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Abstract: A three-component cascade reaction of 1,3-enynes, anilines, and Togni-Ⅱreagent has been 

developed to give fully-substituted trifluoromethyl pyrroles with high regioselectivity under mild conditions. 

The transformation proceeds through a Cu(II)/Rh(Ⅲ)-promoted cascade aza-Michael 

addition/trifluoromethylation cyclization/oxidation reaction, affording trifluoromethyl pyrrole derivatives as 

primary products. 

 

INTRODUCTION 

Pyrroles are privileged structural motifs that are present in many natural compounds
1
 and 

pharmaceuticals.
2
 Among them, polysubstituted pyrroles have attracted much attention as versatile synthetic 

intermediates and biologically active molecules.
3
 Figure 1 presents some selected fully-substituted pyrrole 

derivatives, including chlorfenapyr and atorvastatin amongst others. The physical, chemical and biological 

properties of organic molecules can be easily modified by the introduction of fluorine-containing groups due 
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to their unique permeability, lipophilicity, and metabolic stability.
4
 The trifluoromethyl group is one of the 

most prevalent fluorine-containing groups which is present in various pharmaceuticals, agrochemicals, and 

organic materials.
5 

For example, chlorfenapyr
6
 and its analogs

7
 are effective pesticides, a result of the 

trifluoromethyl substituted pyrrole unit (Figure 1). 

 

Figure 1. Some selected examples of fully-substituted pyrroles in bioactive molecules 

A number of strategies have been developed for the synthesis of pyrrole moieties due to their excellent 

and unique properties,
8
 although the synthetic methods for the preparation of fully-substituted 

trifluoromethyl pyrrole derivatives are limited. The synthesis of poly-substituted trifluoromethyl pyrrole 

derivatives has not been widely reported. The present methods rely on electrophilic aromatic substitution 

using trifluoromethylating reagents,
9
 such as Umemoto’s salts and Togni-Ⅱ reagent. An alternative and 

more straightforward and efficient methodology for the preparation of CF3-substituted pyrroles involves 

cascade trifluoromethylation/cyclization using various electrophilic, nucleophilic or radical 

trifluoromethylating reagents.
10

 In addition, another convenient strategy involves the transformation of 

trifluoromethylated building blocks,
11-14

 such as α,β-unsaturated trifluoromethylketones,
11

 1,3-diketones,
12

 

1,4-diketones,
13

 and 2-trifluoromethyl-1,3-enynes,
14a

 etc. 

1,3-Enynes are versatile building blocks for the synthesis of various complex molecules.
15-21

 1,3-Enynes 

have been employed as four-electron participants in numerous Diels-Alder reactions and [4+4] 

cycloadditions.
15

 The gold-catalyzed cycloisomerization of 1,3-enyne esters has been reported to give 

cyclopentone derivatives via a [3,3]-sigmatropic rearrangement/Nazarov cyclization.
16

 Torker and Hoveyda 

developed a Cu-catalyzed 1,3-enynes hydroboration for the enantioselective synthesis of trisubstituted 
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allenyl-B(pin) compounds.
17

 Recently, Zhang and Bao also reported the synthesis of multisubstituted allenes 

via the Cu-catalyzed 1,4-difunctionalization of 1,3-enynes.
18

 Furthermore, several efficient methods have 

been described for the synthesis of some N-heterocycles, such as benzo[f]indazoles,
19

 pyrroles,
20

 and 

pyridines
21

 via a sequential aza-annulation of 1,3-enynes and 2-en-4-yn-1-azides. In continuation of our 

interest in Togni-Ⅱ reagent-based construction of trifluoromethylated coumarins,
22

 we herein present an 

alternative approach to fully-substituted trifluoromethyl pyrroles via a three-component cascade reaction 

involving 1,3-enynes, anilines, and Togni-Ⅱ reagent in the presence of a Cu(II)/Rh(Ⅲ) complexes. 

RESULTS AND DISCUSSION 

Our investigation began with the three-component tandem reaction of 

(E)-2-nitro-1,4-diphenylbut-1-en-3-yne 1a, p-toluidine 2a, and Togni-Ⅱ reagent 3a in order to identify the 

optimal reaction conditions for the transformation. Firstly, we tried the Cu-catalyzed direct 

trifluoromethylation of the model reaction for the synthesis of fully-substituted trifluoromethyl pyrroles 

according to our previous reported copper-catalyzed trifluoromethylation of propiolates to 

trifluoromethylated coumarins.
22

 Unfortunately, only trace amounts of desired product 4a was observed, 

while side product 5a was obtained in 42% yield (Table 1, entry 1). Fortunately, desired product 4a could 

obtain in 21% yield when 2.0 equiv of Cu(OAc)2 was used (Table 1, entry 2). Then, we attempted the 

transition metal and Lewis acid cooperative catalysis strategy. According to previous report,
20b

 we chose 

copper salts as Lewis acids, and screened some kinds of transition metals, including Pd, Au, Ru, and 

