Accepted Manuscript

Novel deoxyvasicinone derivatives as potent multitarget-directed ligands for the treatment of Alzheimer's disease: Design, synthesis, and biological evaluation

Fang Ma, Hongtao Du

PII: S0223-5234(17)30690-6

DOI: 10.1016/j.ejmech.2017.09.008

Reference: EJMECH 9723

To appear in: European Journal of Medicinal Chemistry

Received Date: 11 July 2017

Revised Date: 3 September 2017

Accepted Date: 5 September 2017

Please cite this article as: F. Ma, H. Du, Novel deoxyvasicinone derivatives as potent multitargetdirected ligands for the treatment of Alzheimer's disease: Design, synthesis, and biological evaluation, *European Journal of Medicinal Chemistry* (2017), doi: 10.1016/j.ejmech.2017.09.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Novel Deoxyvasicinone Derivatives as Potent Multitarget-Directed Ligands for
 the Treatment of Alzheimer's Disease: Design, Synthesis, and Biological
 Evaluation

- 4 Fang Ma^b, Hongtao Du^{a, c, *}
- ^a College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
- 6 ^b School of Geographic Sciences, Xinyang Normal University, Xinyang, Henan, China
- 7 ^cShaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry and Pharmacy, Northwest A&F
- 8 University, Yangling 712100, Shaanxi Province, P. R. China.
- 9 E-mails: <u>duht@nwsuaf.edu.cn</u> (H. T. Du); <u>mafang 1984@163.com</u> (F.Ma)
- 10 ***Corresponding author:**
- 11 Dr. Hong-Tao Du
- 12 1. College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, P. R. China
- 13 2. Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Sciences,
- 14 Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- 15
- 16 Email: <u>duhongtao8410@163.com</u>
- 17

1

2 ABSTRACT

A series of multitarget ligands was designed by introducing several structurally diverse 3 aminoacetamide groups at position 6 of the deoxyvasicinone group, with the aim of obtaining novel 4 multifunctional anti-Alzheimer's disease agents using deoxyvasicinone as the substrate. In vitro 5 studies showed that almost all of the derivatives were potent inhibitors of human recombinant 6 acetylcholinesterase (hAChE) and human serum butyrylcholinesterase (hBChE), with IC₅₀ values in 7 the low nanomolar range, and exhibited moderate to high inhibition of A β_{1-42} self-aggregation. In 8 particular, compounds 12h, 12n, and 12q showed promising inhibitory activity for hAChE, with IC_{50} 9 values of 5.31 ± 2.8 , 4.09 ± 0.23 , and 7.61 ± 0.53 nM, respectively. Compounds **12h** and **12q** also 10 exhibited the greatest ability to inhibit *h*BChE, with IC₅₀ values of 4.35 ± 0.32 and 2.35 ± 0.14 nM, 11 respectively. Moreover, enzyme kinetics confirmed that compound 12q caused a mixed type of 12 AChE inhibition, by binding to both the active sites (PAS and CAS) of AChE. Remarkably, 13 compound **12q** also demonstrated the highest potential inhibitory activity for $A\beta_{1-42}$ self-aggregation 14 $(63.9 \pm 4.9\%, 10 \,\mu\text{M})$, and it was also an excellent metal chelator. 15

16 KEYWORDS

17 Alzheimer's disease; deoxyvasicinone derivatives; cholinesterase inhibitors; inhibition of $A\beta_{1-42}$ 18 self-aggregation; metal chelator

1

2 **1. Introduction**

3 Alzheimer's disease (AD) is a progressive and degenerative neurodegenerative brain disorder characterized by loss of neurons and synapses in the cerebral cortex and certain subcortical 4 regions[1]. AD is the most common form of dementia, affecting approximately 47 million people 5 worldwide in 2015[2]. With the increase in average life expectancy, the number of affected persons is 6 projected to exceed 100 million individuals worldwide by 2050[3]. Clinically, the symptoms can 7 include problems such as loss of memory, language deterioration, mood swings, and loss of bodily 8 functions, ultimately leading to death[4]. At this time, acetylcholinesterase (AChE) inhibitors (tacrine 9 (1), donepezil (2), rivastigmine (3), and galantamine (4), Figure 1) and N-methyl-D-aspartate 10 antagonist are the only approved drugs that can provide a palliative, therapeutic strategy in mild 11 forms of AD[5, 6]. Unfortunately, there is no means to cure, or even slow, the progression of the 12 disease[7]. This alarming situation needs further effort to develop more effective drugs for treatment 13 of AD. 14

Although the exact cause of AD is still not fully known, the consensus is that AD is a 15 multifactorial disease[8]. Low levels of acetylcholine (ACh) in the hippocampus and cortex area of 16 the brain, deposition of amyloid- β (A β) peptide, neurofibrillary tangles (*p*-Tau), and oxidative stress 17 are thought to play vital roles in AD pathogenesis[9-12]. Because of the complexity of AD and the 18 interconnection of molecular events in its progression, the single-target directed drugs that have 19 reached clinical trials have failed. Therefore, some researchers have invested their efforts in the 20 design of multitarget-directed ligands (MTDLs) [13-15], which simultaneously interact with two or 21 more diseased targets, as a better strategy for AD rather than concentrating on reducing just one 22 target. 23

1	A β plays an important role among the multiple factors in AD[16]. Neurofibrillary tangles and
2	aggregated $A\beta$ peptide deposition in senile plaques have been identified as the main pathological
3	hallmarks[17-19]. Thus, drugs that are expected to reduce A β production, prevent A β aggregation,
4	and promote A β clearance are promising approaches for the treatment of AD[20].
5	AD is ascribed to reduced levels of ACh, which is an important neurotransmitter involved in
6	memory and learning in the brain[21]. AChE inhibitors (AChEIs) can increase the amount of ACh in
7	the synaptic cleft. Recent studies have also shown that AChEIs possibly affect the expression and/or
8	the metabolic processing of amyloid precursor protein, which may influence A β generation[22, 23].
9	Therefore AChEIs remain the preferred target for the treatment of AD[24, 25]. Recently, some
10	articles have reported that butyrylcholinesterase (BChE), another cholinesterase present in the brain,
11	has the similar biological function as AChE for hydrolysis of ACh in a healthy human brain[26].
12	Moreover, BChE inhibitors (BChEIs) not only improve the cognitive performance of aged rats
13	without the classic adverse effects associated with AChE inhibition but they also inhibit amyloid
14	fibril formation[27]. Furthermore, inhibitors of both of these cholinesterase enzymes have shown
15	significant clinical utility in conferring cognitive improvements. Thus, developing MTDLs with dual
16	inhibitors may have benefits for the treatment of AD[28, 29].
17	Biometals, including Cu(II), Zn(II), and Fe(II, III), have also been found to promote aggregation
18	of A β [30, 31]. In addition, the interaction of A β with Cu(II) is involved in the production of reactive
19	oxygen species and oxidative stress[32], which implies that modulation of these biometals in the
20	brain may be a potential therapeutic strategy for the treatment of AD[33, 34].

Deoxyvasicinone (5) (Figure 2), consisting of a quinazolinone moiety conjugated with a pyrrolidine, is a naturally occurring alkaloid with antibacterial[35], antiinflammatory[36], and

antiproliferative activities[37]. Structure-activity relationships (SARs) of the quinazolinone ring 1 system examined in various studies suggest that position 6 is suitable for substituents[38-41]. 2 Recently, deoxyvasicinone and its derivatives have been considered as cholinesterase inhibitors, 3 because the structure of deoxyvasicinone is similar to that of tacrine (1). Deoxyvasicinone exhibits 4 moderate inhibitory activity towards AChE (from Electric Eel) and BChE (from equine serum), with 5 IC₅₀ values of 82.5 and 25.1 µM, respectively[39]. Compounds 6 and 7 demonstrate dramatic 6 inhibitory activities towards AChE and BChE, with IC₅₀ values of 69.2 nM and 1.95 µM, 7 respectively [40, 41]. In addition, there are several reports that suggest that carbamate-containing 8 compounds (e.g., rivastigmine (3) and compounds 7 and 8) can be used for BChE-inhibiting 9 activity[41,42]. We assume that the effects of the aminoacetamide structure on BChE-inhibitory 10 activity is similar to that of carbamate. Furthermore, the aminoacetamide structure also has metal ion 11 complexing action. On the basis of the forgoing, we introduced different aminoacetamide groups into 12 the 6 position of deoxyvasicinone, to obtain a novel series of derivatives that are expected to be 13 AChEIs and BChEIs, inhibitors of self-induced A β aggregation, and biometal chelators. For 14 investigation into the SARs of this class of compounds, several hydrophobic substituents (aliphatic 15 and aromatic moieties) were added to the aminoacetamide groups (Figure 3). 16

17 **2. Results and discussion**

18 2.1. Chemistry

The synthetic route to compounds 12a-12s is depicted in Scheme 1. The starting material deoxyvasicinone (5) was synthesized as previously described[35]. A nitration reaction of compound deoxyvasicinone with H₂SO₄-HNO₃ provided the nitration product, which was reduced by

1 Na₂S·9H₂O in the presence of sodium hydroxide as a base, to afford compound **10**. The nucleophilic 2 substitution reaction of compound **10** with different bromohydrocarbons using sodium hydride as a 3 base with a catalytic amount of potassium iodide in acetonitrile as a solvent yielded the target 4 compounds **11a–11s**. Finally, compounds **12a–12s** were obtained after the deprotection of the Boc 5 group in the presence of CF₃COOH and dry dichloromethane.

