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Abstract: A new, conformationally rigid analogue of 2-amino-
adipic acid, 8-[(benzyloxy)carbonyl]-3-methylene-8-azabicyc-
lo[3.2.1]octane-1,5-dicarboxylic acid, is synthesized from dimethyl
rac-2,5-dibromohexanedioate. The key steps involve alkylation–
cyclization of 1-benzyl 2,5-dimethyl pyrrolidine-1,2,5-tricarboxy-
late with 3-chloro-2-(chloromethyl)prop-1-ene to yield the 8-azabi-
cyclo[3.2.1]octane skeleton.

Key words: conformational restriction, bicyclic compounds, pyr-
rolidines, alkylations, cyclization

The concept of conformational restriction has been widely
utilized to modify the physical, chemical and biological
characteristics of organic compounds.1 In particular, ap-
plication of this concept to a-amino acids is of significant
practical interest since conformationally restricted amino
acids, upon replacing their natural analogues, have been
used to improve the pharmacological properties of pep-
tides and peptidomimetics.2 (2R)-Aminoadipic acid (1) is
a selective competitive N-methyl D-aspartic acid
(NMDA) glutamate receptor antagonist.3 We recently
prepared its non-chiral, conformationally rigid analogue 2
which contains a 7-azabicyclo[2.2.1]heptane skeleton.4

Herein we report our studies on the synthesis of bicyclic
compounds of type 3, analogues of (2R)-aminoadipic
acid, possessing a conformationally rigid 8-azabicyc-
lo[3.2.1]octane skeleton (Figure 1).

Figure 1 The structures of (2R)-Aminoadipic acid and conforma-
tionally rigid analogues

Initially, a strategy involving consecutive bis-alkylation
of the corresponding protected 2,5-dicarbomethoxypyrro-
lidine was investigated to prepare the unsubstituted rigid
amino acid 3a (R = H). The chiral phenylethyl residue
was chosen as an N-protecting group in order to enable the

possibility of further asymmetric derivatization of 3. The
starting pyrrolidine 4 was obtained from dimethyl rac-
2,5-dibromohexanedioate 5a5 and (S)-1-phenylethyl-
amine according to the literature procedure (Scheme 1).6

Next, treatment of pyrrolidine 4 with lithium diisopropyl-
amide (1.15 equiv) at –78 °C for two hours, followed by
subsequent addition of 1-bromo-3-chloropropane (1.5
equiv), afforded compound 6 in 40% yield as a single dia-
stereomer.7 The addition of hexamethylphosphoramide
(HMPA) (4–6 equiv) as a cosolvent8 was found to be cru-
cial for the success of this step.9 Despite the fact that prep-
aration of the 8-azabicyclo[3.2.1]octane skeleton via
intramolecular alkylation of substituted pyrrolidines has
already been described in the literature,10 all our attempts
to cyclize 6 were unsuccessful. Reacting substituted pyr-
rolidine 6 with various bases (lithium diisopropylamide,
sodium hydride, lithium hexamethyldisilazide or potassi-
um hexamethyldisilazide) in the presence of hexameth-
ylphosphoramide did not produce 7 even at room
temperature. Upon increasing the temperature, a complex
mixture was formed from which the target compound 7
was isolated, albeit in a very poor yield (less than 1%).

To reduce steric hindrance at the reaction center in 6,
which may be preventing the alkylation, we replaced the
chiral phenylethylamine auxiliary with the less bulky ben-
zylamine moiety.11 The corresponding analogue 9 was ob-
tained in 44% yield from pyrrolidine 84 using the same
strategy as that applied for the synthesis of 6. However,
cyclization of 9 into bicyclic compound 10 did not occur.

Next, the suitability of the benzyloxycarbonyl (Cbz) N-
protecting group was investigated. Mono-alkylation of 11
(itself prepared via removal of the benzyl group in 8 and
N-protection of the resulting product using benzyl chloro-
formate) on reaction with 1-bromo-3-chloropropane gave
a mixture of diastereomers 12a,b (3:1) in an improved
79% yield. However, all attempts to prepare the desired 8-
azabicyclo[3.2.1]octane skeleton 13 failed. Exchanging
the chloride leaving group for the more labile iodide
(compound 14) did not improve the situation (Scheme 2).

