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INTRODUCTION 

Oxazoles represent an important class of heterocyclic compounds. [1,2] Oxazole moiety is 

found among biologically active compounds. [3–12] Oxazole derivatives are used as 

luminophores for scintillation [13] and as fluorescent labels. [14–17] 

 

Known methods for synthesis of oxazole-4-carboxylates include metalation followed by 

the action of electrophile, [18] palladium-catalysed coupling reactions [19] and cyclization 

of brominated derivatives of dehydropeptides. [17, 20, 21] 

 

RESULTS AND DISCUSSION 

In the course of our systematic studies in the chemistry of arylideneimidazolones – 

chromophores of GFP-like fluorescent proteins [22, 23] we attempted to introduce halogen 
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substituent at vinylic position of the GFP chromophore (A, Scheme 1). This halogenated 

chromophore (A) would serve as a useful synthetic intermediate in the chemistry of 

chromophores of fluorescent proteins. 

 

Among several synthetic approaches to A we examined the one outlined in Scheme 1. It 

is based on Erlenmeyer azlactone (1) formation from aldehyde and acylglycine with 

subsequent opening of azlactone cycle with nucleophile, bromination of the 

acylaminocinnamic acid 2 and finally, cyclization of vinylic bromides 3 upon the action 

of base. However, instead of the desired brominated imidazolinone A the final cyclization 

step produced only oxazoles 4. Due to little information value of NMR spectra in case of 

highly substituted heterocycles we used X-ray analysis to confirm the structure of final 

products 4 (Fig. 1). 

 

This undesired oxazole formation can be viewed as a useful synthetic method for 

preparation of a wide range of derivatives of 5-aryloxazole-4-carboxylic acids. The 

method makes it possible to introduce different aryl substituents at the position 5, aryl or 

alkyl substituents at position 2 of oxazole, and gives access not only to free carboxyl at 

position 4, but also to a range of its amide derivatives. The advantages of the synthetic 

strategy presented are: synthetic availability of a wide range of oxazolones 1, [23] much 

better yields compared to an early report [21] and also avoiding palladium coupling and 

metalation procedures. 
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We characterized optical spectra of the chromophores obtained (Fig. 2 and Table 1). As 

expected, all chromophores possessed absorption maxima in UV region. At the same 

time, their emission peaks were in violet-blue region of the visible spectrum due to a 

large Stockes shift. The brightest fluorescence (quantum yield 0.82) was observed for 4b. 

Chromophore 4a with an ionizable hydroxyl group showed expected red shift of 

absorption and emission spectra upon deprotonation in basic conditions. Other 

chromophores (including 4d possessing a carboxylic group) did not change absorption 

maxima in the pH range 2-12. Compared to 4b, 4a had considerably lower quantum yield 

(0.25), which further drastically decreased to 0.01 in the anionic state. Introduction of 

phenyl substituent in 4c (compared to methyl in 4b) resulted in a significantly red-shifted 

absorption, but practically did not change emission maximum.  

 

We believe that 5-aryl-4-carboxyoxazole is a promising core for creation of new 

fluorescent dyes. This core can ensure high quantum yield of fluorescence and emission 

in the visible spectrum in spite of low size of the molecule. As spectral properties of these 

compounds are very sensitive to introduced substituents we expect that red shifted 

fluorophores can be obtained with this core structure.  

 

EXPERIMENTAL 

NMR spectra were recorded on Bruker Avance III 700 spectrometer. UV-vis spectra were 

recorded with a Varian Cary 100 spectrophotometer. Fluorescence excitation and 

emission spectra were recorded with a Varian Cary Eclipse fluorescence 

spectrophotometer.  
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Oxazolones 1a-c were prepared by literature procedures. [23] 

 

GENERAL PROCEDURE FOR PREPARATION OF ACYLAMINOCINNAMIC 

ACIDS 2 

2a: To a suspension of 1a (2.45 g, 10.0 mmol) in dry acetonitrile (50 mL) 

cyclohexylamine (1.49 g, 15.0 mmol) was added. The mixture was stirred for 30 minutes, 

while white precipitate was formed. Then the reaction mixture was cooled to 0oC and 

filtered, precipitate was washed by small amount of acetonitrile and diethyl ether. Yield 

2.65 g (77%). Mp 224-227oC 

 

1H NMR (DMSO-d6) δ 9.33 (br. s, 1H), 7.69 (d, 1H, J=7.67Hz), 7.56 (d, 2H, J=8.11Hz), 

7.14 (d, 2H, J=8.11Hz), 6.90 (s, 1H), 3.61 (m, 1H), 2.27 (s, 3H), 1.98 (s, 3H), 1.72-1.68 

(m, 4H), 1.59 (m, 1H), 1.27 (m, 4H), 1.12 (m, 1H). 