6 2.2. In Vitro AChE and BChE Inhibition Assays

7 The inhibitory activities of the synthesized compounds 12a-12s against human recombinant 8 AChE (*h*AChE) and human serum BChE (*h*BChE) were evaluated by the method of Ellman et al., 9 where tacrine (1) and deoxyvasicinone (5) were used as reference compounds. IC₅₀ values and 10 selectivity ratios are listed in Table 1.

It is evident that the synthesized derivatives were potent inhibitors of hAChE, with IC₅₀ values in 11 the low nanomolar range. Furthermore, all compounds showed much stronger inhibitory activity than 12 the parent compound (deoxyvasicinone (5), $IC_{50} = 62.5 \mu M$). Encouragingly, 14 of the 19 derivatives 13 displayed higher inhibitory activity against hAChE than that of the positive control (tacrine (1), IC_{50}) 14 = 76.5 nM). Notably, compounds **12h**, **12n**, and **12g** exhibited very potent AChE inhibitory activity, 15 with IC₅₀ values of 5.31, 4.09, and 7.61 nM, respectively. In addition, several SARs were observed. 16 The inhibitory potency of these derivatives (except for compounds **12f** and **12g**) against hAChE was 17 enhanced with increasing length of the carbon chain (12a vs. 12b vs. 12c vs. 12d vs. 12e vs. 12h, 12i 18 vs. 12j, and 12m vs. 12n). These findings are in accordance with the results from Decker's 19 group[40]. On lengthening the tether chain from 2 to 16 carbon units, the inhibitory activity against 20 hAChE increased by between 112-fold and 11,770-fold (12a vs. 12h). The inhibitory activity also 21

increased with the degree of unsaturation: for example, compounds 12i and 12l, with an unsaturated group, exhibited higher AChE inhibitory activity ($IC_{50} = 66.6$ and 46.4 nM, respectively) than the derivative with a saturated group (12b, $IC_{50} = 557$ nM). When aromatic groups were added to the aminoacetamide moiety, *h*AChE inhibitory activity increased in the presence of electron-donating substituents in the *o*-position or when the conjugated system was enlarged (12m vs. 12o vs. 12p vs. 12r vs. 12s). These results imply that extending the conjugated system could improve the combination of derivatives and *h*AChE.

It is of note that, in MTDLs, strong AChE inhibitory activity is just one part of the rationale 8 behind the development of such synthetic molecules. Evidence suggests that BChE is primarily 9 expressed and secreted by glial cells, and its level remains constant or increases in advanced AD, 10 while AChE concentration in certain brain regions decreases[27]. Inhibition of central BChE activity 11 12 has also been researched as a potential therapeutic approach to ameliorate the cholinergic deficit in moderate forms of AD[29,43]. These reports show that balanced inhibition of both cholinesterases 13 could be conducive to the treatment of AD[28]. Thus, the test compounds were also evaluated for 14 *h*BChE inhibitory activity, and the results are summarized in Table 1. 15

As planned in the compound design, the synthesized compounds exhibited potent *h*BChE inhibitory activity (IC₅₀ values ranging from 1.186 μ M to 2.35 nM), much higher than that of the parent compound (deoxyvasicinone (**5**), IC₅₀ = 45.1 μ M). Two derivative compounds (**12h** and **12q**) displayed better inhibitory activity against *h*BChE (IC₅₀ value of 4.35 and 2.35 nM, respectively) than the positive control (tacrine (**1**), IC₅₀ = 10.8 nM). Remarkably, compounds **12h** and **12q** also showed potent *h*AChE inhibitory activity (IC₅₀ = 5.31 and 7.61 nM, respectively). These results indicate that the two candidate drugs could be effective in treating mild to moderate as well as severe

forms of AD when AChE takes over the role played by BChE. In addition, when a saturated alkyl or 1 an aromatic group was incorporated in the aminoacetamide moiety, the SARs toward hBChE 2 revealed similar trends to those observed for hAChE. However, with an unsaturated alkyl in the 3 aminoacetamide group, a slightly different trend was observed: for example, compound 12i, which 4 has an allyl group, showed higher inhibitory activity against hBChE (IC₅₀ = 16.6 nM) than the 5 derivative with a but-1-en-4-yl group (12j, $IC_{50} = 81.5$ nM). These results show that deoxyvasicinone 6 derivatives featuring aminoacetamide groups exhibit higher inhibitory activity against hAChE and 7 *h*BChE than compounds with carbamate groups. 8

9 2.3. Kinetic Evaluation of Compound 12q on hAChE

To assess the AChE inhibition mechanism of deoxyvasicinone derivatives, the potent compound 10 12q was chosen for an enzyme kinetic study. Lineweaver–Burk reciprocal plots were constructed by 11 plotting the double reciprocal of the increasing inhibitor and substrate concentrations (Figure 4). The 12 plots reveal both increasing slopes (decreased V_{max}) and intercepts (higher K_m) at increasing 13 concentrations of compound **12q**. This pattern indicated a mixed-type inhibition. The results suggest 14 that compound 12q could bind simultaneously to the catalytic active site (CAS) as well as to the 15 peripheral anionic site (PAS) of hAChE. This is a desirable effect for treatment of AD because A β 16 aggregation is catalyzed by the PAS of AChE. The inhibitor dissociation constants K_i for the 17 enzyme-inhibitor and K'_{i} for the enzyme-substrate-inhibitor were estimated to be 9.85 and 15.81 18 nM, respectively (Supporting Information, Table S1 and Figure S1). 19

1 2.4. Inhibition of $A\beta 1-42$ Self-aggregation Assay

2 $A\beta_{1-42}$ aggregation is deemed to play a crucial role in the pathogenesis of AD[44]. Thus, the inhibition of A β_{1-42} self-aggregation has been investigated as an attractive therapeutic strategy to 3 more efficiently combat AD[45]. In this work, inhibitory activity of the deoxyvasicinone derivatives 4 against A β_{1-42} self-aggregation was evaluated using the thioflavin T fluorescence assay[46], with 5 deoxyvasicinone and curcumin as reference compounds. The results (Table 1) show that the 6 derivatives exhibited moderate to good potencies, with inhibition in the range 6.46-63.9% at 10 μ M. 7 It is interesting that most of substituted alkyl groups in the aminoacetamide moiety generally 8 enhanced inhibition activity with increasing length of the carbon chain (with the exception of 9 compound 16). Compounds 12m-12s, with a substituted benzyl group in the aminoacetamide moiety, 10 generally gave better results for inhibition activity (25.0-63.9%): compound 12q, with a 11 3,5-difluorobenzyl group in the aminoacetamide moiety, was the most potent inhibitor of A β_{1-42} 12 aggregation (63.9%). Compound 12b, with a propyl group in the aminoacetamide moiety, exhibited 13 inhibition activity of 7.38%. On the other hand, compounds **12i** and **12l**, with an allyl and propargyl 14 group in the aminoacetamide moiety, respectively, led to 37.9% and 52.3% inhibition, respectively. 15 These results imply that increased unsaturation of substituents in the aminoacetamide group could 16 improve inhibitory activity. 17

18 2.5. Metal-Chelating Properties of Compound 12q

The ability of compound **12q** to bind biometals such as Cu(II), Fe(II), Fe(III), and Zn(II) was investigated by ultraviolet–visible (UV–vis) and fluorescence spectrometry[47, 48], and the results are shown in Figure 5. Cu(II), Fe(II), and Fe(III) cause an impressive decrease in the intrinsic

fluorescence of compound 12q (Figure 5A), and this effect increases in a dose-dependent manner 1 with concentration. However, the fluorescence intensity of compound **12q** did not differ substantially 2 3 in the absence or presence of Zn(II) (Supporting Information, Figure S2). In addition, after CuSO₄ was added to a solution of compound **12**g, the maximum absorption wavelength shifted from 282 to 4 291 nm, indicating the formation of a 12q-Cu(II) complex (Figure 5B). The maximum absorption at 5 282 nm decreased with the addition of FeSO₄ and FeCl₃, which suggests that Fe(II) and Fe(III) 6 possibly interacted with compound 12q. However, when $ZnCl_2$ was added there was no significant 7 change in the UV spectrum, which is in accordance with the fluorescence spectrum. 8

To determine the binding stoichiometry of compound 12q with Cu(II), the UV spectra were used
to measure the absorbance of the complex of compound 12q and Cu(II) at different concentrations at
451 nm. As depicted in Figure 5C, when the absorbance changes at 451 nm were plotted, two straight
lines intersected at a mole fraction of 0.86, indicating a 1:1 stoichiometry for the complex
12q-Cu(II).