Rh-complexes (See supporting information). The results showed that [Cp*RhCl2]2 (10 mol %) could 

promote the transformation with slightly better (Table 1, entry 3).  In order to improve the yield, we added 

some silver slats, such as Ag2CO3, AgOAc, and AgNO3, but no better results were observed (See supporting 

information). The following evaluation of solvents indicated that DMF was the best one, affording the 

desired product 4a in 35% yield, whereas other solvents such as DMSO, CH3OH and 1,2-DCE were 

ineffective for this transformation (Table 1, entries 4-7). The desired product was not obtained when the 
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reaction was conducted under an atmosphere of oxygen or air (See supporting information). Next, the effect 

of the copper salts was examined, and the results showed that Cu(OAc)2·H2O is the most efficient, giving a 

slightly better yield (41%) compared with other salts (Table 1, entries 8-11). Interestingly, the desired 

product 4a was obtained in 58% yield when the reaction was carried out in the presence of small amounts of 

4Å MS (Table 1, entry 12). Although the effect of 4Å MS has not been ascertained, it may possibly act as 

Lewis acid to promote the reaction. The use of 4Å MS/HOAc or 4Å MS/PivOH as additives did not improve 

the yield of 4a (See supporting information). We also investigated the use of alternative bases (Table 1, 

entries 13-16), and the results showed that organic bases (such as DABCO and DBU) inhibit the reaction, 

while inorganic bases, such as KPF6, K2HPO4, Na2CO3, and Ca(OH)2 could promote the transformation. 

Ca(OH)2 was demonstrated to be the best base, and the fully-substituted pyrrole 4a was isolated in 78% yield 

(Table 1, entry 16). Product 4a was obtained in slightly lower yield by reducing the amounts of [Cp*RhCl2]2 

(from 10 mol% to 2.5 mol%) or Cu(OAc)2·H2O (from 2.0 to 1.0 equiv) (Table 1, entries 17-21). Control 

experiment showed that no targeted compound was obtained in the absence of Cu(OAc)2·H2O, which 

indicates that the copper salt is essential for this transformation (Table 1, entry 22). Next, we examined some 

other trifluoromethylating reagents, such as 3b, 3c and 3d, all of which provided unsatisfactory results (See 

supporting information). Longer reaction time under the optimized conditions, no significant change was 

observed. The reaction can be scaled up to 2 mmol of 1-en-3-yne 1a under standard reactions, providing the 

corresponding product 3a in moderate yield (51%) (Table 1, entry 23). 

Table 1. Optimization of Reaction Conditions
a
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entry [Cu] (x equiv) co-[cat] (y mol%) additive/base solvent yield 4a (5a) 

(%) 

