FLAVONOID GLYCOSIDES OF THE ROOTS OF GLYCYRRHIZA URALENSIS

TSUTOMU NAKANISHI, AKIRA INADA, KAZUKO KAMBAYASHI* and KAISUKE YONEDA*

Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-01, Japan; * Faculty of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565, Japan

(Revised received 18 July 1984)

Key Word Index—Glycyrrhiza uralensis; Leguminosae; licorice roots; water extract; flavonoid glycosides; ononin; liquiritin; 4'-O-[β -D-apio-D-furanosyl-($1 \rightarrow 2$)- β -D-glucopyranosyl]liquiritigenin.

Abstract—The structure of a flavanone glycoside from the roots of *Glycyrrhiza uralensis* has been confirmed as 4'-O-[β -D-apio-D-furanosyl-($1 \rightarrow 2$)- β -D-glucopyranosyl]liquiritigenin. In addition, two known flavonoid glucosides, ononin (a minor component) and liquiritin (a major component), were isolated from the same extract.

INTRODUCTION

The roots of Glycyrrhiza glabra, G. glabra var. glandulifera and G. uralensis or licorice roots are widely used medicinally and for sweetening [1, 2]. Up to now, a number of triterpenoids and flavonoids have been characterized from these roots [2-4]. Since aqueous root extracts are used for medicinal purposes, the water-soluble chemical constituents of roots of Glycyrrhiza uralensis were examined, the results of which are described here.

RESULTS AND DISCUSSION

The isoflavone glucoside ononin was characterized [5] on the basis of the spectral evidence and the chemical correlation with authentic daidzin (see Experimental). This is the first report on the isolation of ononin from the roots of *G. uralensis* and also from licorice roots. The isolated liquiritin (1) had mp [6, 7] and optical rotation [7, 8] identical to published data. The UV, IR, FDMS, ¹H NMR and ¹³C NMR spectra were consistent with this

PHYTO 24:2-1

structure. Acidic hydrolysis of 1 gave 1 mol each of glucose and liquiritigenin (3) [3, 6, 9].

The third root constituent (2), C₂₆H₃₀O₁₃, gave 1 mol each of glucose, apiose and liquiritigenin (3) [3, 6, 9] on acid hydrolysis. On mild acid hydrolysis (ion exchange resin), 2 gave 1 as a partial hydrolysate. In addition to this chemical evidence, the FDMS, UV, CD (S-configuration at C-2 in 2 [8]), ¹H NMR and ¹³C NMR spectral data provide a gross structure, 4'-O-(apiosyl- β -D-glucopyranosyl)liquiritigenin for 2. The β -oriented anomeric configuration of the inner D-glucopyranoside in 2 was also confirmed by the anomeric proton (1"-H) signal (δ 4.99, d, J = 7.5 Hz) in the ¹H NMR spectrum. The ¹³C NMR (100 MHz, DMSO- d_6) data of 2 were directly compared with those of 1 and authentic apiin [= 7-0-[β -D-apio-Dfuranosyl- $(1 \rightarrow 2)$ - β -D-glucopyranosyl]apigenin] F107. The chemical shifts of the disaccharide carbons of 2 were in good agreement with those of apiin [11, 12]. C-2", C-1" and C-3" on the glucosyl moiety of 2 were respectively shifted by $\delta - 2.7$ (downfield), 1.7 and 0.5 (upfield) compared with those of 1 (glycosylation shift). Thus 2 clearly 4'-O-[apiofuranosyl- $(1 \rightarrow 2)$ - β -glucopyranois syl]liquiritigenin and appears to be identical to the flavanone glucoside recently reported in licorice roots by Yahara and Nishioka [13]. However, the structure of the disaccharide moiety was not fully defined by these authors, so that we now report on these matters here.