14 **3.** Conclusion

In summary, all 19 deoxyvasicinone derivatives exhibited high *h*AChE and *h*BChE inhibitory activity at nanomolar concentrations. In particular, inhibitory activities against *h*AChE (IC₅₀ = 7.61 nM) and *h*BChE (IC₅₀ = 2.35 nM) of one derivative (**12q**) increased 8729- and 19191-fold in comparison with the parent compound. Remarkably, compound **12q** also demonstrated the highest potential inhibitory activity for $A\beta_{1-42}$ self-aggregation (63.9 ± 4.9%, 10 µM), and it was also an excellent metal chelator. Thus, compound **12q** is a promising multifunctional candidate for the treatment of AD. Further investigations of AD therapeutic candidates are in progress, and results will

be presented later. Meanwhile these beneficial effects of the derivatives highlight deoxyvasicinone as
a lead molecule and aminoacetamide structure as a rewarding group to be developed in the search for
multi-target drugs for the treatment of AD.

4 4. Experimental part

5 4.1. General Remarks.

All reagents were commercial grade, and were used without further purification unless 6 otherwise indicated. Silica gel (100-200 mesh) for column chromatography and silica GF₂₅₄ for 7 thin-layer chromatography were obtained from the Qingdao Marine Chemical Company (China). 8 Melting points were measured using an XT-4 melting-point apparatus, and were uncorrected. ¹H 9 nuclear magnetic resonance (NMR) (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded on a 10 Bruker Avance using $CDCl_3$ or deuterated dimethyl sulfoxide (DMSO- d_6) as the solvent and 11 tetramethylsilane as the internal standard. Chemical shifts are reported in parts per million (ppm). 12 Multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), doublet of doublet (dd), 13 doublet of doublet (ddd) and multiplet (m). Electron ionization mass spectroscopy 14 (ESI-MS) was undertaken with a Thermo Fisher spectrometry instrument. 15

16 *4.2. Chemistry*

17 *4.2.1. Synthesis of deoxyvasicinone (5)*

18 The deoxyvasicinone (5) was synthesized according to a previously described method 19 (Supporting Information,Scheme S1)[35]. White solid, yield: 54 %. Mp: 108–109 °C. ¹H NMR (500 20 MHz, CDCl₃) δ 8.29 (dd, J = 8.5, 1.3 Hz, 1H), 7.73 (ddd, J = 8.5, 7.6, 1.5 Hz, 1H), 7.65 (d, J = 7.8

1	Hz, 1H), 7.49–7.41 (m, 1H), 4.22 (t, $J = 7.3$ Hz 2H), 3.19 (t, $J = 8.0$ Hz, 2H), 2.35–2.24 (m, 2H). ¹³ C
2	NMR (126 MHz, CDCl ₃) δ 170.6, 169.0, 158.7, 143.7, 136.4, 136.0, 135.8, 130.1, 56.1, 42.1, 29.1.
3	ESIMS calcd for $C_{11}H_{10}N_2O [M+H]^+$,187.09; Found, 187.13.

4 4.2.2. Synthesis of compounds 9 and 10

A cold solution (25 mL, -10 °C) of H₂SO₄-HNO₃ (2:3, v/v) was added 0.931 g (5 mmol) of 5 deoxyvasicinone (5) with stirring, and the reaction mixture was kept at -10 °C for 3 h. Upon 6 completion of the reaction, the solution was poured into ice water, basified with 20% aq. NaOH at 7 pH 9, and extracted with ethyl acetate. The combined extracts were washed with water, brine, dried 8 9 over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure gave a nitration product. Afterwards, a solution of nitration product in EtOH (50 mL) was added slowly to a suspension of 10 sodium sulfide hydrate (2.420 g, 10 mmol) and NaOH (0.802 g, 20 mmol) in distilled water (80 mL). 11 The mixture was heated to reflux for 4 h. After cooling, the solution was concentrated under reduced 12 pressure. The compound 9 (0.792 g, 79 % yield) was isolated as a yellow solid by a column 13 chromatography on elution with $CH_2Cl_2/MeOH$ (10:1, v/v) 14

A suspension of the compound **9** (0.509 g, 2.5 mmol) in dichloromethane (30 mL) was added slowly to a solution of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.566g, 3 mmol) and 2-((tert-butoxycarbonyl)amino)acetic acid (0.524 g, 3 mmol) in dichloromethane (40 mL). The mixture was refluxed for 6 h and concentrated in vacuum. The reaction solution was washed with water, brine, dried over anhydrous Na₂SO₄, and concentrated in vacuum to give the crude product (**10**) as a yellow solid.

21 4.2.3. General procedure for the preparation of compounds 11a–11s and 12a–12s

22 A mixture of compound **10** (127 mg, 0.5 mmol), KI (17 mg, 0.1 mmol), NaH (18 mg, 0.75 mmol),

and the alkyl bromide (1 mmol) in acetonitrile (50 mL) was refluxed. When the compound 10 1 disappeared (as detected by TLC), the solvents were removed under reduced pressure. Distilled water 2 (50 mL) was then added, and the mixture was extracted with ethyl acetate (50 mL \times 3). The organic 3 solvent phase was washed by water (15 mL \times 2), brine (15 mL \times 2), dried over anhydrous Na₂SO₄, 4 and evaporated under vacuum. The compounds **11a–11s** were purified by a flash chromatography on 5 silica gel. CF₃COOH (1 mL, 14 mmol) was then added dropwise to a solution of compound **11a-11s** 6 in dry CH₂Cl₂ (50 mL). The solution was refluxed for 7 h. After cooling, the solvent was 7 concentrated under reduced pressure to give a yellow oil, which was purified by a flash 8 chromatography on silica gel using CH₂Cl₂/MeOH as the elution system to obtain the compound 9 12a-12s. 10 2-(ethylamino)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetamide (12a).11 White solid, yield: 53 %. Mp: 198–199 °C. ¹H NMR (500 MHz, DMSO- d_6) δ 9.80 (s, 1H), 8.41 (d, J 12 = 2.5 Hz, 1H), 7.97 (dd, J = 8.8, 2.5 Hz, 1H), 7.52 (d, J = 8.1, 1H), 4.22 (s, 1H), 4.10 (t, J = 7.3 Hz, 13 2H), 3.17 (s, 2H), 3.10 (t, J = 7.9 Hz, 2H), 2.66 (m, 2H), 2.26–2.21 (m, 2H), 1.13 (t, J = 6.2 Hz, 3H). 14 ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 166.4, 160.3, 145.6, 136.5, 126.9, 126.2, 120.8, 115.2, 57.9, 15 48.6, 47.6, 32.3, 19.5, 13.1. ESIMS calcd for C₁₅H₁₈N₄O₂ [M+H]⁺,286.33; Found, 286.34. 16 *N*-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)-2-(propylamino)acetamide (12b). 17 White solid, yield: 53 %. Mp: 292–294 °C. ¹H NMR (500 MHz, DMSO- d_6) δ 10.15 (s, 1H), 8.44 (d, 18 *J* = 2.5 Hz, 1H), 7.95 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.56 (dd, *J* = 8.6, 1H), 4.25 (s, 1H), 4.10 (t, *J* = 7.3 Hz, 19

20 2H), 3.20 (s, 2H), 3.13 (t, *J* = 7.9 Hz, 2H), 2.69 (t, *J* = 7.1 Hz, 2H), 2.29–2.24 (m, 2H), 1.40–1.32 (m,

21 2H), 0.96 (t, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 164.4, 161.2, 143.2, 137.7,

22 135.0, 129.5, 122.5, 114.8, 55.8, 55.0, 43.9, 33.5, 29.1, 23.2, 14.3. ESIMS calcd for $C_{16}H_{20}N_4O_2$

1 $[M+H]^+$, 301.36; Found, 301.36.

2 2-(butylamino)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetamide (12c).

White solid, yield: 58 %. Mp: 157–158 °C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.49 (s, 1H), 8.46 (d,
J = 2.4 Hz, 1H), 7.95 (dd, J = 8.8, 2.5 Hz, 1H), 7.56 (d, J = 8.8 Hz, 1H), 4.21–3.96 (m, 3H), 3.27 (s,
2H), 3.09 (t, J = 7.9 Hz, 2H), 2.71 (t, J = 7.1 Hz, 2H), 2.29–2.24 (m, 2H), 1.43–1.30 (m, 4H), 0.88 (t,
J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 162.5, 159.6, 147.3, 139.5, 127.8, 127.0,
122.9, 114.9, 53.6, 52.9, 46.8, 36.4, 29.5, 25.4, 19.5, 15.6. ESIMS calcd for C₁₇H₂₂N₄O₂ [M+H]⁺,
315.18; Found, 315.20.

9 2-(hexylamino)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetamide (12d). 10 White solid, yield: 44 %. Mp: 211–213 °C. ¹H NMR (500 MHz, DMSO- d_6) δ 10.47 (s, 1H), 8.46 (d, 11 J = 2.4 Hz, 1H), 7.93 (dd, J = 8.8, 2.5 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 4.21–3.96 (m, 3H), 3.12 (s, 12 2H), 3.11 (t, J = 7.9 Hz, 2H), 2.53 (t, J = 7.1 Hz, 2H), 2.26–2.21 (m, 2H), 1.38 (m, 2H), 1.29–1.28 13 (m, 6H), 0.81 (t, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 160.3, 159.6, 145.6, 136.9, 14 127.0, 126.2, 120.9, 114.9, 53.1, 52.5, 46.8, 32.2, 29.5, 28.9, 28.2, 27.6, 19.5, 12.3. ESIMS calcd for 15 $C_{19}H_{26}N_4O_2$ [M+H]⁺, 343.21; Found, 315.24.