1 Cu(OAc)2 (0.1) - - CH3CN trace (42) 

2 Cu(OAc)2 (2.0) - - CH3CN 21 (26) 

3 Cu(OAc)2 (2.0) [Cp*RhCl2]2 (10) - CH3CN 26 (34) 

4 Cu(OAc)2 (2.0) [Cp*RhCl2]2 (10) - DMSO 15 

5 Cu(OAc)2 (2.0) [Cp*RhCl2]2 (10) - MeOH trace 

6 Cu(OAc)2 (2.0) [Cp*RhCl2]2 (10) - DCE trace 

7 Cu(OAc)2 (2.0) [Cp*RhCl2]2 (10) - DMF 35 

8 CuBr2 (2.0) [Cp*RhCl2]2 (10) - DMF 22 

9 Cu(OTf)2 (2.0) [Cp*RhCl2]2 (10) - DMF trace 

10 Cu(TFA)2 (2.0) [Cp*RhCl2]2 (10) - DMF 13 

11 Cu(OAc)2·H2O (2.0) [Cp*RhCl2]2 (10) - DMF 41 

12 Cu(OAc)2·H2O (2.0) [Cp*RhCl2]2 (10) 4Å MS DMF 58 

13 Cu(OAc)2·H2O (2.0) [Cp*RhCl2]2 (10) 4Å MS/K2HPO4 DMF 40 

14 Cu(OAc)2·H2O (2.0) [Cp*RhCl2]2 (10) 4Å MS/KPF6 DMF 56 

15 Cu(OAc)2·H2O (2.0) [Cp*RhCl2]2 (10) 4Å MS/Na2CO3 DMF 60 

16 Cu(OAc)2·H2O (2.0) [Cp*RhCl2]2 (10) 4Å MS/Ca(OH)2 DMF 78 

17 Cu(OAc)2·H2O (2.0) [Cp*RhCl2]2 (7.5) 4Å MS/Ca(OH)2 DMF 75 

18 Cu(OAc)2·H2O (2.0) [Cp*RhCl2]2 (5) 4Å MS/Ca(OH)2 DMF 71 

19 Cu(OAc)2·H2O (2.0) [Cp*RhCl2]2 (2.5) 4Å MS/Ca(OH)2 DMF 57 

20 Cu(OAc)2·H2O (1.5) [Cp*RhCl2]2 (10) 4Å MS/Ca(OH)2 DMF 65 

21 Cu(OAc)2·H2O (1.0) [Cp*RhCl2]2 (10) 4Å MS/Ca(OH)2 DMF 28 

22 - [Cp*RhCl2]2 (10) 4Å MS/Ca(OH)2 DMF ND 

23b Cu(OAc)2·H2O (2.0) [Cp*RhCl2]2 (10) 4Å MS/Ca(OH)2 DMF 51 
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a
Reaction conditions: 1a (0.1 mmol), 2a (0.12 mmol), CF3-reagent 3 (0.18 mmol), 4Å MS (50 mg), 

acid or base additive (3.0 equiv), Cu salts (x equiv), Rh catalyst (y mol%), and solvent (1 mL), at room 

temperature under N2 for 0.5 h. ND = not detected. 
b
The reaction worked under 2 mmol scale. 

   With the optimized reaction conditions in hand, we next investigated the generality and scope of this 

new protocol. As depicted in table 2, the reactions of various substituted 1,3-enynes 1 and anilines 2 in the 

presence of Togni-Ⅱ reagent 3a proceeded smoothly under the standard conditions, affording the 

corresponding products 4 in moderate to good yields. Firstly, a range of 1,3-enynes 1 bearing 

electron-donating groups (e.g., Me and MeO) or electron-withdrawing groups (e.g., F and Cl) on the aryl 

(Ar
1
) moiety reacted with p-toluidine 2a under the optimized reaction conditions, giving the corresponding 

fully-substituted trifluoromethyl pyrroles 4b-f in moderate yields (40-60%). Additionally, we also examined 

the substituent effects of the aryl (Ar
2
) moiety, and the results showed that the present protocol is amenable 

to various substituents to afford the desired products 4g-j in respectable yields (42-71%). Subsequently, we 

examined the reactions of 1,3-enynes 1a and Togni-Ⅱ reagent 3a with various substituted anilines 2. When 

aliphatic nitroalkene (Ar
2
 = CH2OBn) was subjected to the reaction, no desired product was obtained. A 

range of aromatic amines, such as 4-(trifluoromethoxy)aniline, m-toluidine, aniline, 4-fluoroaniline, 

3-fluoroaniline, 4-chloroaniline, 3-chloroaniline, and 4-bromoaniline were tolerated. For instance, in the case 

of 4-(trifluoromethoxy)aniline, the product 4k was formed in moderate yield with the configuration 

confirmed umambiguously by X-ray diffraction. In addition, 4l and 4m were obtained in yields of 75% and 

61%, respectively. However, 4-bromoaniline gave its corresponding product 4s in comparatively lower yield. 

Interestingly, when naphthalen-2-amine was subjected to the standard conditions, only a trace amount of 

desired product 4t was observed; however, α-trifluoromethyl-substituted naphthalen-2-amine 4t’ was 

obtained in 51% yield [Scheme 1, eq (1)]. When aliphatic n-hexylamine was used as substrate, no targeted 

product 4u was observed. When the Ar
1
 group of substrate 1 was replaced by aliphatic 

n
-Bu group, only 
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trace amounts of desired product was obtained [Scheme 1, eq (2)]. In addition, some other groups (such as 

methoxyl and acetyl) instead of nitro group substituted substrates 1 were used under standard reaction 

conditions [Scheme 1, eq (3)]. Disappointingly, no obviously desired product was observed, when methoxyl 

substituted substrate was used. While to the acetyl substituted substrate, only condensation product (imine) 

was obtained.  

 

  Table 2. One-pot synthesis of fully-substituted trifluoromethyl pyrroles
a   

  

aReaction conditions: 1 (0.1 mmol), 2 (0.12 mmol), Togni-Ⅱ reagent 3a (0.18 mmol), 4Å MS (50 mg), Ca(OH)2 (3.0 equiv), 

[Cp*RhCl2]2 (10 mol%), Cu(OAc)2·H2O (0.2 mmol, 2.0 equiv) and DMF (1 mL), at room temperature under N2 for 0.5 h.  
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A control experiment of tetrasubstituted pyrroles 5 with Togni-Ⅱ reagent 3a under the standard 

reaction conditions did not result in any reaction, ruling out transformation via a simple electrophilic 

aromatic substitution reaction [Scheme 2, eq (1)].  When the reaction was carried out in the presence of a 

free radical scavenger, TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) (2.0 equiv), only trace amounts of the 

desired product 4a and 5 were observed, but a distinctive product 6 was observed by 
19

F NMR (δ 56.02) in 

51% yield, which indicates that the reaction may proceed through a radical process [Scheme 2, eq (2)].    