Conclusive proof on the presence of D-apio-Dfuranoside in 2 and the exact (β) configuration of the glycosidic linkage of D-apio-D-furanoside were obtained from the following experiments. Methylation of 1 and 2 afforded the corresponding chalcone permethylates 4 and 5, respectively. Methanolysis of 5 gave methyl 2,3,4-tri-O-methyl-β-apio-D-furanoside and methyl 3,4,6-tri-Omethylglucopyranoside, identical to those prepared from authentic apiin in a similar manner. The isolated apiosepermethylate showed an optical rotation of -66° , conmethyl 2,3,4-tri-O-methyl-β-D-apio-Dsistent with furanoside (-79°) [14] and hence the presence of D-apio-D-furanose in 2 is indicated. The anomeric configuration of the terminal D-apio-D-furanose in 2 was assigned as β on the basis of the difference in molecular rotation between 1 and 2 ($\Delta[M]_D - 150^\circ$; lit. [15]: methyl α -D-apio-D-furanoside, $\Delta[M]_D + 221^\circ$; methyl β -D-apio-D-furanoside, $\Delta[M]_D - 167^\circ$) and that between 4 and 5 ($\Delta[M]_D - 147^\circ$; lit. [14]: methyl 2,3,4-tri-O-methyl- α -Dapio-D-furanoside, $[M]_D + 239^\circ$; the corresponding β -anomer, $[M]_D - 163^\circ$). Thus 2 is finally defined as 4'-O- $[\beta$ -D-apio-D-furanosyl- $(1 \rightarrow 2)$ - β -D-glucopyranosyl]liquiritigenin. Finally, it appears that ononin, liquiritin and 2 occur (TLC and HPLC) in the aqueous extracts of both G. glabra and G. glabra var. glandulifera roots, the identification of which was carried out by one of us [K.Y., unpublished results].

EXPERIMENTAL

General remarks. Mps are uncorr. FDMS using carbon emitters: accelerating voltage, 3 kV; emitter current, 15–29 mA; chamber temp., room temp.; MS: at 70 eV. ¹H NMR and ¹³C NMR: respectively at 400 and 100 MHz using TMS as internal standard. CD spectrum and optical rotations: in MeOH. IR: KBr discs, unless otherwise noted. GC with FID: 2 m \times 3 mm packed with 1.5% SE-52 on Chromosorb W. Silica gel for CC: Kieselgel 60 (Merck). TLC: pre-coated silica gel plates (Merck HF-254). Plant material. The licorice roots used in this study were collected in the north-east of China and imported. The source plant was identified as G. uralensis by one of us (K.Y.).

Isolation of glycosides. The air-dried and crushed roots (10 g) were extracted with H_2O (300 ml) at 90–100° for 40 min. Evapn of the extract gave a syrup (3.8 g). The accumulated syrup (34 g) was treated with MeOH (200 ml) and the resulting ppt. was filtered off. The filtrate gave, after evapn of the MeOH, a brown syrupy residue (17.5 g). Most (17.0 g) of the residue was chromatographed over silica gel (400 g) with CHCl₃-MeOH-H₂O (7:3:1; lower phase) eluants. Ononin (0.06 g), liquiritin (1) (3.0 g) and 2 (1.2 g) were respectively eluted in this order.

Ononin, colourless crystals, mp $215-217^{\circ}$, $[\alpha]_D^{25} - 58.9^{\circ}$ (c 0.12). MS m/z (rel. int.): 430 [M]⁺ (4), 268 [M - 162]⁺ (100); FDMS m/z (rel. int.): 430 [M]⁺ (100), 268 (28); ¹H NMR (MeOH-d_4): δ 3.35-3.60 (4H, m, 2", 3", 4", 5"-Hs of glc), 3.71 (1H, dd, J = 12 and 5.9 Hz) and 3.93 (1H, dd, J = 12 and 2.2 Hz) (6"-H₂ of glc), 3.83 (3H, s, OMe), 5.11 (1H, d, J = 7.0 Hz, 1"-H of glc), 7.00 and 7.48 (2H each, A₂B₂q, J = 7.0 Hz, 2', 3', 5', 6'-Hs), 7.22 (1H, dd, J = 9.0 and 2.0 Hz, 6-H), 7.25 (1H, d, J = 2.0 Hz, 8-H), 8.15 (1H, d, J = 9.0 Hz, 5-H), 8.23 (1H, s, 2-H). The mp and UV (MeOH) spectrum were identical to those reported for authentic ononin [5] and the MS, FDMS and ¹H NMR spectra were consistent with the ononin structure. The isolated natural sample was in agreement (mixed mp, IR, ¹H NMR and TLC) with synthetic ononin prepared from authentic daidzin by methylation.