2-(octylamino)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetamide(12e). White
solid, yield: 47 %. Mp: 145–146 °C. ¹H NMR (500 MHz, DMSO-d₆) δ 10.07 (s, 1H), 8.46 (d, J = 2.4
Hz, 1H), 7.93 (dd, J = 8.8, 2.5 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 4.21–3.82 (m, 3H), 3.13 (s, 2H),
3.10 (t, J = 7.9 Hz, 2H), 2.53 (t, J = 7.1 Hz, 2H), 2.23–2.18 (m, 2H), 1.38 (m, 2H), 1.29 (m, 2H),
1.28–1.26 (m, 8H), 0.80 (t, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 168.0, 161.3,
142.6, 139.8, 123.7, 122.3, 121.2, 118.9, 53.1, 53.0, 48.9, 34.5, 31.9, 29.9, 29.7, 29.3 (2C), 27.2, 22.8,
14.2. ESIMS calcd for C₂₁H₃₀N₄O₂ [M+H]⁺, 371.24; Found, 3371.34.

1	2-(decylamino)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetamide(12f). White
2	solid, yield: 45 %. Mp: 189–190 °C. ¹ H NMR (500 MHz, DMSO- d_6) δ 10.02 (s, 1H), 8.46 (d, $J = 2.4$
3	Hz, 1H), 7.93 (dd, J = 8.8, 2.5 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 4.21–3.82 (m, 3H), 3.12 (s, 2H),
4	3.11 (t, J = 7.9 Hz, 2H), 2.53 (t, J = 7.1 Hz, 2H), 2.23–2.18 (m, 2H), 1.38 (m, 2H), 1.29 (m, 2H),
5	1.28–1.26 (m, 12H), 0.78 (t, $J = 6.8$ Hz, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 169.5, 166.0, 164.3,
6	142.5, 138.8, 123.7, 122.6, 121.6, 118.7, 54.2, 54.0, 48.6, 34.9, 32.4, 31.7, 29.4, 29.7, 29.7, 29.7, (2C)
7	27.2, 22.3, 14.1. ESIMS calcd for $C_{23}H_{34}N_4O_2$ [M+H] ⁺ , 399.28; Found, 399.35.
8	2-(dodecylamino)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetamide(12g).
9	White solid, yield: 35 %. Mp: 223–225 °C. ¹ H NMR (500 MHz, DMSO- d_6) δ 10.23 (s, 1H), 8.17 (d,
10	<i>J</i> = 2.4 Hz, 1H), 7.88 (dd, <i>J</i> = 8.8, 2.5 Hz, 1H), 7.42 (d, <i>J</i> = 8.8 Hz, 1H), 3.87 (t, <i>J</i> = 7.3 Hz, 2H), 3.83
11	(s, 1H), 3.12 (s, 2H), 3.11 (t, J = 7.9 Hz, 2H), 2.53 (t, J = 7.1 Hz, 2H), 2.23–2.18 (m, 2H), 1.38 (m,
12	2H), 1.29 (m, 2H), 1.28 (m, 2H), 1.27–1.26 (m, 14H), 0.86 (t, <i>J</i> = 6.8 Hz, 3H). ¹³ C NMR (126 MHz,

CDCl₃) δ 167.5, 165.0, 164.3, 142.6, 138.3, 123.4, 122.4, 121.8, 118.2, 53.1, 53.0, 48.7, 34.1, 31.4,
31.4, 29.7 (5C), 29.6 (2C), 27.1, 22.7, 14.4. ESIMS calcd for C₂₅H₃₈N₄O₂ [M+H]⁺, 427.60; Found,
427.68.

2-(hexadecylamino)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetamide(12h).
White solid, yield: 49 %. Mp: 280–281 °C. ¹H NMR (500 MHz, DMSO-d₆) δ 10.23 (s, 1H), 8.47 (d,
J = 2.4 Hz, 1H), 7.94 (dd, J = 8.8, 2.5 Hz, 1H), 7.43 (d, J = 8.8 Hz, 1H), 4.21 (s, 1H), 4.13 (t, J = 7.3
Hz, 2H), 3.13 (s, 2H), 3.11 (t, J = 7.9 Hz, 2H), 2.53 (t, J = 7.1 Hz, 2H), 2.23–2.18 (m, 2H), 1.38 (m,
2H), 1.29 (m, 2H), 1.28 (m, 2H), 1.27–1.26 (m, 22H), 0.86 (t, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz,
CDCl₃) δ 168.4, 166.0, 164.5, 142.5, 138.6, 123.5, 122.5, 121.6, 118.4, 54.2, 54.1, 48.6, 34.7, 31.7,
31.3, 29.8 (9C), 29.4 (2C), 27.1, 22.7, 14.4. ESIMS calcd for C₂₉H₄₆N₄O₂ [M+H]⁺, 483.37; Found,

2 2-(allylamino)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetamide(12i). Yellow
 solid, yield: 58 %. Mp: 182–183 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.47 (s, 1H), 8.35 (dd, J = 8.8,
 2.5 Hz, 1H), 8.10 (d, J = 2.5 Hz, 1H), 7.66 (d, J = 8.8 Hz, 1H), 5.91 (ddt, J = 16.8, 10.2, 6.5 Hz, 2H),
 5.30 (d, J = 8.8 Hz, 1H), 4.23 (t, J =7.3 Hz, 2H), 3.25 (m, 4H), 3.19 (t, J = 7.9 Hz, 2H), 2.26–2.21 (m,
 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.7, 160.7, 158.4, 145.6, 136.1, 134.0, 127.8, 126.4, 120.8,
 119.2, 115.1, 58.1, 57.4, 46.5, 32.4, 19.6. ESIMS calcd for C₁₆H₁₈N₄O₂ [M+H]⁺, 299.15; Found,
 299.19.

2-(*but-3-en-1-ylamino*)-*N*-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetamide(12j
). Yellow solid, yield: 57 %. Mp: 210–212 °C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.20 (s, 1H), 8.50
(d, *J* = 2.4 Hz, 1H), 8.06 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.59 (d, *J* = 8.8 Hz, 1H), 5.91 (ddt, *J* = 16.8, 10.2,
6.5 Hz, 2H), 5.30 (d, *J* = 8.8 Hz, 1H), 4.23 (t, *J* =7.3 Hz, 2H), 4.07 (dd, *J* = 15.1, 7.8 Hz, 2H), 3.55
(m, 2H), 3.27 (t, *J* =2.2 Hz, 2H), 3.08 (t, *J* = 7.9 Hz, 2H), 2.35–1.98 (m, 3H). ¹³C NMR (126 MHz,
DMSO-*d*₆) δ 168.7, 160.3, 159.5, 145.5, 136.9, 135.3, 127.6, 126.7, 120.8, 119.2, 115.2, 59.4, 56.7,
46.8, 42.7, 32.1, 19.5. ESIMS calcd for C₁₇H₂₀N₄O₂ [M+H]⁺, 313.37; Found, 313.42.

2-((3-methylbut-2-en-1-yl)amio)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)aceta
mide (12k). Yellow solid, yield: 61 %. Mp: 184–185 °C. ¹H NMR (500 MHz, DMSO-d₆) δ 10.85 (s,
1H), 8.47 (d, J = 2.4 Hz, 1H), 7.89 (dd, J = 8.8, 2.5 Hz, 1H), 7.66 (d, J = 8.8 Hz, 1H), 5.53 (t, J = 7.6
Hz, 1H), 4.18 (d, J = 7.6 Hz, 2H), 4.14 (s, 1H), 4.08 (t, J = 7.3 Hz, 2H), 3.28 (t, J = 2.3 Hz, 2H), 3.08
(t, J = 7.9 Hz, 2H), 2.24–2.16 (m, 2H), 1.85 (s, 3H), 1.75 (s, 3H). ¹³C NMR (126 MHz, DMSO-d₆) δ
166.9, 163.2, 160.2, 146.1, 136.6, 135.8, 128.1, 126.5, 120.9, 118.8, 115.7, 58.1, 56.8, 46.8, 32.2,
26.6, 19.5, 18.9. ESIMS calcd for C₁₈H₂₂N₄O₂ [M+H]⁺, 327.18; Found, 3327.22.