Scheme 1. The reaction of naphthalen-2-amine 

 

 

Scheme 2. Mechanistic investigations 

 

On the basis of control experiments and previously reported literature,
[14,23] 

a possible mechanism is shown 

in Scheme 3. Firstly, with the assistance of molecular sieves as Lewis acid, and Ca(OH)2 as base, the 

aza-Michael addition of 1,3-enynes 1 and amine 2 may lead to the formation of intermediate A. Secondly, 
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the interaction of Togni-Ⅱ reagent 3a with copper(II) gives a CF3 radical that reacts with intermediate A to 

generate intermediate B. Subsequently, intermediate B can be trapped by Cu(II) to give intermediate C, 

which reacts with Rh(III) via an alkenyl rhodium intermediate D to generate rhodacyclic intermediate E.
[23]

 

Finally, intermediate E undergoes reductive elimination and following oxidation gives the desired product 4, 

together with a Rh(I) species, which undergoes a redox reaction with Cu(III) to regenerate the Rh(III) 

species. It is worth mentioning that intermediate A can easily undergo intramolecular cyclization/oxidation, 

promoted by copper salts, to give by-products (tetrasubstituted pyrroles 5) which were obtained in trace 

amounts in most cases. 

Scheme 3 Proposed Reaction Mechanism 

 

CONCLUSIONS 

In summary, we have described an efficient approach to fully-substituted trifluoromethyl pyrroles via a 

cascade aza-Michael addition/trifluoromethylation cyclization/oxidation reaction of 1,3-enynes. Togni-Ⅱ 

reagent is utilized as a precursor for the CF3 radical in the presence of Cu(OAc)2·H2O and a catalytic amount 

of [Cp*RhCl2]2. Further investigations concerning the nucleophilic scope, reaction mechanism, and 

biological activities of various products are in progress in our laboratory. 
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Experimental Procedure 

General procedure for the preparation of 4 

To the mixture of 1,3-enyne 1 (0.1 mmol), amine 2 (0.12 mmol, 1.2 equiv), and Togni-Ⅱ reagent 

3a (0.18 mmol, 56.9 mg) in a schlenk flask was added [RhCp
*
Cl2]2 (0.01 mmol, 6.2 mg), copper 

acetate monohydrate (0.2 mmol, 40 mg), calcium hydroxide (0.3 mmol, 22.0 mg), and 4Å MS (50 mg) 

in DMF (1.0 mL) under N2 atmosphere. The mixture was stirred at room temperature for 0.5 hour. 

Upon completion, the reaction mixture was washed with brine (10 mL) and extracted with ethyl acetate 

(10 mL × 2). The reaction mixture was concentrated under vacuum. The residue was purified by flash 

column chromatography on basic silica gel using a petroleum ether/EtOAc (80/1 in volume) to afford 

the desired compounds. 

3-nitro-2,5-diphenyl-1-(p-tolyl)-4-(trifluoromethyl)-1H-pyrrole (4a): Isolated as a yellow solid (32.9 

mg, 78% yield), mp: 251-253 C. 
1
H NMR (400 MHz, CDCl3) δ 7.30 - 7.20 (m, 8H), 7.17 (d, J = 7.4 

Hz, 2H), 6.86 (d, J = 8.1 Hz, 2H), 6.71 (d, J = 8.2 Hz, 2H), 2.17 (s, 3H); 
13

C{
1
H} NMR (100 MHz, 

CDCl3) δ 138.70, 135.29 (q, JC-F = 3.6 Hz), 135.1, 132.8, 132.2, 131.1, 130.9 (q, JC-F = 0.9 Hz), 129.4, 

129.3, 129.1, 129.0, 128.4, 127.9, 127.9, 121.9 (q, JC-F = 268.5 Hz), 107.2 (q, JC-F = 36.5 Hz), 100.0, 

21.0;
 19

F NMR (376 MHz, CDCl3) δ -53.81 (s,3F); HRMS (ESI): m/z [M+ H]
+ 

Calcd for C24H18F3N2O2 

423.1315; found: 423.1319.  

3-nitro-2-phenyl-1,5-di-p-tolyl-4-(trifluoromethyl)-1H-pyrrole (4b): Isolated as a yellow solid (26.1 mg, 

60% yield), mp: 182-184C; 
1
H NMR (400 MHz, CDCl3) δ 7.28 - 7.23 (m, 5H), 7.06 -7.01 (q, J = 11.2 

Hz, 4H), 6.87 - 6.85 (d, J = 8.1 Hz, 2H), 6.72 - 6.70 (d, J = 8.2 Hz, 2H), 2.28 (s, 3H), 2.17 (s, 3H); 

13
C{

1
H} NMR (100 MHz, CDCl3) δ 139.0, 138.6, 135.5 (q, J C-F = 3.4 Hz), 135.0, 132.9, 132.3, 131.1, 

130.7, 129.4, 129.2, 128.7, 128.5, 128.0, 127.9, 126.0, 122.0 (q, J C-F = 266.7 Hz), 107.0 (q, J C-F = 36.4 

Hz), 21.3, 21.0; 
19

F NMR (376 MHz, CDCl3) δ -55.77 (s, 3F); 
 
HRMS (ESI): m/z [M+ H]

+ 
Calcd for 

C25H20F3N2O2 437.1471; found: 437.1470. 