Recently, Stevens et al. reported that 3-chloro-2-(chlo-
romethyl)prop-1-ene was an efficient reagent for the alky-
lation of pyroglutamic acid derivatives in their synthesis
of a 6-azabicyclo[3.2.1]octane cage system.12 In fact,
mono-alkylation of 11 with 3-chloro-2-(chlorometh-
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yl)prop-1-ene smoothly afforded a mixture of the two dia-
stereomeric alkenes 15a,b (3:4) in a good yield of 80%.
Subsequent cyclization of the mixture of 15a,b with lithi-
um diisopropylamide in the presence of hexamethylphos-
phoramide produced the target 8-azabicyclo[3.2.1]octane
16 in 33% yield. Attempts to transform 11 into 16 via a
one-step bis-alkylation were only partially successful re-
sulting in a mixture of the target compound 16, starting
material 11, and the mono-alkylated diastereomeric prod-
ucts 15a,b. Finally, basic hydrolysis of 16 afforded the
target compound, Cbz-3b (Scheme 3).

Scheme 3 Reagents and conditions: (a) NaOH (10 equiv), MeOH–
H2O–THF (5:8:5), r.t., 96 h.

In summary, we have shown that intramolecular alkyla-
tion of pyrrolidine derivatives to form the corresponding
8-azabicyclo[3.2.1]octane skeleton is highly dependent
on both the alkylating agent and the N-protecting group.
The benzyloxycarbonyl group was found to be superior
than benzyl and phenylethyl groups in the above-
mentioned reactions. 3-Chloro-2-(chloromethyl)prop-1-
ene was shown to be an efficient electrophilic agent for
constructing this cage system. The conformationally rigid
analogue of 2-aminoadipic acid, Cbz-3b was obtained in
good yield and the preparation of other representative ex-
amples is ongoing.

Starting materials and reagents were purchased from Acros, Merck,
Fluka and Enamine. Solvents were purified according to standard
procedures. Melting points were recorded using a Büchi 510 melt-
ing point apparatus and are uncorrected. Analytical TLC was con-
ducted using Polychrom SIF254 plates. Column chromatography
was performed using Kieselgel Merck 60 silica gel (230–400 mesh)
as the stationary phase. 1H and 13C NMR spectra were recorded ei-
ther on a Varian Unity Plus 400 spectrometer (at 400.4 and 100.7
MHz, respectively) or on a Bruker Avance 500 spectrometer (at

Scheme 1 Reagents and conditions: (a) (i) (S)-1-phenylethylamine (1 equiv), K2CO3 (3 equiv), toluene–H2O, reflux, 30 h, (ii) NaOMe–
MeOH, H2O, r.t., 36 h; (b) (i) LDA (1.15 equiv), HMPA (5 equiv), THF, –78 °C, 2 h, (ii) 1-bromo-3-chloropropane (1.5 equiv), –78 °C to r.t.,
12 h; (c) LDA (1.5 equiv), HMPA (5 equiv), THF, (i) –78 °C to r.t., 12 h, or (ii) reflux, 10 h; (d) 1-phenylmethanamine (1 equiv), K2CO3

(3 equiv), toluene–H2O, reflux, 30 h.
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Scheme 2 Reagents and conditions: (a) (i) H2, 5% Pd/C, 40 °C, 48 h, (ii) CbzCl (1.1 equiv), K2CO3, H2O, r.t., 12 h; (b) (i) LDA (1.05 equiv),
HMPA (5 equiv), THF, –78 °C, 2 h, (ii) 1-bromo-3-chloropropane (1.5 equiv), –78 °C to r.t., 12 h; (c) (i) LDA (1.15 equiv), HMPA (5 equiv),
THF, –78 °C, 2 h, (ii) 1,3-diiodopropane (1.5 equiv), –78 °C to r.t., 12 h; (d) (i) LDA (1.15 equiv), HMPA (5 equiv), THF, –78 °C, 2 h,
(ii) 3-chloro-2-(chloromethyl)prop-1-ene (1.5 equiv), –78 °C to r.t., 12 h; (e) LDA (1.5 equiv), HMPA (5 equiv), THF, (i) –78 °C, 2 h,
(ii) –78 °C to r.t., 12 h.
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499.9 or 124.9 MHz) using CDCl3 or CD3OD as solvent. Chemical
shifts are reported in ppm downfield from TMS as the internal stan-
dard. Mass spectra were recorded on an Agilent 1100 LCMSD SL
instrument by chemical ionization (CI). Elemental analyses were
obtained using a Elementar Vario MICRO cube instrument.