1	N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-/-yl)-2-(prop-2-yn-1-ylamino)acetamide
2	(121). Yellow solid, yield: 58 %. Mp: 183–184 °C. ¹ H NMR (500 MHz, DMSO- d_6) δ 10.16 (s, 1H),
3	8.50 (d, J = 2.4 Hz, 1H), 7.98 (dd, J = 8.8, 2.4 Hz, 1H), 7.58 (d, J = 8.8 Hz, 1H), 4.12 (s, 1H), 4.08 (t,
4	J = 7.3 Hz, 2H), 3.55(m, 4H), 3.28 (t, $J = 7.9$ Hz, 2H), 2.57 (s, 1H), 2.29–2.21 (m, 2H). ¹³ C NMR
5	(126 MHz, DMSO- d_6) δ 168.7, 160.3, 159.5, 145.5, 137.0, 131.1, 122.6, 120.8, 115.2, 79.4, 76.6,
6	56.7, 46.8, 42.7, 32.2, 19.5. ESIMS calcd for $C_{16}H_{16}N_4O_2$ [M+H] ⁺ , 297.14; Found, 297.17.
7	2-(benzylamino)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetamide (12m).
8	Yellow solid, yield: 68 %. Mp: 188–189 °C. ¹ H NMR (500 MHz, CDCl ₃) δ 9.28 (s, 1H), 8.24 (dd, J
9	= 8.8, 2.5 Hz, 1H), 8.06 (d, J = 2.5 Hz, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.42–7.40 (m, 3H), 7.34–7.29
10	(m, 2H), 4.57 (s, 1H), 4.25 (t, J =7.3 Hz, 2H), 3.79 (s, 4H), 3.33 (t, J = 7.9 Hz, 2H), 2.31–2.20 (m,
11	2H). ¹³ C NMR (126 MHz, CDCl ₃) δ 169.3, 160.7, 158.4, 145.7, 136.7, 136.0, 129.1 (2C), 127.9 (2C),
12	126.3, 123.4, 122.6, 120.8, 115.0, 59.8, 58.0, 46.6, 32.4, 19.6. ESIMS calcd for $C_{20}H_{20}N_4O_2$ [M+H] ⁺ ,
13	349.17; Found, 349.23.

N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)-2-((3-phenylpropyl)amino)acetamide 14 (12n). White solid, yield: 59 %. Mp: 208–210 °C. ¹H NMR (500 MHz, DMSO- d_6) δ 10.49 (s, 1H), 15 8.46 (d, J = 2.2 Hz, 1H), 7.95 (dd, J = 8.8, 2.1 Hz, 1H), 7.93 (d, J = 8.7 Hz, 2H), 7.83 (d, J = 8.0 Hz, 16 2H), 7.63 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 4.63 (s, 1H), 4.25 (t, J = 7.3 Hz, 2H), 3.85 (s, 17 2H), 3.76 (t, J = 7.8 Hz, 2H), 3.38 (t, J = 7.8 Hz, 2H), 3.21 (t, J = 7.9 Hz, 2H), 2.76–2.63 (m, 2H), 18 2.52–2.43 (m, 2H). ¹³C NMR (126 MHz, DMSO- d_6) δ 166.5, 160.3, 158.2, 146.9, 136.9, 136.3, 19 129.8 (2C), 127.8 (2C), 126.2, 123.2, 122.4, 118.6, 115.5, 46.8, 43.2, 35.5, 32.2, 27.2, 23.9, 19.5. 20 ESIMS calcd for C₂₂H₂₄N₄O₂ [M+H]⁺, 377.20; Found, 377.25. 21

22 2-((2-methylbenzyl)amino)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetamide

1	(120). Yellow solid, yield: 69 %. Mp: 223–225 °C. ¹ H NMR (500 MHz, CDCl ₃) δ 8.89 (s, 1H), 8.05
2	(dd, <i>J</i> = 8.8, 2.3 Hz, 1H), 7.92 (d, <i>J</i> = 2.1 Hz, 1H), 7.60 (d, <i>J</i> = 8.8 Hz, 1H), 7.37 (d, <i>J</i> = 7.4 Hz, 2H),
3	7.22 (dd, <i>J</i> = 13.2, 5.8 Hz, 2H), 4.60 (s, 1H), 4.24 (t, <i>J</i> =7.3 Hz, 2H), 3.80 (s, 2H), 3.34 (s, 2H), 3.19
4	(t, $J = 7.9$ Hz, 2H), 2.36–2.27 (m, 2H), 2.03 (s, 3H). ¹³ C NMR (126 MHz, CDCl ₃) δ 169.4, 160.6,
5	158.3, 145.5, 136.9, 135.9, 135.4, 130.8, 130.3, 128.0, 127.6, 126.3, 126.2, 120.7, 114.8, 58.8, 58.5,
6	46.5, 32.4, 19.6, 19.3. ESIMS calcd for $C_{21}H_{22}N_4O_2$ [M+H] ⁺ , 363.18; Found, 363.22.

2-((2-fluorobenzyl)amino)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetamide 7 (12p). White solid, yield: 70 %. Mp: 109–111 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.55 (s, 1H), 8.22 8 (d, J = 2.2 Hz, 1H), 8.18 (dd, J = 8.8, 2.4 Hz, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.15 (d, J = 7.4 Hz, 2H),9 7.13–7.06 (m, 2H), 4.56 (s, 1H), 4.28–4.22 (m, 2H), 3.85 (s, 2H), 3.34 (s, 2H), 3.21 (t, J = 7.9 Hz, 10 2H), 2.37–2.29 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 169.1, 161.7 (d, ¹J_{CF} = 245.5 Hz), 158.3, 11 145.5, 136.2, 134.9, 131.7 (d, ${}^{3}J_{CF} = 4.0$ Hz), 129.9 (d, ${}^{3}J_{CF} = 8.7$ Hz), 127.6, 126.3, 124.4, 124.3 (d, 12 ${}^{2}J_{CF} = 19.0$ Hz), 120.8, 115.8 (d, ${}^{2}J_{CF} = 12.5$ Hz), 115.2, 58.1, 53.9, 46.5, 32.4, 19.6. ESIMS calcd for 13 C₂₀H₁₉FN₄O₂ [M+H]⁺, 367.16; Found, 367.19. 14

2-((3,5-difluorobenzyl)amino)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetami 15 *de* (12q). White solid, yield: 64 %. Mp: 266–268 °C. ¹H NMR (500 MHz, DMSO- d_6) δ 10.02 (s, 1H), 16 8.46 (d, J = 2.5 Hz, 1H), 7.93 (dd, J = 8.8, 2.5 Hz, 1H), 7.58 (d, J = 8.8 Hz, 1H), 7.21 (d, J = 1.9 Hz, 17 2H), 7.10 (tt, J = 9.3, 2.2 Hz, 1H), 4.48 (s, 1H), 4.09 (t, J = 7.4 Hz, 2H), 3.86 (s, 2H), 3.39 (s, 2H), 18 3.09 (t, J = 7.9 Hz, 2H), 2.25 – 2.15 (m, 2H). ¹³C NMR (126 MHz, DMSO- d_6) δ 169.5, 162.9 (d, ¹ J_{CF} 19 = 245.9, 2C), 160.3, 159.5, 145.6, 144.2 (t, ${}^{3}J_{CF}$ = 8.8 Hz), 136.9, 127.5, 126.7, 120.8, 115.4, 112.0 20 $(dd, {}^{2}J_{CF} = 19.6 \text{ Hz}, {}^{3}J_{CF} = 5.4 \text{ Hz}, 2C), 103.0 (t, {}^{2}J_{CF} = 25.8 \text{ Hz}), 57.6, 57.1, 46.8, 32.2, 19.5. ESIMS$ 21 calcd for $C_{20}H_{18}F_2N_4O_2$ [M+H]⁺, 385.15; Found, 385.20. 22

1	2-((2-nitrobenzyl)amino)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetamide
2	(12r). White solid, yield: 73 %. Mp: 178–180 °C. ¹ H NMR (500 MHz, DMSO- d_6) δ 10.16 (s, 1H),
3	8.49 (d, <i>J</i> = 2.2 Hz, 1H), 8.04 (d, <i>J</i> = 8.0 Hz, 1H), 7.95 (dd, <i>J</i> = 8.8, 2.1 Hz, 1H), 7.83–7.60 (m, 3H),
4	7.58 (d, J = 8.8 Hz, 1H), 4.61 (s, 1H), 4.08 (t, J = 7.2 Hz, 2H), 3.79 (s, 2H), 3.48 (s, 2H), 3.158 (t, J =
5	7.8 Hz, 2H), 2.56–2.48 (m, 2H). ¹³ C NMR (126 MHz, DMSO- d_6) δ 168.5, 166.2, 161.3, 146.6, 146.2,
6	139.9, 128.5, 127.7, 123.8, 122.6, 121.8, 119.8, 117.4, 115.0, 112.4, 53.7, 52.1, 51.3, 36.2, 19.9.
7	ESIMS calcd for $C_{20}H_{19}N_5O_4$ [M+H] ⁺ , 394.15; Found, 394.21.
8	2-((2-cyanobenzyl)amino)-N-(9-oxo-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-7-yl)acetamide
9	(12s). White solid, yield: 71 %. Mp: 115–117 °C. ¹ H NMR (500 MHz, DMSO- d_6) δ 10.23 (s, 1H),
10	8.32 (d, J = 2.7 Hz, 1H), 8.17(d, J = 8.0 Hz, 1H), 7.95 (dd, J = 8.8, 2.1 Hz, 1H), 7.81–7.67 (m, 3H),
11	7.58 (d, J = 8.8 Hz, 1H), 4.32 (s, 1H), 4.16 (t, J = 7.2 Hz, 2H), 3.93 (s, 2H), 3.56 (s, 2H), 3.08 (t, J =
12	7.8 Hz, 2H), 2.24–2.16 (m, 2H). ¹³ C NMR (126 MHz, DMSO- d_6) δ 170.3, 160.3, 159.5, 146.4, 145.5,
13	137.0, 132.6, 132.5, 129.5, 127.6, 127.4, 126.4, 120.8, 119.4, 115.0, 110.1, 62.7, 52.3, 46.7, 32.1,
14	19.5. ESIMS calcd for $C_{21}H_{19}N_5O_2$ [M+H] ⁺ , 373.15; Found, 373.19.