 

13C NMR (DMSO-d6) δ 20.76 (CH3), 22.79 (CH3), 24.78 (2xCH2), 25.20 (CH2), 32.18 

(2xCH2), 48.19 (CH), 121.76 (2xCH), 125.55 (CH), 130.26 (2xCH), 130.60, 131.94, 

150.09, 164.08, 168.96, 169.13. 

 

HRMS (ESI) calcd for C19H24N2O4 344.1736, found 344.1742. 

 

GENERAL PROCEDURE FOR BROMINATED ACYLAMINOCINNAMIC 

ACIDS 3 
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3a: To a solution of 2a (1.58 g, 5.0 mmol) in dry dichloromethane (50 mL) NaHCO3 

(1.68 g, 20.0 mmol) was added. Then a solution of bromine (1.0g, 6.3 mmol) in 

dichloromethane (10 mL) was added with stirring. After the addition was complete the 

mixture was stirred for additional 30 minutes, filtered, diluted with 100 mL of 

dichloromethane, washed with 5% Na2SO3 (50 mL), water (2x50mL), brine (50 mL), 

dried over Na2SO4 and concentrated in vacuo. The resulting white solid was washed with 

small amount of diethyl ether giving 1.85 g (88%) of 3a containing 4a as a trace impurity. 

Mp 221-224oC. 

 

H NMR (DMSO-d6) δ 9.38 (br. s, 1H), 7.66 (d, 1H, J=7.89Hz), 7.33 (d, 2H, J=8.55Hz),  

7.08 (d, 2H, J=8.33Hz), 3.26 (m, 1H), 2.26 (s, 3H), 1.99 (s, 3H), 1.49 (m, 2H), 1.42 (m, 

1H), 1.30 (m, 2H), 1.06 (m, 2H), 0.94 (m, 1H), 0.77 (m, 2H). 

 

13C NMR (DMSO-d6) δ 20.72 (CH3), 22.39 (CH3), 24.27 (2xCH2), 25.03 (CH2), 32.18 

(2xCH2), 47.50 (CH), 113.05, 121.34 (2xCH), 130.37 (2xCH), 134.66, 135.59, 150.47, 

161.32, 167.91, 168.86. 

 

HRMS (ESI) calcd for C19H23BrN2O4 422.0841, found 422.0848. 

 

GENERAL PROCEDURE FOR PREPARATION OF OXAZOLES 4 

4a: A solution of 3a (0.847 g, 2.0mmol) in wet DMF (30 mL DMF and 5 mL water) was 

refluxed with K2CO3 (0.69 g, 5.0 mmol) for 1-2 minutes. The solvent was removed in 

vacuo, the mixture was dissolved in 100 mL DCM, acidified with 5% HCl, washed with 
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water (2x50 mL), brine and dried over Na2SO4. The solution was concentrated in vacuo 

to give a white solid, which was purified by column chromatography: 

(CHCl3:EtOH=20:1). Yield 440 mg, (73%). Mp 202-204oC. 

 

1H NMR (DMSO-d6) δ 9.90 (s, 1H), 8.06 (d, 2H, J=8.33Hz), 7.75 (d, 1H, J=7.89Hz), 

6.85 (d, 2H, J=8.55Hz), 3.74 (m, 1H), 2.47 (s, 3H), 1.78 (m, 2H), 1.71 (m, 2H), 1.58 (m, 

1H), 1.38-1.27 (m, 4H), 1.13 (m, 1H). 

 

13C NMR (DMSO-d6) δ 13.19 (CH3), 24.76 (2xCH2), 25.05 (CH2), 32.15 (2x CH2), 47.56 

(CH), 115.06 (2xCH), 118.10, 127.43, 129.27 (2xCH), 151.25, 157.84, 158.61, 160.01. 

 

HRMS (ESI) calcd for C17H20N2O3 300.1474, found 300.1468. 

 

Please see the Supplementary Information, available online, for complete experimental 

and spectral details. 
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Table 1. Spectral properties of 4a-d. 

Chromophor

e 

Water EtOH 

Absorbanc

e max, nm 

Extinction 

coefficien

t, M-1cm-1 

Emissio

n max, 

nm 

Fluorescenc

e quantum 

yield 

Absorbanc

e max, nm 

Extinction 

coefficien

t, M-1cm-1 

4a 290 19000 400 0.25 300 26000 

4a anion a 322 24000 460 0.01 340 31000 

4b 291 18000 395 0.82 298 27000 

4c 333 12000 393 0.15 317 25000 

4d 309 24000 411 0.65 315 17000 

a In the presence of 10 mM NaOH. 
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Scheme 1. Synthesis of oxazoles (4) via Erlenmeyer azlactones. Attempt to synthesize 

halogenated GFP chromophore derivative (A) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nl
oa

de
d 

by
 [

Fo
rd

ha
m

 U
ni

ve
rs

ity
] 

at
 1

2:
00

 1
7 

Fe
br

ua
ry

 2
01

3 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
11

Figure 1. Structure of 4b by X-ray crystallography. 
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Figure 2. Absorbance and fluorescence spectra of oxazoles 4a-d in water. 
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