2-(4-methoxyphenyl)-4-nitro-5-phenyl-1-(p-tolyl)-3-(trifluoromethyl)-1H-pyrrole (4c) Isolated as a 

yellow solid (22.6 mg, 50% yield), mp:186-188C. 
1
H NMR (400 MHz, CDCl3) δ 7.30 – 7.20 (m, 5H), 

7.08 (dd, J = 8.6, 1.6 Hz, 2H), 6.88 (d, J = 7.2 Hz, 2H), 6.75 (dd, J = 8.7, 1.8 Hz, 2H), 6.71 (dd, J = 8.2, 

1.6 Hz, 2H), 3.76 (d, J = 1.9 Hz, 3H), 2.19 (s, 3H).
 13

C{
1
H} NMR (100 MHz, CDCl3) δ 159.9 , 138.6 , 

135.2 (d, JC-F = 2.0 Hz), 134.9 , 132.9, 132.2, 131.1, 129.4, 129.2, 128.5, 128.0, 127.9, 122.0 (q, JC-F = 

268.5 Hz), 121.1, 118.8, 106.6 (d, JC-F = 38.9 Hz), 100.0, 55.2, 21.0.
19

F NMR (376 MHz, CDCl3) δ 

-53.86. HRMS (ESI): m/z [M+ H]
+ 

Calcd for C25H20F3N2O3 453.1421; found: 453.1419. 
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2-(2-methoxyphenyl)-4-nitro-5-phenyl-1-(p-tolyl)-3-(trifluoromethyl)-1H-pyrrole (4d): Isolated as a 

yellow solid (24.4 mg, 54% yield), mp: 161-163C.
 1
H NMR (400 MHz, CDCl3) δ 7.29 - 7.22 (m, 7H), 

7.14 - 7.12 (dd, J = 1.3 Hz, J = 7.5 Hz, 1H), 6.85 (d, J = 7.5 Hz, 1H), 6.82 (d, J = 3.6 Hz, 2H), 6.72 (d, 

J = 8.3 Hz, 2H), 3.62 (s, 3H), 2.15(s, 3H);
 13

C{
1
H} NMR(100 MHz, CDCl3) δ 157.6, 138.5, 135.4, 

133.1, 132.5, 132.2 (q, JC-F = 3.7 Hz), 131.2, 131.0, 129.1, 128.9, 128.3, 128.0, 127.9, 122.0 (q, JC-F = 

267.0 Hz), 120.3, 120.3, 118.4, 110.6, 107.7 (q, J C-F = 36.2 Hz), 55.2, 21.0;
 19

F NMR (376 MHz, 

CDCl3) δ -55.36 (s, 3F); HRMS (ESI): m/z [M+ H]
+ 

Calcd for C25H20F3N2O3 453.1421; found: 

453.1427. 

2-(4-fluorophenyl)-4-nitro-5-phenyl-1-(p-tolyl)-3-(trifluoromethyl)-1H-pyrrole (4e): Isolated as a 

yellow solid (22.0 mg, 50% yield), mp: 138-140C. 
1
H NMR (400 MHz, CDCl3) δ 7.26 - 7.24 (m, 5H), 

7.18 - 7.13 (m, 2H), 6.93 (t, J = 8.6 Hz, 2H), 6.89 (d, J = 8.1 Hz, 2H), 6.70 (d, J = 8.2 Hz, 2H), 2.20 (d, 

J = 9.5 Hz, 3H);
 13

C{
1
H} NMR (100 MHz, CDCl3) δ 163.0 (d, JC-F = 248.9 Hz), 138.9, 135.2, 134.1 (q, 

JC-F = 2.2 Hz), 134.0, 132.8 (q, JC-F = 9.3 Hz), 132.6, 131.0, 129.5, 129.3, 128.4, 128.0, 127.8, 125.1 (d, 

JC-F = 3.5 Hz), 121.9 (q, JC-F = 271.5 Hz), 115.2 (d, JC-F = 21.9 Hz), 107.2 (q, JC-F = 39.1 Hz), 21.0;
 19

F 

NMR (376 MHz, CDCl3) δ -53.86 (s,3F), -111.12 (s, 1F); HRMS (ESI): m/z [M+ H]
+ 

Calcd for 

C24H18F4N2O2 441.1221; found: 441.1239. 