Liquiritin (1), colourless crystals, mp 209-211° (ref. [6], mp 212°; ref. [7], mp 212–213°), $[\alpha]_D^{25}$ – 56.0° (c 0.21) (ref. [7], - 54.7°; ref. [8], - 70.5° (MeOH)). UV λ_{max}^{MeOH} nm (log ϵ): 313 (3.75), 275 (4.00); + NaOMe: 335, 255; + AlCl₃: 313, 275; IR v_{max} cm⁻¹: 3300 (OH), 1640 (CO), 1600; FDMS m/z (rel. int.): 418 $[M]^+$ (100), 256 $[M-162]^+$ (82), 255 (95); ¹H NMR $(MeOH-d_4)$: $\delta 2.73 (1H, dd, J = 17.0 and 2.9 Hz) and 3.04 (1H, dd, dd, dd)$ J = 17.0 and 12.9 Hz) (3-H₂), 3.35-3.50 [4H, m, (2"-5")-H₄ of glc], 3.70 (1H, dd, J = 12.0 and 5.4 Hz) and 3.90 (1H, dd, J = 12.0and 2.2 Hz) (6"-H₂ of glc), 4.94 (1H, d, J = 7.5 Hz, 1"-H of glc), 5.45 (1H, dd, J = 12.9 and 2.9 Hz, 2-H), 6.36 (1H, d, J = 2.2 Hz, 8-100 Hz)H), 6.50 (1H, dd, J = 8.6 and 2.2 Hz, 6-H), 7.11 (2H, B₂ part of A_2B_2q , J = 8.8 Hz, 3',5'-H₂) and 7.44 (2H, A_2 part of A_2B_2q , J = 8.8 Hz, 2',6'-H₂), 7.72 (1H, d, J = 8.6 Hz, 5-H); ¹³C NMR (DMSO-d₆): 878.59 (C-2), 43.14 (C-3), 189.68 (C-4), 128.29 (C-5), 110.50 (C-6), 164.58 (C-7), 102.56 (C-8), 162.97 (C-9), 113.56 (C-10), 132.37 (C-1'), 127.82 (C-2'), 116.26 (C-3'), 157.44 (C-4'), 116.26 (C-5'), 127.82 (C-6'), 100.47 (C-1" of glc), 73.22 (C-2" of glc), 76.64 (C-3" of glc), 69.81 (C-4" of glc), 77.02 (C-5" of glc), 60.76 (C-6" of glc). Isolated 1 (250 mg) was hydrolysed in 10% H₂SO₄-EtOH (1:1; 40 ml) to give 1 mol each of glucose (by TLC and PC) and liquiritigenin (3) (see below).