Mono-alkylated Pyrrolidines 6, 9, 12a,b, 14 and 15a,b; General 
Procedure
To a soln of the N-protected 2,5-dicarbomethoxypyrrolidine (1
equiv) and HMPA (4–6 equiv) in THF at –78 °C was added drop-
wise a soln of LDA (1.15 equiv) in THF. The resulting black mix-
ture was stirred for 2 h at –78 °C followed by slow addition of the
alkylating agent (1.5 equiv). The reaction mixture was left to stir
overnight (12 h) whilst gradually warming to r.t. The reaction mix-
ture was quenched with saturated NH4Cl (50 mL), THF was re-
moved under vacuum. Extraction with EtOAc (3 × 100 mL), drying
over MgSO4, filtration, and evaporation followed by flash column
chromatography (silica gel, hexane–EtOAc mixtures) afforded the
products as colorless oils. Typical reaction scale was 1–3 g of start-
ing material.

8-Azabicyclo[3.2.1]octanes 7 and 16; General Procedure
To a soln of the mono-alkylated N-protected 2,5-dicarbomethoxy-
pyrrolidine (1 equiv) and HMPA (4–6 equiv) in THF at –78 °C was
slowly added LDA (1.5 equiv) in THF. The reaction mixture was
left to stir overnight (12 h) whilst gradually warming to r.t.; in the
case of 6, the reaction mixture was additionally heated under reflux
for 10 h. The reaction mixture was quenched with saturated NH4Cl
(50 mL), THF was removed under vacuum. Extraction with EtOAc
(3 × 100 mL), drying over MgSO4, filtration, and evaporation and
purification by flash column chromatography (silica gel, hexane–
EtOAc mixtures) gave the cyclized products 7 and 16 as colorless
oils. Typical reaction scale was 1–3 g of starting material.

Dimethyl (5R)-2-(3-Chloropropyl)-1-[(1S)-1-phenylethyl]pyr-
rolidine-2,5-dicarboxylate (6)
Colorless oil; yield: 40%; Rf = 0.70 (hexane–EtOAc, 2:1).
1H NMR (CDCl3, 400 MHz): d = 7.24–7.14 (m, 5 H, Ph), 4.24 (q,
J = 7.2 Hz, 1 H, NCHCH3), 3.81 (d, J = 8.8 Hz, 1 H, CHCO2Me),
3.60 (m, 2 H, CH2Cl), 3.51 (s, 3 H, OCH3), 3.36 (s, 3 H, OCH3),
2.35 (m, 1 H), 2.21–1.96 (m, 5 H), 1.90 (m, 1 H), 1.67 (dd, J = 6.8,
3.2 Hz, 1 H), 1.30 (d, J = 7.2 Hz, 3 H, NCHCH3).
13C NMR (CDCl3, 100 MHz): d = 175.39 (s, CO2Me), 174.14 (s,
CO2Me), 143.93 (s, C, Ph), 128.64 (s, CH, Ph), 128.16 (s, CH, Ph),
127.63 (s, CH, Ph), 70.65 (s, NCCO), 63.73 (s, NCHCO), 60.71 (s,
NCHCH3), 51.55 (s, OCH3), 51.26 (s, OCH3), 45.77 (s, CH2Cl),
33.45 (s, CH2), 32.31 (s, CH2), 29.38 (s, CH2), 28.68 (s, CH2), 22.45
(s, NCHCH3).

MS (CI): m/z (%) = 370.4 [(M+ + H), 37Cl], 368.4 [(M+ + H), 35Cl].

Dimethyl 8-[(1S)-1-Phenylethyl]-8-azabicyclo[3.2.1]octane-1,5-
dicarboxylate (7)
Colorless oil; yield: <1%; Rf = 0.45 (hexane–EtOAc, 4:1).
1H NMR (CDCl3, 400 MHz): d = 7.42 (d, J = 7.6 Hz, 2 H, Ph), 7.25
(t, J = 7.6 Hz, 2 H, Ph), 7.15 (t, J = 7.6 Hz, 1 H, Ph), 4.18 (q, J = 6.8
Hz, 1 H, NCHCH3), 3.78 (s, 3 H, OCH3), 2.79 (s, 3 H, OCH3), 2.46
(ddd, J = 13.2, 4.4, 1.6 Hz, 1 H), 2.42 (ddd, J = 11.6, 4.4, 1.6 Hz, 1
H), 2.30 (tdd, J = 12.0, 4.0, 1.6 Hz, 1 H), 2.01 (dd, J = 12.8, 5.6 Hz,
1 H), 1.93–1.72 (m, 6 H), 1.21 (d, J = 6.8 Hz, 3 H, NCHCH3).