2-(4-chlorophenyl)-4-nitro-5-phenyl-1-(p-tolyl)-3-(trifluoromethyl)-1H-pyrrole (4f): Isolated as a 

yellow solid (18.2 mg, 40% yield), mp: 208-210C. 1H NMR (400 MHz, CDCl3) δ 7.29 - 7.21 (m, 7H), 

7.12 -7.10 (d, J = 7.9 Hz, 2H), 6.90 - 6.88 (d, J = 7.7 Hz, 2H), 6.71 - 6.69 (d, J = 7.7 Hz, 2H), 2.20 (s, 

3H); 
13

C{
1
H} NMR (100 MHz, CDCl3) δ 139.0, 135.4, 135.3, 133.8 (q, JC-F = 3.4 Hz), 132.6, 132.2, 

132.1, 131.0, 129.6, 129.4, 129.4, 128.3, 128.0, 127.7, 127.5, 121.8 (q, JC-F = 268.6 Hz), 107.6 (q, JC-F 

= 36.8 Hz), 21.0. 
19

F NMR (376 MHz, CDCl3) δ -53.80 (s, 3F); HRMS (ESI): m/z [M+ H]
+ 

Calcd for 

C24H17ClF3N2O2 457.0925; found: 457.0926. 

2-(4-methoxyphenyl)-3-nitro-5-phenyl-1-(p-tolyl)-4-(trifluoromethyl)-1H-pyrrole (4g): Isolated as a 

yellow solid (18.9 mg, 42% yield), mp: 194-196C.
 1
H NMR (400 MHz, CDCl3) δ 7.27 - 7.20 (m, 3H), 

7.18 - 7.16 (m, 4H), 6.87 (d, J = 8.1 Hz, 2H), 6.76 (d, J = 8.7 Hz, 2H), 6.70 (d, J = 8.2 Hz, 2H), 3.75 (s, 

3H), 2.18 (s, 3H);
 13

C{
1
H} NMR (100 MHz, CDCl3) δ 160.1, 138.6, 135.1, 132.9, 132.5, 132.2, 131.3, 

130.9, 129.4, 129.2, 129.0, 128.5, 127.9, 122.0 (d, JC-F = 268.4 Hz), 119.8, 113.5, 107.5 (d, JC-F = 38.6 

Hz), 55.2, 21.0;
 19

F NMR (376 MHz, CDCl3) δ -53.73 (s, 3F); HRMS (ESI): m/z [M+ H]
 +

 Calcd for 

C25H20F3N2O3 453.1421; found: 453.1434. 

3-nitro-5-phenyl-1,2-di-p-tolyl-4-(trifluoromethyl)-1H-pyrrole (4h): Isolated as a yellow solid (26.5 mg, 

61% yield), mp:192-194 C. 
1
H NMR (400 MHz, CDCl3) δ 7.25 - 7.22 (m, 3H), 7.18 - 7.15 (m, 2H), 

7.12 (d, J = 8.1 Hz, 2H), 7.04 (d, J = 7.9 Hz, 2H), 6.86 (d, J = 8.3 Hz, 2H), 6.71 (d, J = 8.3 Hz, 2H), 
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2.28 (s, 3H), 2.17 (s, 3H); 
13

C{
1
H} NMR (100 MHz, CDCl3) δ 139.3, 138.6, 135.2, 135.1 (q, JC-F = 3.2 

Hz), 132.9, 131.0, 130.9, 130.8, 129.3, 129.2, 129.0, 128.7, 128.5, 127.9, 124.8, 122.0 (q, JC-F = 266.8 

Hz), 107.2 (q, JC-F = 36.6 Hz), 21.4, 21.0; 
19

F NMR (376 MHz, CDCl3) δ -53.77 (s, 3F); HRMS (ESI): 

m/z [M+ H]
+ 

Calcd for C25H19F3N2O3 437.1471; found: 437.1476. 

3-nitro-5-phenyl-2-(o-tolyl)-1-(p-tolyl)-4-(trifluoromethyl)-1H-pyrrole (4i): Isolated as a yellow solid 

(30.9 mg, 71% yield), mp: 193-195C. 
1
H NMR (400 MHz, CDCl3) δ 7.27 - 7.17 (m, 6H), 7.11 (d, J = 

9.1 Hz, 2H), 7.05 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 8.1 Hz, 2H), 6.70 (d, J = 7.5 Hz, 2H), 2.19 (s, 3H), 

2.14 (d, J = 8.7 Hz, 3H),
 19

F NMR (376 MHz, CDCl3) δ -53.68 (s, 3F);
 13

C{
1
H} NMR (100 MHz, 

CDCl3) δ 138.7, 138.5, 135.6, 135.5 (q, JC-F = 3.2 Hz), 132.8, 132.3, 131.1, 131.0, 130.9, 129.8, 129.6, 

129.2, 129.1, 129.0, 128.1, 127.9, 125.3, 122.0 (q, JC-F = 266.9 Hz), 107.0 (q, JC-F = 36.6 Hz), 21.0, 

20.10; HRMS (ESI): m/z [M+ H]
+ 

Calcd for C25H19F3N2O2 437.1471; found: 437.1471. 