15 4.3. hAChE and hBChE Inhibition Assays

AChE and BChE inhibitory activities for the tested compounds were obtained using the method 16 of Ellman et al[47]. hAChE, hBChE, 5,5'-dithiobis(2-nitrobenzoic acid) (Ellman's reagent; DTNB), 17 acetylthiocholine iodide (ATCI), and butyrylthiocholine iodide (BTCI) were purchased from 18 Sigma-Aldrich. At least five different concentrations $(10^{-4}-10^{-9} \text{ M})$ of each test compound were used 19 to determine the enzyme inhibition activity. In summary, the procedure was as follows: 50 µL of 20 hAChE (0.02 unit/mL) or hBChE (0.02 unit/mL) and 10 µL of the compounds was incubated at 21

1 37 °C for 6 min; next, 30 μ L of 0.01 M substrate (ATCI or BTCI solution) was added, and the 2 solution further incubated at 37 °C for 12 min; and, finally, 150 μ L of 0.01 M DTNB was added, and 3 the activity measured at a wavelength of 415 nm using an Evolution 300 PC UV-Vis 4 Spectrophotometer. The IC₅₀ value (the concentration of the compound required for a 50% reduction 5 in cholinesterase activity) was calculated using Origin 8.0 software. The results are expressed as the 6 mean ± SEM of at least four experiments performed in triplicate.

7 4.4. Kinetic Study of AChE Inhibition Assay

8 The mechanism of AChE inhibition by compound **12q** was determined by using Ellman's method 9 [49]. Relatively low concentrations of the substrate (0.1–0.5 mM) were reacted with AChE in the 10 absence or presence of different concentrations of compound **12q** (1–10 nM). The V_{max} and K_{m} 11 values for Michaelis–Menten kinetics were obtained by a weighted least squares analysis from the 12 substrate–velocity curves using GraphPad Prism 5. In addition, the inhibitor constant (K_i) was 13 calculated by linear regression from the Lineweaver–Burk plot versus the inhibitor concentration, 14 and the K_i' values were determined by plotting the apparent $1/v_{\text{max}}$ versus inhibitor concentration.

15 4.5. $A\beta I - 42$ Self-aggregation Inhibition Assay

16 The thioflavin T fluorescence method was used to quantify amyloid fibril formation[46]. 17 Thioflavin T, $A\beta_{1-42}$, and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) were acquired from 18 Sigma-Aldrich. HFIP-pretreated $A\beta_{1-42}$ samples were dissolved in a 50 mM phosphate buffer (pH 19 7.4), to obtain a stable stock solution ($A\beta$ concentration of 500 µM). The peptide was incubated in 10 20 mM phosphate buffer (pH 8.0) at 30 °C for 24 h (final $A\beta$ concentration of 50 µM) with or without

the tested compounds at 10 μM (Aβ : inhibitor = 5:1). After incubation, the samples were diluted to a
final volume of 200 μL with 50 mM glycine–NaOH buffer (pH 8.5) containing 1.5 μM thioflavin T.
Next, a 300 s time scan of the fluorescence intensity was carried out (λ_{exc} = 446 nm, λ_{em} = 490 nm),
and the plateau values averaged after subtracting the background fluorescence of the thioflavin T
solution. The percentage inhibition was calculated by the following formula:

6 inhibition (%) =
$$(1 - IF_i/IF_o) \times 100$$

where IF_i and IF_o are the fluorescence intensities obtained from $A\beta_{1-42}$ in the presence and absence of inhibitor, respectively.

9 4.6. Metal-Chelating Assay

Compound 12q was investigated as a metal chelator using UV-vis and fluorescence 10 spectrophotometers in 20 % (v/v) ethanol/buffer (20 mM HEPES, 150 mM NaCl, pH 7.4). A fixed 11 amount of compound 12q (50 µM) was mixed with increasing amounts of Cu(II), Fe(II), Fe(III), and 12 Zn(II) (0–1000 μ M) for 30 min, and the fluorescence intensity ($\lambda_{exc} = 285$ nm) examined. In addition, 13 14 the UV absorption spectra of compound 12q (50 μ M, final concentration) alone or in the presence of CuSO₄, FeSO₄, FeCl₃, or ZnCl₂ (50 μ M) were recorded at room temperature. To obtain the 15 stoichiometry of the compound– Cu^{2+} complex, a fixed amount of compound **12q** (50 μ M) was mixed 16 with increasing amounts of Cu^{2+} (0–100 μ M), and the difference in the UV spectra assessed to give 17 the ligand:metal ratio in the complex. 18

19 Acknowledgements

20 This work was supported by grants from the Program for Natural Science Foundation of China

1 (Grant No. 21602178).

2 Conflicts of interest

3 The authors declare no conflict of interest about this article.

4 References

5 [1] D.M. Walsh, D.J. Selkoe, Deciphering the Molecular Basis of Memory Failure in Alzheimer's Disease, Neuron, 44

7 [2] The Global Voice on Dementia, Alzheimer's Disease International, World Alzheimer Report.

8 <u>https://www.alz.co.uk/research/WorldAlzheimerReport2016.pdf</u> (accessed April 24, 2016).

- 9 [3] M. Prince, R. Bryce, E. Albanese, A. Wimo, W. Ribeiro, C.P. Ferri, The global prevalence of dementia: A
 systematic review and metaanalysis, Alzheimer's & Dementia, 9 (2013) 63-75.e62.
- 11 [4] K. Blennow, M.J. de Leon, H. Zetterberg, Alzheimer's disease, The Lancet, 368 (2006) 387-403.
- [5] D. Munoz-Torrero, Acetylcholinesterase Inhibitors as Disease-Modifying Therapies for Alzheimer's Disease,
 Current Medicinal Chemistry, 15 (2008) 2433-2455.
- [6] A.B. Young, Four Decades of Neurodegenerative Disease Research: How Far We Have Come!, The Journal of
 Neuroscience, 29 (2009) 12722-12728.
- 16 [7] M. Goedert, M.G. Spillantini, A Century of Alzheimer's Disease, Science, 314 (2006) 777-781.
- [8] D.J. Bonda, X. Wang, G. Perry, A. Nunomura, M. Tabaton, X. Zhu, M.A. Smith, Oxidative stress in Alzheimer
 disease: A possibility for prevention, Neuropharmacology, 59 (2010) 290-294.
- [9] B. Sameem, M. Saeedi, M. Mahdavi, A. Shafiee, A review on tacrine-based scaffolds as multi-target drugs (MTDLs)
 for Alzheimer's disease, European Journal of Medicinal Chemistry, 128 (2016) 332.
- [10] H.B. Allen, Alzheimer's Disease: Assessing the Role of Spirochetes, Biofilms, the Immune System, and
 Amyloid-beta with Regard to Potential Treatment and Prevention, J. Alzheimers Dis., 53 (2016) 1271-1276.
- 23 [11] E. Bossy-Wetzel, R. Schwarzenbacher, S.A. Lipton, Molecular pathways to neurodegeneration, Nature Medicine,
- 24 10 (2004) S2-S9.

^{6 (2004) 181-193.}

- [12] Z. Wang, Y. Wang, W. Li, F. Mao, Y. Sun, L. Huang, X. Li, Design, synthesis, and evaluation of
 multitarget-directed selenium-containing clioquinol derivatives for the treatment of Alzheimer's disease, Acs
 Chemical Neuroscience, 5 (2014) 952-962.
- [13] F. Zemek, L. Drtinova, E. Nepovimova, V. Sepsova, J. Korabecny, J. Klimes, K. Kuca, Outcomes of Alzheimer's
 disease therapy with acetylcholinesterase inhibitors and memantine, Expert Opinion on Drug Safety, 13 (2014)
 759-774.
- 7 [14] A. Więckowska, M. Kołaczkowski, A. Bucki, J. Godyń, M. Marcinkowska, K. Więckowski, P. Zaręba, A. Siwek, G.
 8 Kazek, M. Głuch-Lutwin, Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase
 9 inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation, European Journal of
- Medicinal Chemistry, 124 (2016) 63-81.
- [15] F. Prati, S.A. De, P. Bisignano, A. Armirotti, M. Summa, D. Pizzirani, R. Scarpelli, D.I. Perez, V. Andrisano, A.
 Perez-Castillo, Multitarget Drug Discovery for Alzheimer's Disease: Triazinones as BACE-1 and GSK-3β
 Inhibitors, Angewandte Chemie International Edition, 54 (2015) 1578-1582.
- [16] T.-I. Kam, Y. Gwon, Y.-K. Jung, Amyloid beta receptors responsible for neurotoxicity and cellular defects in
 Alzheimer's disease, Cellular and Molecular Life Sciences, 71 (2014) 4803-4813.
- 16 [17] S. Sisodia, E. Koo, K. Beyreuther, A. Unterbeck, D. Price, Evidence that beta-amyloid protein in Alzheimer's
 17 disease is not derived by normal processing, Science, 248 (1990) 492-495.
- [18] T. Golde, S. Estus, L. Younkin, D. Selkoe, S. Younkin, Processing of the amyloid protein precursor to potentially
 amyloidogenic derivatives, Science, 255 (1992) 728-730.
- [19] B. De Strooper, R. Vassar, T. Golde, The secretases: enzymes with therapeutic potential in Alzheimer disease,
 Nature Reviews Neurology, 6 (2010) 99-107.
- 22 [20] M. Hernandez-Rodriguez, J. Correa-Basurto, F. Martinez-Ramos, I. Irene Padilla-Martinez, C.G. Benitez-Cardoza,
- E. Mera-Jimenez, M. Cecilia Rosales-Hernandez, Design of Multi-Target Compounds as AChE, BACE1, and
 Amyloid-beta(1-42) Oligomerization Inhibitors: In Silico and In Vitro Studies, J. Alzheimers Dis., 41 (2014)
- **25** 1073-1085.
- [21] P. Davies, A.J. Maloney, Selective loss of central cholinergic neurons in Alzheimer's disease, Lancet, 2 (1976)
 1403.
- [22] R.M. Nitsch, B.E. Slack, R.J. Wurtman, J.H. Growdon, Release of Alzheimer amyloid precursor derivatives
 stimulated by activation of muscarinic acetylcholine receptors, Science, 258 (1992) 304-307.

