-fluoro-phenyl, and varied the N-aryl substituent (R1, Ta-
ble 3). Concurrently, fixing the N-aryl substituent (R1) constant as
3-quinoline, we varied the oxadiazole substituent (R2, Table 4).11

Our initial survey of R groups was based on the SAR observed in
the N-aryl amide oxadiazole series and the overlay of low energy
conformations for the two scaffolds.
Despite having steric bulk which was comparable to the lead
12a, compounds such as 12b with 3,4-di-substituted aryl substitu-
ents at R1 were significantly less potent (Table 3). Upon confirming
that the 3-quinoline isomer was clearly preferred to the 4-quino-
line isomer 12c, we quickly discovered that close structural ana-
logs of 3-quinoline afforded the best combination of potency and
selectivity (i.e., 12e–i).

The SAR around R2 revealed that the 2-Cl substituent was crit-
ical for potency (13a vs. 13b, 13c vs. 13d, Table 4). Although 13b
was 4-fold more potent than 12a, it was significantly less selective
and less stable in vitro. Although 13d was equi-potent to 12a and
metabolically stable, it was significantly less selective. The cyclo-
hexyl analog 13f had a favorable combination of potency, efficacy,
and selectivity, but was still a sub-micromolar full agonist of CB1

with inferior selectivity (23-fold vs. 34-fold) and metabolic stabil-
ity to that of 12a. From this initial SAR evaluation, compound 12h
had the best overall potency, efficacy, selectivity, and metabolic
stability profile.

On the basis of potency, selectivity, and in vitro stability, se-
lected compounds were further studied in a human cell-based
cAMP assay. This assay monitors a distal signaling event from the
CB2 and CB1 receptors. Activation of CB2 and CB1 receptors results
in inhibition of adenylate cyclase. Compounds were assessed for



Table 3
Functional GTP-Eu binding assay results for compounds 12b–i (EC50, lM; Emax, %) and CLint. in rat and human liver microsomes (RLM, HLM)a

N
O N

N

Cl F

R1

Compound R1 CB2 EC50 (Emax) CB1 EC50 (Emax) CLint. (lL/min/mg)

RLM HLM

12b
Cl

CF3

0.376 (93) NA (2) — —

12c N 2.86 (35) NA (2) — —

12d
N

N
0.340 (88) NA (13) — —

12e

N
0.019 (113) 0.910 (60) 130 95

12f

N
0.032 (108) 0.722 (93) >399 380

12g

N
F3C 0.016 (106) 0.015 (34) 54 23

12h

N

Cl

0.007 (120) 1.43 (55) 32 38

12i

N

OCF3

0.003 (110) 0.419 (33) 18 28

a The results are expressed as the means SEM for n = 2–20 independent measurements and were calculated in Prism by use of a logistic fit. Emax, % is given in parentheses
(NA = not active).
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their ability to inhibit a forskolin-induced increase in intracellular
cAMP (Table 5).12 Compounds 12a and 12h proved superior to (±)-
9 and 10 and comparable to 1 and 6 in potency, efficacy, and
selectivity.13

The pharmacokinetic parameters of 12h were assessed in
rats following both i.v. and oral administration (Table 6).
Compound 12h was metabolically stable in liver microsomes
and displayed low clearance and a long half-life. Following
oral administration, reasonable exposure was achieved despite
a low oral bioavailability of 2%. 12h has good permeability
and is not a substrate for PgP.14 We speculate that the low
bioavailability is due to poor oral absorption resulting from
poor solubility (0.01 N HCl < 1 lg/mL; PBS < 1 lg/mL; SIF 2 lg/
mL).15



Table 4
Functional GTP-Eu binding assay results for compounds 13a–g (EC50, lM; Emax, %) and CLint. in rat and human liver microsomes (RLM, HLM)a

N

N

O N

N R2

Compound R2 CB2 EC50 (Emax) CB1 EC50 (Emax) CLint. (lL/min/mg)

RLM HLM

13a

N
0.313 (53) NA (8) — —

13b

N

Cl

0.024 (103) 0.096 (23) 187 251

13c

Cl

1.78 (26) 2.62 (26) — —

13d

Cl

Cl

0.080 (99) 0.951 (27) 43 58

13e

F

1.55 (89) NA (8) — —

13f 0.026 (113) 0.600 (105) 185 283

13g 1.44 (38) NA (8) — —

a The results are expressed as the means SEM for n = 2–20 independent measurements, and were calculated in Prism by use of a logistic fit. Emax, % is given in parentheses
(NA, not active).

Table 5
Cellular cAMP assay results for selected compounds (EC50, lM; Emax, %)a

Compound hCB2 EC50 (Emax) hCB1 EC50 (Emax)

1 0.005 (98) 0.559 (49)
6 0.050 (93) >2 (46)
(±)-9 >2 (0) >2 (1)
10 >2 (23) >2 (3)
12a 0.017 (95) >1 (17)
12h 0.011 (102) >2 (19)

a The results are expressed as the means SEM for n = 2–20 independent mea-
surements and were calculated in Prism by use of a logistic fit. Emax, % is given in
parentheses.