MS (CI): m/z (%) = 332.4 [(M+ + H)].

Dimethyl 1-Benzyl-2-(3-chloropropyl)pyrrolidine-2,5-dicar-
boxylate (9)
Colorless oil; yield: 44%; Rf = 0.60 (hexane–EtOAc, 4:1).

1H NMR (CDCl3, 400 MHz): d = 7.30–7.21 (m, 5 H, Ph), 3.91 (d,
2JH–H = 13.6 Hz, 1 H, CH2Ph), 3.74 (s, 3 H, OCH3), 3.66 (d, 2JH–H =
13.6 Hz, 1 H, CH2Ph), 3.61 (dd, J = 12.8, 3.2 Hz, 1 H, CHCO2Me),
3.49 (t, J = 6.0 Hz, 2 H, CH2Cl), 3.45 (s, 3 H, OCH3), 2.30 (m, 1 H),
2.20–1.91 (m, 4 H), 1.89–1.77 (m, 3 H).
13C NMR (CDCl3, 100 MHz): d = 174.11 (s, CO2Me), 173.87 (s,
CO2Me), 139.06 (s, C, Ph), 128.99 (s, CH, Ph), 128.63 (s, CH, Ph),
128.01 (s, CH, Ph), 71.87 (s, NCCO), 65.11 (s, NCHCO), 52.93 (s,
NCH2), 51.34 (s, OCH3), 51.02 (s, OCH3), 45.82 (s, CH2Cl), 33.51
(s, CH2), 32.24 (s, CH2), 28.12 (s, CH2), 27.68 (s, CH2).

MS (CI): m/z (%) = 356.4 [(M+ + H), 37Cl], 354.4 [(M+ + H), 35Cl].

1-Benzyl 2,5-Dimethyl 2-(3-Chloropropyl)pyrrolidine-1,2,5-tri-
carboxylate (12a, 12b)
LDA (1.05 equiv) was used in this experiment; the use of LDA
(1.15 equiv) led to formation of a substantial amount (ca. 10%
yield) of bis-alkylated product 12c.

Data for 12a: Colorless oil; yield: 59%; Rf = 0.35 (hexane–EtOAc,
5:1).
1H NMR (CDCl3, 400 MHz): d (mixture of rotamers) = 7.39–7.18
(m, 5 H, Ph), 5.11–4.91 (m, 2 H, OCH2), 4.50 (2 × dd, J = 9.2, 3.2
Hz, 1 H, NCH), 3.64, 3.59, 3.51, 3.35 (4 × s, 6 H, OCH3), 3.42 (m,
2 H, CH2Cl), 2.36–2.27 (m, 1 H), 2.26–1.92 (m, 4 H), 1.92–1.70 (m,
3 H).
13C NMR (CDCl3, 100 MHz): d (mixture of rotamers) = 174.18,
173.95, 173.04, 172.86 (4 × s, CO2Me), 154.82, 154.14 (2 × s,
NCO), 136.43, 136.14 (2 × s, C, Ph), 128.62, 128.55, 128.50,
128.41, 128.04, 127.57 (6 × s, CH, Ph), 70.05, 69.15 (2 × s, NCCO),
67.75, 67.25 (2 × s, OCH2), 61.92, 61.03 (2 × s, NCHCO), 52.73,
52.49, 52.42, 52.24 (4 × s, OCH3), 45.54, 45.43 (2 × s, CH2Cl),
35.79, 34.43, 32.57, 31.73 (4 × s, CH2CH2), 27.45, 27.33, 27.11,
26.81 (4 × s, CH2CH2). 

MS (CI): m/z (%) = 400.0 [(M+ + H), 37Cl], 398.0 [(M+ + H), 35Cl].