- [23] N.C. Inestrosa, A. Alvarez, C.A. Pérez, R.D. Moreno, M. Vicente, C. Linker, O.I. Casanueva, C. Soto, J. Garrido,
 Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the
 peripheral site of the enzyme, Neuron, 16 (1996) 881-891.
- 4 [24] A. Krasiński, Z. Radić, R. Manetsch, J. Raushel, P. Taylor, K.B. Sharpless, H.C. Kolb, In Situ Selection of Lead
 5 Compounds by Click Chemistry: Target-Guided Optimization of Acetylcholinesterase Inhibitors, Journal of the
 6 American Chemical Society, 127 (2005) 6686-6692.
- 7 [25] C. Zhang, Q.Y. Du, L.D. Chen, W.H. Wu, S.Y. Liao, L.H. Yu, X.T. Liang, Design, synthesis and evaluation of
 8 novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer's disease, European
 9 Journal of Medicinal Chemistry, 116 (2016) 200-209.
- [26] C.G. Ballard, N.H. Greig, A.L. Guillozetbongaarts, A. Enz, S. Darvesh, Cholinesterases: roles in the brain during
 health and disease, Current Alzheimer Research, 2 (2005) 307-318.
- 12 [27] Y. Furukawahibi, T. Alkam, A. Nitta, A. Matsuyama, H. Mizoguchi, K. Suzuki, S. Moussaoui, Q.S. Yu, N.H. Greig,
- T. Nagai, Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-β peptide in mice,
 Behavioural Brain Research, 225 (2011) 222-229.
- [28] M.F. Eskander, N.G. Nagykery, E.Y. Leung, B. Khelghati, C. Geula, Rivastigmine is a potent inhibitor of acetyl and butyrylcholinesterase in Alzheimer's plaques and tangles, Brain Research, 1060 (2005) 144-152.
- [29] E. Nepovimova, J. Korabecny, R. Dolezal, K. Babkova, A. Ondrejicek, D. Jun, V. Sepsova, A. Horova, M.
 Hrabinova, O. Soukup, N. Bukum, P. Jost, L. Muckova, J. Kassa, D. Malinak, M. Andrs, K. Kuca, Tacrine-Trolox
 Hybrids: A Novel Class of Centrally Active, Nonhepatotoxic Multi-Target-Directed Ligands Exerting
 Anticholinesterase and Antioxidant Activities with Low In Vivo Toxicity, Journal of Medicinal Chemistry, 58
 (2015) 8985-9003.
- [30] A.I. Bush, Drug development based on the metals hypothesis of Alzheimer's disease, Journal of Alzheimers Disease
 Jad, 15 (2008) 223-240.
- [31] T. Amit, Y. Avramovich-Tirosh, M.B. Youdim, S. Mandel, Targeting multiple Alzheimer's disease etiologies with
 multimodal neuroprotective and neurorestorative iron chelators, Faseb Journal Official Publication of the Federation
 of American Societies for Experimental Biology, 22 (2008) 1296-1305.
- 27 [32] X. Huang, C.S. Atwood, M.A. Hartshorn, G. Multhaup, L.E. Goldstein, R.C. Scarpa, M.P. Cuajungco, D.N. Gray, J.
- 28 Lim, R.D. Moir, The Aβ Peptide of Alzheimer's Disease Directly Produces Hydrogen Peroxide through Metal Ion
- 29 Reduction, Biochemistry, 38 (1999) 7609-7616.

- [33] X.-j. Zhao, Y.-r. Jiang, D. Guo, D.-m. Gong, Y. Zhu, Y.-c. Deng, Multipotent AChE and BACE-1 inhibitors for the
 treatment of Alzheimer's disease: Design, synthesis and bio-analysis of 7-amino-1,4-dihydro-2 H -isoquilin-3-one
- derivates, European Journal of Medicinal Chemistry, 138 (2017) 738-747.
- 4 [34] Z. Wang, Y. Wang, W. Li, F. Mao, Y. Sun, L. Huang, X. Li, Design, Synthesis, and Evaluation of
 5 Multitarget-Directed Selenium-Containing Clioquinol Derivatives for the Treatment of Alzheimer's Disease, Acs
 6 Chemical Neuroscience, 5 (2014) 952-962.
- 7 [35] G. Sharma, S. Laxman, Y. Murthy, K.A. Lakshmi, Ramji, M. Tark, Synthesis of Novel Deoxyvasicinone Analogs
 8 and their Anti-Bacterial Studies, IJAPBC, 1 (2014) 328-333.
- 9 [36] K.M. Shakhidoyatov, B.Z. Elmuradov, Tricyclic Quinazoline Alkaloids: Isolation, Synthesis, Chemical
 Modification, and Biological Activity, Chemistry of Natural Compounds, 50 (2014) 781-800.
- [37] H.-J. Zhong, K.-H. Leung, S. Lin, D.S.-H. Chan, Q.-B. Han, S.L.-F. Chan, D.-L. Ma, C.-H. Leung, Discovery of
 deoxyvasicinone derivatives as inhibitors of NEDD8-activating enzyme, Methods, 71 (2015) 71-76.
- [38] F.H. Darras, S. Wehle, G. Huang, C.A. Sotriffer, M. Decker, Amine substitution of quinazolinones leads to
 selective nanomolar AChE inhibitors with 'inverted' binding mode, Bioorganic & Medicinal Chemistry, 22 (2014)
 4867-4881.
- [39] M. Decker, F. Krauth, J. Lehmann, Novel tricyclic quinazolinimines and related tetracyclic nitrogen bridgehead
 compounds as cholinesterase inhibitors with selectivity towards butyrylcholinesterase, Bioorganic & Medicinal
 Chemistry, 14 (2006) 1966-1977.
- [40] F.H. Darras, S. Pockes, G. Huang, S. Wehle, A. Strasser, H.J. Wittmann, M. Nimczick, C.A. Sotriffer, M. Decker,
 Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds
 as potent dual-acting AChE inhibitors and hH3 receptor antagonists, Acs Chemical Neuroscience, 5 (2014)
 225-242.
- [41] F. Darras, B. Kling, J. Heilmann, M. Decker, Neuroprotective Tri- and Tetracyclic BChE Inhibitors Releasing
 Reversible Inhibitors upon Carbamate Transfer, Acs Medicinal Chemistry Letters, 3 (2012) 914-919.
- [42] C.G. Carolan, G.P. Dillon, D. Khan, S.A. Ryder, J.M. Gaynor, S. Reidy, J.F. Marquez, M. Jones, V. Holland, J.F.
 Gilmer, Isosorbide-2-benzyl carbamate-5-salicylate, a peripheral anionic site binding subnanomolar selective
 butyrylcholinesterase inhibitor, Journal of Medicinal Chemistry, 53 (2010) 1190-1199.
- 28 [43] E. Nepovimova, E. Uliassi, J. Korabecny, L.E. Peñaaltamira, S. Samez, A. Pesaresi, G.E. Garcia, M. Bartolini, V.
- 29 Andrisano, C. Bergamini, Multitarget drug design strategy: quinone-tacrine hybrids designed to block amyloid-β