Table 6
Pharmacokinetic properties of 12h in male Sprague–Dawley ratsa

ivb poc

CL 0.039 L/h/kg %F 2
Vss 0.365 L/kg Cmax 682 ng/mL
t1/2 8.9 h AUC0 � 24h 5240 ng*h/mL

a n = 3 animals per study.
b Dosed intravenously at 0.5 mg/kg in DMSO.
c Dosed orally at 10 mg/kg as a suspension in 2% HPMC/1% Tween80/97% water.
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The synthetic routes to 1–11 are detailed in Schemes 2 and
3. Condensation of nitrile 14 and hydroxylamine afforded N-
hydroxybenzamidine 15, which was condensed with succinic
anhydride to afford the carboxylic acid 2 (Scheme 2). As previ-
ously described,4 N-arylamide oxadiazoles such as 1 were pre-
pared by the reaction of intermediate 2 with anilines such as
3-aminoquinoline. Alternatively, carboxylate 1 was converted
to the aldehyde 16, which was then reacted with anilines, un-
der reductive amination conditions, to afford propylamines such
as 4.4 For the synthesis of mono-methyl propylamine (±)-5, 4-
oxopentanoic acid 17 was condensed with N-hydroxybenzami-
dine 15 to afford ketone 18, which underwent a reductive ami-
nation with 3-aminoquinoline to provide (±)-5. The gem di-
methyl propylamine 6 was synthesized beginning with a con-
densation of N-hydroxybenzamidine 15 with anhydride 19 to
afford the carboxylic acid 20, which was converted to the ter-
tiary amine 21 under Curtius conditions. Amine 21 was then
coupled with 3-bromoquinoline using a Buchwald-Hartwig ami-
nation to afford 6.16
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Scheme 2. Reagents and conditions: (a) Hydroxylamine hydrochloride, Na2CO3, MeOH/Water (4:1), 95%; (b) Succinic anhydride, DMF, 120 �C, 98%; (c) PS-Carbodiimide,
HOBt, 3-aminoquinoline, CH2Cl2, 13%; (d) i—TMS-diazomethane, ii—DIBAL-H, CH2Cl2/MeOH, 66%; (e) Dess-Martin periodinane, CH2Cl2, 84%; (f) 3-aminoquinoline, NaBH4,
DCE, 40%; (g) 15, HOBt hydrate, DIPEA, DMF, 110 �C, 77% (h) 3-aminoquinoline, NaBH(OAc)3, DCE, 3%; (i) 15, DMF, 120 �C, 90%; (j) DPPA, NEt3, benzene, 47%; (k) 3-
bromoquinoline, Pd2dba3, NaOt-Bu, X-Phos, toluene, 60 �C, 3%.
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The syntheses of (±)-7, (±)-8, and (±)-9 were accomplished using
oxadiazole formation and reductive amination sequences similar
to that applied in the synthesis of (±)-5 (Scheme 3). Pyrrolidines
10 and 11 were isolated by chiral resolution of the racemate (±)-
32, which was prepared from amine (±)-31 using Pd-Xantphos-cat-
alyzed Buchwald-Hartwig amination.16

Our synthetic approach to piperidine oxadiazoles allowed for fi-
nal stage modifications of either of the two aryl termini (Scheme
4). TBTU/HOBt-promoted reaction of 1-Boc-piperidine-4-carboxyl-
ate (33) with N-hydroxybenzamidine 15, followed by removal of
the Boc protecting group, afforded the penultimate piperidine oxa-
diazole 34. Finally, N-aryl groups (R1) were installed to afford 12a–
i using a Pd-Xantphos-catalyzed Buchwald-Hartwig amination.16

These amination conditions were similarly used to afford nitrile
36 from piperidine-4-carbonitrile (35) and 3-bromoquinoline.
After hydrolysis of the nitrile, the resulting acid 37 was condensed
with a variety of N-hydroxybenzamidines under the usual condi-
tions to afford 13a–g.11
In summary, structural modifications to the central portion of
the N-arylamide oxadiazole scaffold were investigated in an effort
to improve potency and metabolic stability through increased con-
formational constraint. These efforts led to the identification of N-
arylpiperidine oxadiazole 12a as a novel, potent, selective, full ago-
nist of CB2. The modular scaffold allowed for the use of expeditious
and divergent synthetic routes which provided two-directional
SAR in tandem. Our initial lead-optimization efforts have identified
12h as a highly potent, >200-fold selective, full agonist with prom-
ising pharmacokinetics in rodents. We believe that N-arylpiperi-
dine oxadiazoles with appropriate PKDM properties could be
developed as analgesic agents for the treatment of inflammatory
and neuropathic pain.
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