2-(4-fluorophenyl)-3-nitro-5-phenyl-1-(p-tolyl)-4-(trifluoromethyl)-1H-pyrrole (4j): Isolated as a 

yellow solid (19.8 mg, 45% yield), mp:175-176C. 
1
H NMR (400 MHz, CDCl3) δ 7.31 - 7.22 (m, 5H), 

7.17 - 7.15 (m, 2H), 6.94 (t, J = 8.6 Hz, 2H), 6.88 (d, J = 8.1 Hz, 2H), 6.70 (d, J = 8.3 Hz, 2H), 2.19 (s, 

3H);
 13

C{
1
H} NMR (100 MHz, CDCl3) δ 163.0 (d, JC-F = 250.4 Hz), 138.9, 135.4 (q, JC-F = 3.6 Hz), 

134.0, 133.2, 133.1, 132.7, 130.9, 129.5, 129.1, 128.9, 128.4, 127.9, 123.9 (d, JC-F = 3.6 Hz), 121.9 (q, 

JC-F = 268.4 Hz), 115.3 (d, JC-F = 22.0 Hz), 107.7 (q, JC-F = 38.9 Hz), 21.0;
 19

F NMR (376 MHz, CDCl3) 

δ -53.85 (s, 3F), -110.67 (s, 1F); HRMS (ESI): m/z [M+ H]
+ 

Calcd for C24H17F4N2O2 441.1221; found: 

441.1255. 

3-nitro-2,5-diphenyl-1-(4-(trifluoromethoxy)phenyl)-4-(trifluoromethyl)-1H-pyrrole (4k): Isolated as a 

yellow solid (23.6 mg, 48% yield), mp:192-194C; 
1
H NMR (400 MHz, CDCl3) δ 7.32 - 7.22 (m, 8H), 

7.17 - 7.15 (d, J = 7.1 Hz, 2H), 6.94 - 6.92 (d, J = 8.6 Hz, 2H), 6.88 - 6.85 ( d, J = 8.9 Hz, 2H); 
13

C{
1
H} 

NMR (100 MHz, CDCl3) δ 148.8, 135.2 (q, JC-F = 3.5 Hz), 134.9, 133.8, 132.5, 131.0, 130.8, 130.3, 

129.6, 129.4, 128.6, 128.2, 128.1, 127.4, 121.0 (q, JC-F = 266.9 Hz), 120.9, 120.1 (q, JC-F = 257.1 Hz), 

107.8 (q, JC-F = 36.1 Hz); 
19

F NMR (376 MHz, CDCl3) δ -53.97 (s, 3F), -58.10 (s, 3F); HRMS (ESI): 

m/z [M+ H]
+
 Calcd for C24H15F6N2O3 493.0981; found: 493.0972. 

3-nitro-2,5-diphenyl-1-(m-tolyl)-4-(trifluoromethyl)-1H-pyrrole (4l): Isolated as a yellow solid (31.6 

mg, 75% yield), mp: 183-185C. 
1
H NMR (400 MHz, CDCl3): δ = 7.28 - 7.21 (m, 8H), 7.19(s), 7.17 (s), 

6.97 - 6.89 (m, 2H), 6.63 (s, 2H), 2.08 (s, 3H). 
19

F NMR (376 MHz, CDCl3) δ -53.78; 
13

C{
1
H} NMR 

(100 MHz, CDCl3) δ 138.8, 135.3, 135.2, 135.2, 135.2, 135.1, 135.0, 130.9, 129.4, 129.3, 129.3, 129.1, 

129.0, 128.4, 127.9, 127.9, 125.8, 122.0 (q, JC-F = 266.8 Hz), 107.2 (q, JC-F = 36.6 Hz), 20.9; HRMS 

(ESI): m/z [M
 
+ H]

+ 
Calcd for C24H18F3N2O2 423.1315, found: 423.1318. 
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3-nitro-5-phenyl-2-(m-tolyl)-1-(p-tolyl)-4-(trifluoromethyl)-1H-pyrrole (4m): Isolated as a yellow solid 

(25.7 mg, 61% yield), mp: 190-192C. 
1
H NMR (400 MHz, CDCl3) δ 7.30 - 7.25 (m, 1H), 7.23 - 7.21 

(d, J = 7.1 Hz, 2H), 7.18 - 7.16 (d, J = 7.4 Hz, 2H), 7.14 - 7.08 (m, 2H), 7.08 (s, 1H), 7.01 (d, J = 7.2 

Hz, 1H), 6.86 (d, J = 8.0 Hz, 2H), 6.72 (d, J = 8.1 Hz, 2H), 2.25 (s, 3H), 2.17 (s, 3H);
  13

C{
1
H} NMR 

(100 MHz, CDCl3) δ 138.6, 137.6, 135.3, 135.1 (q, JC-F = 3.6 Hz), 132.9, 132.2, 131.6, 131.0, 130.9, 

130.0, 129.3, 129.1, 129.0, 128.5, 128.0, 127.9, 127.8, 122.0 (q, JC-F = 268.5 Hz), 107.1 (q, JC-F = 36.6 

Hz), 21.2, 21.0. 
19

F NMR (376 MHz, CDCl3) δ -53.80 (s, 3F);
 
HRMS (ESI): m/z [M+ H]

+ 
Calcd for 

C25H19F3N2O2 437.1471; found: 437.1467.
 