2, an amorphous powder, $[\alpha]_D^{25} - 69.9^\circ$ (c 0.26) ([13], $[\alpha]_D^{19}$ - 79.6°). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): essentially same as in ref. [13]; + NaOMe: 335, 255; + AlCl₃: 313, 275; FDMS m/z (rel. int.): 573 $[M + Na]^+$ (10), 551 $[M + H]^+$ (15), 418 $[M - 132]^+$ (28), 256 $[M - 132 - 162]^+$ (100); IR ν_{max}^{Nujol} cm⁻¹: 3300 (OH), 1650 (CO), 1600; ¹H NMR (400 MHz, MeOH- d_4): $\delta 2.75$ (1H, dd, J = 17.0and 2.9 Hz) and 3.04 (1H, dd, J = 17.0 and 12.9 Hz) (3-H₂), 3.35-3.65 [4H, m, (2"-5")-H₄ of glc], 3.54 (2H, s, 4"'-H₂ of api), 3.70 (1H, dd, J = 12.0 and 5.4 Hz) and 3.89 (1H, dd, J = 12.0 and 12.0 and2.2 Hz) (6"-H₂ of glc), 3.80 and 4.66 (1H each, ABq, J = 7.5 Hz, 5^{'''}-H₂ of api), 3.95 (1H, d, J = 1.6 Hz, 2^{'''}-H of api), 4.99 (1H, d, J = 7.5 Hz, 1"-H of glc), 5.45 (1H, dd, J = 12.9 and 2.9 Hz, 2-H), 5.47 (1H, d, J = 1.6 Hz, 1"-H of api), 6.37 (1H, d, J = 2.2 Hz, 8-H), 6.50 (1H, dd, J = 8.6 and 2.2 Hz, 6-H), 7.12 (2H, B₂ part of A_2B_2q , J = 8.8 Hz, 3',5'-H₂) and 7.44 (2H, A_2 part of A_2B_2q , J = 8.8 Hz, 2', 6'-H₂), 7.73 (1H, d, J = 8.6 Hz, 5-H) and see ref. [13] (100 MHz, DMSO-d₆); ¹³C NMR (100 MHz, DMSO-d₆): δ 78.59 (C-2), 43.11 (C-3), 189.68 (C-4), 128.21 (C-5), 110.68 (C-6), 165.03 (C-7), 102.56 (C-8), 163.00 (C-9), 113.31 (C-10), 132.41 (C-1'), 127.90 (C-2'), 116.08 (C-3'), 157.28 (C-4'), 116.08 (C-5'), 127.90 (C-6'), 98.77 (C-1" of glc), 75.93 (C-2"), 76.14 (C-3"), 69.99 (C-4"), 76.95 (C-5"), 60.64 (C-6"), 108.70 (C-1"" of api), 76.84 (C-2"), 79.19 (C-3""), 64.30 (C-4""), 73.91 (C-5"") and see ref. [13] (25.05 MHz); CD: essentially same to that in ref. [13] (Found: C, 55.12; H, 5.78. Calc. for C₂₆H₃₀O₁₃ · H₂O: C, 54.93; H, 5.67%). ¹³C NMR (100 MHz, DMSO-d₆) of the disaccharide part of apiin: δ98.27 (C-1" of glc), 75.98 (C-2"), 76.13 (C-3"), 69.86 (C-4"), 77.02 (C-5"), 60.58 (C-6"), 108.75 (C-1"" of api), 76.75 (C-2""), 79.15 (C-3""), 64.20 (C-4""), 73.92 (C-5") and see refs. [11, 12].