Data for 12b: Colorless oil; yield: 20%; Rf = 0.20 (hexane–EtOAc,
5:1).
1H NMR (CDCl3, 400 MHz): d (mixture of rotamers) = 7.41–7.17
(m, 5 H, Ph), 5.25–4.93 (m, 2 H, OCH2), 4.48 (dd, J = 12.0, 8.8 Hz,
0.3 H, NCH), 4.37 (dd, J = 8.0, 4.4 Hz, 0.7 H, NCH), 3.75, 3.54,
3.53, 3.47 (4 × s, 6 H, OCH3), 3.50 (m, 2 H, CH2Cl), 2.43–1.51 (m,
8 H).
13C NMR (CDCl3, 100 MHz): d (mixture of rotamers) = 172.84,
172.77, 171.84, 171.18 (4 × s, CO2Me), 153.26, 152.76 (2 × s,
NCO), 136.86, 136.69 (2 × s, C, Ph), 128.73, 128.56, 128.40,
128.26, 127.95, 127.88 (6 × s, CH, Ph), 69.26, 68.31 (2 × s, NCCO),
67.30, 67.10 (2 × s, OCH2), 61.35, 60.60 (2 × s, NCHCO), 52.25,
52.13, 52.08, 51.88 (4 × s, OCH3), 44.54, 44.50 (2 × s, CH2Cl),
35.82, 34.66, 33.54, 32.67 (4 × s, CH2CH2), 29.97, 29.25, 28.29,
28.18 (4 × s, CH2CH2).

MS (CI): m/z (%) = 400.0 [(M+ + H), 37Cl], 398.0 [(M+ + H), 35Cl].

1-Benzyl 2,5-Dimethyl 2,5-Bis(3-chloropropyl)pyrrolidine-
1,2,5-tricarboxylate (12c)
LDA (1.15 equiv) was used in this experiment.

Colourless oil; yield: 10%; Rf = 0.50 (hexane–EtOAc, 5:1).
1H NMR (CDCl3, 400 MHz): d = 7.42–7.25 (m, 5 H, Ph), 5.12 (d,
2JH-H = 12.0 Hz, 1 H, OCH2), 4.98 (d, 2JH-H = 12.0 Hz, 1 H, OCH2),
3.72 (s, 3 H, OCH3), 3.51 (m, 2 H, CH2Cl), 3.45 (s, 3 H, OCH3),
3.40 (t, J = 6.8 Hz, 2 H, CH2Cl), 2.25 (t, J = 6.4 Hz, 2 H), 2.16 (m,
4 H), 2.10–1.80 (m, 6 H).
13C NMR (CDCl3, 100 MHz): d = 173.98 (s, CO2Me), 173.78 (s,
CO2Me), 153.63 (s, NCO), 136.05 (s, C, Ph), 128.68 (s, CH, Ph),
128.64 (s, CH, Ph), 128.50 (s, CH, Ph), 71.08 (s, NCCO), 70.02 (s,
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NCCO), 67.55 (s, OCH2), 52.79 (s, OCH3), 52.44 (s, OCH3), 45.69
(s, CH2Cl), 45.47 (s, CH2Cl), 34.93 (s, CH2), 33.87 (s, CH2), 33.36
(s, CH2), 32.49 (s, CH2), 28.14 (s, CH2), 27.93 (s, CH2).

MS (CI): m/z (%) = 476.0 [(M+ + H), 37Cl/35Cl], 474.0 [(M+ + H),
35Cl/ 35Cl].

1-Benzyl 2,5-Dimethyl 2-(3-Iodopropyl)pyrrolidine-1,2,5-tri-
carboxylate (14)
Colorless oil; yield: 48%; Rf = 0.50 (hexane–EtOAc, 3:1).
1H NMR (CDCl3, 400 MHz): d (mixture of rotamers) = 7.35–7.15
(m, 5 H, Ph), 5.25–4.80 (m, 2 H, OCH2), 4.46 (dd, J = 9.2, 3.2 Hz,
1 H, NCH), 3.61, 3.56, 3.48, 3.31 (4 × s, 6 H, OCH3), 3.20–2.81 (m,
2 H, CH2I), 2.25–1.71 (m, 8 H).
13C NMR (CDCl3, 100 MHz): d = 174.08, 173.88, 172.97, 172.80
(4 × s, CO2Me), 154.76, 154.09 (2 × s, NCO), 136.42, 135.98 (2 ×
s, C, Ph), 128.62, 128.57, 128.50, 128.40, 128.03, 127.55 (6 × s,
CH, Ph), 69.80, 68.92 (2 × s, NCCO), 67.74, 67.23 (2 × s, OCH2),
61.91, 61.03 (2 × s, NCHCO), 52.73, 52.49, 52.45, 52.27 (4 × s,
OCH3), 35.98, 35.87, 35.14, 34.41 (4 × s, CH2CH2), 28.32, 27.96,
27.44, 26.81 (4 × s, CH2CH2), 7.34, 7.16 (2 × s, CH2I).