- aggregation and to exert anticholinesterase and antioxidant effects, Journal of Medicinal Chemistry, 57 (2014)
 8576-8589.
- 3 [44] R. Mayeux, M.X. Tang, D.M. Jacobs, J. Manly, K. Bell, C. Merchant, S.A. Small, Y. Stern, H.M. Wisniewski, P.D.
- 4 Mehta, Plasma amyloid β -peptide 1–42 and incipient Alzheimer's disease, Annals of Neurology, 46 (1999) 412-416.
- 5 [45] M. Shidore, J. Machhi, K. Shingala, P. Murumkar, M.K. Sharma, N. Agrawal, A. Tripathi, Z. Parikh, P. Pillai, M.R.
- Yadav, Benzylpiperidine-linked diarylthiazoles as potential anti-Alzheimer's agents-synthesis and biological
 evaluation, Journal of Medicinal Chemistry, 59 (2016) 5823-5846.
- [46] G.V.D. Ferrari, M.A. Canales, I. Shin, L.M. Weiner, I.Silman, And, N.C.Inestrosa, A Structural Motif of
 Acetylcholinesterase That Promotes Amyloid β-Peptide Fibril Formation, Biochemistry, 40 (2001) 10447-10457.
- 10 [47] S. Lee, X. Zheng, J. Krishnamoorthy, M.G. Savelieff, H.M. Park, J.R. Brender, H.K. Jin, J.S. Derrick, A. Kochi, H.J.
- 11 Lee, Rational Design of a Structural Framework with Potential Use to Develop Chemical Reagents That Target and
- 12 Modulate Multiple Facets of Alzheimer's Disease, Journal of the American Chemical Society, 136 (2014) 299-310.
- 13 [48] P.T. Chang, R.S. Talekar, F.L. Kung, T.R. Chern, C.W. Huang, Q.Q. Ye, M.Y. Yang, C.W. Yu, S.Y. Lai, R.R.
- Deore, A newly designed molecule J2326 for Alzheimer's disease disaggregates amyloid fibrils and induces neurite
 outgrowth, Neuropharmacology, 92 (2015) 146-157.
- [49] G.L. Ellman, K.D. Courtney, A.V. Jr, R.M. Featherstone, A new and rapid colorimetric determination of
 acetylcholinesterase activity, Biochemical Pharmacology, 7 (1961) 88-95.

1 Legend of Scheme and Figures

- 2 Scheme 1. Synthesis of Deoxyvasicinone Derivatives.
- **Figure 1.** Structures of AChE inhibitors **1–4** used for the management of AD.
- 4 Figure 2. Deoxyvasicinone and its derivatives.
- 5 **Figure 3.** Design strategy for deoxyvasicinone derivatives.

6	Figure 4. Kinetic study on the mechanism of hAChE inhibition by compound 12q. Overlaid
7	Lineweaver–Burk reciprocal plots of AChE initial velocity at increasing substrate
8	concentration (0.1-0.5 mM) in the absence and in the presence (1.0-10.0 nM) of
9	compound 12q are shown. Lines were derived from a weighted least-squares analysis of
10	the data points.

11	Figure 5. (A) Fluorescence ($\lambda_{exc} = 285$ nm) and (B) UV spectra of compound 12q (50 μ M) alone and
12	in the presence of CuSO ₄ , FeSO ₄ , FeCl ₃ or ZnCl ₂ (50 μ M) in 20 % (v/v) ethanol/buffer
13	(20 mM HEPES, 150 mM NaCl, pH 7.4). (C) Determination of the stoichiometry of
14	complex 12q –Cu(II) by molar ratio method.

- Table 1. *h*AChE and *h*BChE Inhibitory Activities (IC₅₀), Selectivity Ratios, and Inhibition of Aβ₁₋₄₂
 Self-Aggregation of Compounds 1, 5, and 12a–12s.
- 3

|--|

Comp.	R	hAChE IC ₅₀ (nM) ± SEM ^a	hBChE IC ₅₀ (nM) ± SEM ^a	selectivity ratio ^b	inhibition of $A\beta_{1-42}$ self-aggregation (% ± SEM) ^c
12a	H ₃ C	557 ± 31	1001 ± 66	0.556	6.46 ± 0.25
12b	H ₃ C	310 ± 27	1186 ± 70	0.261	7.38 ± 0.53
12c	H_3C	21.2 ± 1.9	107 ± 12	0.198	10.5 ± 0.82
12d	H_3C	25.3 ± 1.3	10.5 ± 0.6	2.41	22.9 ± 1.3
12e	$H_3C = H_3C = H_3C$	10.6 ± 0.4	45.7 ± 3.8	0.232	17.6 ± 0.9
12f	H_3C	24.1 ± 2.1	37.2 ± 2.5	0.648	22.1 ± 1.5
12g	H_3C	36.7 ± 1.9	26.8 ± 2.0	1.37	26.0 ± 1.7
12h	H_3C	5.31 ± 2.8	4.35 ± 0.32	1.22	39.6 ± 2.2
12i	H ₂ C	66.6 ± 5.5	16.6 ± 0.8	4.01	37.9 ± 2.5
12j	H ₂ C	13.3 ± 0.8	81.5 ± 5.9	0.163	42.2 ± 3.1
12k	H ₃ C H ₃ C	25.9 ± 1.5	16.3 ± 1.3	1.59	31.0 ± 2.4
121	HC	46.4 ± 2.6	12.4 ± 0.8	3.74	52.3 ± 3.8
12m	245	231 ± 19	145 ± 12	1.59	30.5 ± 2.5
12n	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.09 ± 0.23	20.7 ± 1.5	0.20	43.3 ± 5.1

						$\mathbf{\alpha}$	\sim			
$\mathbf{A}(\mathbf{x})$	E	PI	-X/I	Δ	N			R	ΓP	
110			1 1 1			$\mathbf{\nabla}$				

120	_CH₃ ∕²Ϟϟ	119 ± 17	107 ± 14	1.11	25.0 ± 1.6
12p	~F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	528 ± 46	108 ± 12	4.89	43.5 ± 3.2
12q F	<u> </u>	7.61 ± 0.53	2.35 ± 0.14	3.24	63.9 ± 4.9
12r	∕NO2 ∕ ³ 25∕	30.7 ± 2.6	103 ± 11	0.298	29.9 ± 2.4
12s	_CN	16.8 ± 0.8	29.9 ± 1.7	0.562	40.2 ± 4.2
Tacrine (1)		76.5 ± 3.1	10.8 ± 1.4	7.08	4.03 ± 0.55
Deoxyvasicinor	ne (5)	$62.5\pm5.8~\mu M$	$45.1\pm3.7~\mu M$	1.39	2.53 ± 0.27
Curcumin		n.t. ^d	n.t. ^d	<u>-</u>	51.9 ± 2.36

1

2 ^{*a*} *h*AChE and *h*BChE: Results are the means \pm SEM of at least three determinations. ^{*b*}Selectivity ratio = (IC₅₀ of 3 *h*AChE)/(IC₅₀ of *h*BChE). ^{*c*}Inhibition of A $\beta_{1.42}$ self-aggregation investigated by the thioflavin-T fluorescence assay. 4 Assays were carried out in the presence of 10 µM inhibitor and 50 µM A $\beta_{1.42}$. ^{*d*}n.t. means not tested.

е

k: R = 3-methylbut-2-en-1-yl

q: R = 3,5-difluorobenzyl

10

О

Boc

`N

Ŕ

c: R = butyl

f: R = decyl

i: R = ally

ö

I: R = prop-2-yn-1-yl

o: R = 2-methylbenzyl

r: R = 2-nitrobenzyl

11a - 11s

Scheme 1. Synthesis of Deoxyvasicinone Derivatives.^a 1

|| 0

a: R = ethyl

d: R = hexyl

g: R = dodecyl **j**: R = but-3-en-1-yl

m: R = benzyl

p: R = 2-fluorobenzyl

s: R = 3-phenylpropyl

12a -12s

3 4

2

5 ^aReagents and conditions: (b) HNO₃, H₂SO₄, rt.; (b) Na₂S·9H₂O, NaOH, EtOH, reflux; (c) Boc-aminoacetic acid, EDCI, 6 dry CH₂Cl₂, reflux; (d) RBr, KI, NaH, CH₃CN, reflux; (e) CF₃COOH, dry CH₂Cl₂, reflux.

b: R = propyl

h: R = hexadecyl

n: R = phenylpropyl

e: R = octyl

4

H₃C \cap 16 || 0

7 IC₅₀ (BChE): 1.95 μ M

- 3 Deoxyvasicinone (5)
- 6 IC₅₀ (AChE): 69.2 nM
- 5 **Figure 2.** Deoxyvasicinone and its derivatives.

- **Figure 3.** Design strategy for deoxyvasicinone derivatives.

Figure 4. Kinetic study on the mechanism of *h*AChE inhibition by compound 12q. Overlaid
Lineweaver–Burk reciprocal plots of AChE initial velocity at increasing substrate concentration
(0.1–0.5 mM) in the absence and in the presence (1.0–10.0 nM) of compound 12q are shown. Lines
were derived from a weighted least-squares analysis of the data points.

1

Figure 5. (A) Fluorescence (λ_{exc} = 285 nm) and (B) UV spectra of compound 12q (50 μM) alone and
in the presence of CuSO₄, FeSO₄, FeCl₃ or ZnCl₂ (50 μM) in 20 % (*v/v*) ethanol/buffer (20 mM
HEPES, 150 mM NaCl, pH 7.4). (C) Determination of the stoichiometry of complex 12q–Cu(II) by
molar ratio method.

Highlights

- A series of novel deoxyvasicinone derivatives was synthesized.
- All derivatives showed excellent AChE and BChE inhibition activity.
- 12q had strong inhibition on AChE and BChE with IC₅₀ of 7.6 and 2.5 nM respectively.
- **12q** had the greatest ability to inhibit $A\beta_{1-42}$ self-aggregation.
- 12q was also an excellent metal chelator.

CER MAR