Acidic hydrolysis of 2. A soln of 2 (24 mg) in 10% H₂SO₄-EtOH (1:1; 4 ml) was refluxed for 3 hr. The mixture was poured into ice-water and extracted with Et2O. After evapn of the solvent, the residue was recrystallized from EtOH-Et2O to afford an aglycone (5 mg), colourless crystals, mp 203° (ref. [3], mp 207°; ref. [6], mp 205°). UV: see refs. [6, 9]; MS: see ref. [6]; IR v_{max} cm⁻¹: 3200 (OH), 1640 (CO), 1600; ¹H NMR (MeOH d_4): $\delta 2.70 (1H, dd, J = 17.0 \text{ and } 2.9 \text{ Hz}) \text{ and } 3.05 (1H, dd, J = 17.0 \text{ and } 2.9 \text{ Hz})$ and 12.9 Hz) (3-H₂), 5.37 (1H, dd, J = 12.9 and 2.9 Hz, 2-H), 6.35 (1H, d, J = 2.2 Hz, 8-H), 6.50 (1H, dd, J = 8.6 and 2.2 Hz, 6-H),6.81 (2H, B_2 of A_2B_2q , J = 8.8 Hz, 3',5'-H₂) and 7.33 (2H, A_2 of A_2B_2q , J = 8.8 Hz, 2',6'-H₂), 7.73 (1H, d, J = 8.6 Hz, 5-H); ¹³C NMR (100 MHz, DMSO-d₆): essentially as in ref. [13] (25.05 MHz). The aglycone was identified by comparison of the mp, UV and MS data with those [3, 6, 9] published for liquiritigenin (3). The ¹H NMR and ¹³C NMR data were consistent with structure 3. The aq. layer was, after usual workup, subjected to TLC (CHCl3-MeOH-H2O, 14:6:1) and PC (n-BuOH-EtOH-H₂O, 52:32:16; detected with aniline hydrogen phthalate) to demonstrate the presence of apiose and glucose [TLC: R_f 0.47 (api), 0.17 (glc); PC: R_f 0.43 (api), 0.24 (glc)]. The apiose standard used here was prepared from authentic apiin.

Partial hydrolysis of 2. To a soln of 2 (650 mg) in MeOH (40 ml), ion exchange resin (Dowex $50W \times 8$) (ca 10 g) was added and the mixture was stirred for 6 hr at room temp. After removal of the resin by filtration, the filtrate was evapd to dryness. The residue was separated by silica gel column chromatography to give a partial hydrolysate (360 mg) identical (mmp, IR, MS and ¹H NMR) to liquiritin (1), together with the recovered starting material (2) (190 mg).

Methylation of 1 and 2. Glucoside 1 (300 mg) was repeatedly (twice) methylated with MeI and HCON(Me)₂ in the presence of Ag₂O to afford the corresponding chalcone permethylate (4) (150 mg), pale yellow crystals, mp 122-123°, $[\alpha]_{25}^{25} - 43.2^{\circ}$ (CHCl₃; c 0.53). UV λ_{max}^{MeOH} nm (log ε): 337 (4.26); IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 1645 (CO), 1605; MS m/z (rel. int.): 502 [M]⁺ (14), 284 (18), 218 (100); ¹H NMR (CDCl₃): δ 3.20-3.70 [6H, m, $(2^{or}-6^{or})$ -Hs of glc], 3.39, 3.56, 3.65, 3.66, 3.87, 3.90 (3H each, all s, $6 \times OMe)$, 4.88 (1H, d, J = 7.3 Hz, 1"-H of glc), 6.50 (1H, d, J = 2.2 Hz, 3'-H), 6.56 (1H, dd, J = 8.6 and 2.2 Hz, 5'-H), 7.03, 7.53 (2H each, A₂B₂q, J = 8.6 Hz, 2,3,5,6-Hs), 7.40 (1H, d, J = 15.8 Hz, α -H), 7.63 (1H, d, J = 15.8 Hz, β -H), 7.74 (1H, d, J = 8.6 Hz, 6'-H) (Found: C, 64.15; H, 6.57. C_{2.7}H₃₄O₉ requires: C, 64.53; H, 6.82%).