MS (CI): m/z (%) = 490.0 (M+ + H).

1-Benzyl 2,5-Dimethyl 2-[2-(Chloromethyl)prop-2-en-1-yl]pyr-
rolidine-1,2,5-tricarboxylate (15a, 15b)
Data for 15a: Colorless oil; yield: 34%; Rf = 0.45 (hexane–EtOAc,
2:1).
1H NMR (CDCl3, 400 MHz): d (mixture of rotamers) = 7.39–7.30
(m, 5 H, Ph), 5.41–4.86 (m, 4 H, OCH2, =CH2), 4.57 (2 × dd,
J = 8.8, 4.8 Hz, 1 H, NCH), 4.29–4.08 (m, 2 H, CH2Cl), 3.77, 3.73,
3.61, 3.43 (4 × s, 6 H, OCH3), 3.38, 3.27 (2 × d, 2JH-H = 14.4 Hz, 1
H, C-CH2-C=CH2), 3.88, 3.75 (2 × d, 2JH-H = 14.4 Hz, 1 H, C-CH2-
C=CH2), 2.25 (m, 2 H, CH2), 1.06 (m, 2 H, CH2).
13C NMR (CDCl3, 100 MHz): d (mixture of rotamers) = 174.11,
173.82, 172.61, 172.44 (4 × s, CO2Me), 155.16, 154.66 (2 × s,
NCO), 141.21, 141.17 (2 × s, C=CH2), 136.36, 135.77 (2 × s, C, Ph),
128.79, 128.52, 128.44, 128.40, 128.13, 127.87 (6 × s, CH, Ph),
120.73, 120.05 (2 × s, C=CH2), 70.17, 69.27 (2 × s, NCCO), 67.95,
67.46 (2 × s, OCH2), 62.38, 61.45 (2 × s, NCHCO), 52.76, 52.58,
52.43, 52.29 (4 × s, OCH3), 49.15, 48.88 (2 × s, CH2Cl), 37.39,
37.16 (2 × s, CH2=CCH2), 35.54, 34.26, 27.57, 26.98 (4 × s,
CH2CH2).

MS (CI): m/z (%) = 409 [(M+), 35Cl], 374 [(M+ – 35Cl)].

Anal. Calcd for C20H24ClNO6: C, 58.61; H, 5.90; N, 3.42. Found: C,
58.61; H, 5.92; N, 3.09.

Data for 15b: Colorless oil; yield: 46%; Rf = 0.30 (hexane–EtOAc,
2:1).
1H NMR (CDCl3, 400 MHz): d (mixture of rotamers) = 7.53–7.44
(m, 5 H, Ph), 5.45–5.11 (m, 4 H, OCH2, =CH2), 4.43 (2 × dd,
J = 8.8, 3.2 Hz, 1 H, NCH), 4.06–3.88 (4 × d, 2JH-H = 12.4 Hz, 2 H,
CH2Cl), 3.78, 3.76, 3.58, 3.54 (4 × s, 6  H, OCH3), 3.22, 3.07 (2 ×
d, 2JH-H = 14.4 Hz, 1 H, C-CH2-C=CH2), 3.73–3.69 (2 × d, 2JH-H =
9.6 Hz, 1 H, C-CH2-C=CH2), 2.38–2.01 (m, 4 H, CH2CH2).
13C NMR (CDCl3, 100 MHz): d (mixture of rotamers) = 173.31,
173.03, 172.14, 171.84 (4 × s, CO2Me), 153.86, 153.47 (2 × s,
NCO), 141.47, 141.16 (2 × s, C=CH2), 136.24, 135.73 (2 × s, C, Ph),
128.52, 128.41, 128.43, 128.36, 128.17, 127.08 (6 × s, CH, Ph),
120.16, 119.68 (2 × s, C=CH2), 69.79, 68.80 (2 × s, NCCO), 67.81,
67.44 (2 × s, OCH2), 61.26, 60.57 (2 × s, NCHCO), 52.74, 52.56,
52.37, 52.18 (4 × s, OCH3), 48.64, 48.55 (2 × s, CH2Cl), 39.07, 37.4
(2 × s, CH2=CCH2), 36.06, 34.83, 28.25, 27.36 (4 × s, CH2CH2).

MS (CI): m/z (%) = 409 [(M+), 35Cl], 374 [(M+ – 35Cl)].

Anal. Calcd for C20H24ClNO6: C, 58.61; H, 5.90; N, 3.42. Found: C,
58.63; H, 5.88; N, 3.19.

8-Benzyl 1,5-Dimethyl 3-Methylene-8-azabicyclo[3.2.1]octane-
1,5,8-tricarboxylate (16)
Colorless oil; yield: 33%; Rf = 0.55 (hexane–EtOAc, 2:1).
1H NMR (CDCl3, 500 MHz): d = 7.38–7.25 (m, 5 H, Ph), 5.08–5.03
(2 × br s, 4 H, OCH2, =CH2), 3.91–3.25 (br s, 6 H, OCH3), 2.81–2.62
(br s, 2 H, CH2), 2.54–2.50 (2 × s, 2 H, CH2), 2.29 (d, J = 6.5 Hz, 2
H, CH2), 1.84 (d, J = 6.5 Hz, 2 H, CH2).
13C NMR (CDCl3, 125 MHz): d = 171.61 (s, CO2Me), 154.45 (s,
NCO), 139.91 (s, C=CH2), 135.33 (s, C, Ph), 128.52 (s, CH, Ph),
128.46 (s, CH, Ph), 128.40 (s, CH, Ph), 115.65 (s, C=CH2), 68.10
(s, OCH2), 67.88 (br s, NCCO), 52.30 (s, OCH3), 40.28 (br s,
CH2=CCH2), 33.75 (br s, CH2CH2).

MS (CI): m/z (%) = 374 [(M+ + H)], 330 [(M+ – CO2)], 240 [(M+ –
Cbz)].

Anal. Calcd for C20H23NO6: C, 64.33; H, 6.21; N, 3.75. Found: C,
64.29; H, 6.26; N, 3.59.

8-[(Benzyloxy)carbonyl]-3-methylene-8-azabicyclo[3.2.1]oct-
ane-1,5-dicarboxylic Acid (Cbz-3b)
To a stirred soln of 16 (300 mg, 0.80 mmol) in MeOH–THF (10 mL,
1:1) was added dropwise a soln of NaOH (322 mg, 8.00 mmol, 10
equiv) in H2O (8 mL), and the resulting suspension was stirred for
96 h. The solvent was evaporated and the residue was dissolved in
H2O (ca. 10 mL). The aq phase was extracted with CH2Cl2 (3 × 2
mL), acidified to pH 2 with aq HCl and then extracted with EtOAc
(3 × 5 mL). The combined EtOAc extracts were dried over Na2SO4

and evaporated to afford Cbz-3b as a white solid; yield: 269 mg
(97%); mp 199–201 °C.
1H NMR (CDCl3, 400 MHz): d = 7.38–7.24 (m, 5 H, Ph), 5.12–5.05
(2 × br s, 4 H, OCH2, =CH2), 2.80–2.60 (br s, 2 H, CH2), 2.56–2.52
(2 × s, 2 H, CH2), 2.34 (d, J = 7.2 Hz, 2 H, CH2), 1.91 (d, J = 7.2 Hz,
2 H, CH2).
13C NMR (CD3OD, 100 MHz): d = 174.92 (s, COOH), 156.44 (s,
NCO), 141.85 (s, C=CH2), 137.16 (s, C, Ph), 129.54 (s, CH, Ph),
129.24 (s, CH, Ph), 129.16 (s, CH, Ph), 116.17 (s, C=CH2), 69.68
(br s, NCCO), 69.06 (s, OCH2), 41.06 (br s, CH2=CCH2), 35.18 (br
s, CH2CH2).

MS (CI): m/z (%) = 345 (M+), 301 (M+ – CO2).

Anal. Calcd for C18H19NO6: C, 62.60; H, 5.55; N, 4.06. Found: C,
62.35; H, 5.78; N, 4.32. 
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