In a similar manner, 2 (300 mg) gave the corresponding

chalcone permethylate (5) (200 mg), a pale yellow oil, $[\alpha]_D^{15} - 54.9^\circ$ (CHCl₃; c 0.30). UV λ_{max}^{MeOH} nm (log ε): 337 (4.28); IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 1645 (CO), 1600; FDMS m/z (rel. int.): 662 [M]⁺ (100); ¹H NMR (CDCl₃): δ 3.20-3.90 [9H, m, (2"-6")-Hs of glc and 2", 4"-Hs of api], 3.22, 3.39, 3.43, 3.51, 3.56, 3.66, 3.87, 3.90 (3H each, all s, 8 × OMe), 4.05, 4.07 (2H, ABq, J = 10.4 Hz, 5"'-H₂ of api), 4.89 (1H, d, J = 7.8 Hz, 1"-H of glc), 5.47 (1H, d, J = 1.7 Hz, 1"'-H of api), 6.50 (1H, d, J = 2.3 Hz, 3'-H), 6.56 (1H, dd, J = 8.6 and 2.3 Hz, 5'-H), 7.03, 7.53 (2H each, A_2B_2q, J = 8.6 Hz, 2,3,5,6-Hs), 7.40 (1H, d, J = 15.8 Hz, α -H), 7.63 (1H, d, J = 15.8 Hz, β -H), 7.74 (1H, d, J = 8.6 Hz, 6'-H).

Methanolysis of 5. A soln of 5 (5 mg) in dry 5% HCl-MeOH (1 ml) was heated under reflux for 4 hr. The soln was cooled and neutralized with Ag₂CO₃. After the usual work-up, two methylated monosaccharides were obtained and respectively identified by GLC (column temp., 155°; N₂ flow rate, 40 ml/min) and TLC (*n*-hexane-Me₂CO, 1:1) to Me 2,3,4-tri-O-Me- β -apio-D-furanoside (GLC: R_t 1'48"; TLC: R_f 0.61) and Me 3,4,6-tri-O-Me-glucopyranoside (GLC: R_t 4'05" (sh), 4'13"; TLC: R_f 0.38), prepared from authentic apiin via methylation and methanolysis. The isolated apiose-permethylate showed an optical rotation of -66° (CHCl₃; c 0.12) and therefore, it is assigned to Me 2,3,4-tri-O-Me- β -D-apio-D-furanoside (-79° in CHCl₃ [14]).

Acknowledgements—We thank Professor J. Shoji, Showa University, Japan, and Dr. T. Tani, Kinki University, Japan, for generous gifts of authentic apiin and methyl 2,3,4-tri-O-methyl- β -D-apio-D-furanoside and of authentic daidzin, respectively.

REFERENCES

- 1. Gibson, M. R. (1978) J. Nat. Prod. 41, 348.
- Shibata, S. and Saitoh, T. (1978) J. Indian Chem. Soc. 55, 1184.
- 3. Van Hulle, C., Braeckman, P. and Vandewalle, M. (1971) Planta Med. 20, 278.
- 4. Mitscher, L. A., Raghav Rao, G. S., Khanna, I., Veysoglu, T. and Drake, S. (1983) *Phytochemistry* 22, 573.
- 5. Beck, A. B. and Knox, J. R. (1971) Aust. J. Chem. 24, 1509.
- 6. Shinoda, J. and Ueeda, S. (1934) Chem. Ber. 67, 434.
- Litvinenko, V. I. and Obolentseva, G. V. (1964) Med. Prom. SSSR 18, 20.
- Gaffield, W. and Waiss, A. C., Jr. (1968) J. Chem. Soc. Chem. Commun. 29.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) The Systematic Identification of Flavonoids, p. 212. Springer, New York.
- 10. Hudson, C. S. (1949) Adv. Carbohydr. Chem. 4, 57.
- Markham, K. R., Ternai, B., Stanley, R., Geiger, H. and Mabry, T. J. (1978) *Tetrahedron* 34, 1389.
- Forgacs, P., Desconclois, J. F., Pousset, J. L. and Rabaron, A. (1978) Tetrahedron Letters 4783.
- 13. Yahara, S. and Nishioka, I. (1984) Phytochemistry 23, 2108.
- Ball, D. H., Bisett, F. H., Klundt, I. L. and Long, L., Jr. (1971) Carbohydr. Res. 17, 165.
- Angyal, S. J., Bodkin, C. L., Mills, J. A. and Pojer, P. M. (1977) Aust. J. Chem. 30, 1259.