3-nitro-1,2,5-triphenyl-4-(trifluoromethyl)-1H-pyrrole (4n): Isolated as a yellow solid (19.5 mg, 48% 

yield), mp: 190-192C. 
1
H NMR (400 MHz, CDCl3): δ 7.30 - 7.21 (m, 8H), 7.18 - 7.17 (d, J = 7.0 Hz, 

2H), 7.12-7.06 (d, J = 12.7 Hz, 3H), 6.85 - 6.83 (d, J = 7.0 Hz, 2H); 
13

C{
1
H} NMR (100 MHz, CDCl3) 

δ 135.4, 135.2 (q, JC-F = 3.5 Hz), 135.1, 132.4, 132.3, 131.1, 130.9, 129.2 (q, JC-F = 19.8 Hz), 128.8, 

128.7, 128.6, 128.0, 127.9, 127.8, 125.9, 121.9 (q, JC-F = 266.7 Hz), 107.3 (q, JC-F = 36.5 Hz); 
19

F NMR 

(376 MHz, CDCl3) δ -53.81 (s, 3F); HRMS (ESI) m/z: [M + H]
+ 

Calcd for C23H16F3N2O2 409.1158; 

found: 409.1164. 

1-(4-fluorophenyl)-3-nitro-2,5-diphenyl-4-(trifluoromethyl)-1H-pyrrole (4o): Isolated as a yellow solid 

(22.5 mg, 53% yield), mp: 212-214C.
 1
H NMR (400 MHz, CDCl3) δ 7.32 - 7.23 (m, 8H), 7.18 - 7.16 

(d, J = 7.1 Hz, 2H), 6.85 - 6.81(m, 2H), 6.79 - 6.75 (m, 2H);
 13

C{
1
H} NMR (100 MHz, CDCl3) δ 161.9 

(d, JC-F = 249.2 Hz), 135.3 (q, JC-F = 3.4 Hz), 135.1, 131.5 (d, JC-F = 3.4 Hz), 131.0, 130.9, 130.5 (d, 

JC-F = 8.8 Hz), 129.4 (d, JC-F = 18.8 Hz), 128.9, 128.8, 128.4, 128.1 (d, JC-F = 3.9 Hz), 128.0, 127.6, 

121.8 (q, JC-F = 266.9 Hz ), 115.9 (d, JC-F = 23.0 Hz ), 107.4 (q, JC-F =36.5 Hz); 
19

F NMR (376 MHz, 

CDCl3) δ -53.91 (s, 3F), -110.93 (s, 1F); HRMS (ESI) m/z: [M + H]
+ 

Calcd for C23H14F4N2O2 427.1064; 

found: 427.1071.  

1-(3-fluorophenyl)-3-nitro-2,5-diphenyl-4-(trifluoromethyl)-1H-pyrrole (4p): Isolated as a yellow solid 

(13.6 mg, 32% yield), mp:160-162C. 
1
H NMR (400 MHz, CDCl3): δ 7.33 - 7.25 (m, 8H), 7.18 (d, J = 

7.2 Hz, 2H), 7.03 - 7.09 (dd, J = 11.2 Hz, J = 14.3 Hz, 1H), 6.83 - 6.87 (dt, J = 2.1 Hz, J = 8.3 Hz, 1H), 

6.65 - 6.67 (d, J = 8.0 Hz, 1H), 6.57 - 6.60 (d, J = 8.8 Hz, 1H); 
13

C{
1
H} NMR (100 MHz, CDCl3): δ 

162.0 (d, JC-F = 248.0 Hz), 136.8 (d, JC-F = 9.8 Hz), 135.1 (q, JC-F = 3.6 Hz), 134.9, 132.6 (d, JC-F = 15.6 

Hz), 131.0, 130.8, 130.0 (d, JC-F = 8.9 Hz), 129.6, 129.4, 128.6, 128.2, 128.1, 127.4, 124.8 (d, JC-F = 3.4 

Hz), 121.8 (q, JC-F = 266.9 Hz), 116.5 (d, JC-F = 23.7 Hz), 116.1 (d, JC-F = 20.8 Hz);107.6 (q, JC-F = 36.8 

Hz);
 19

F NMR (376 MHz, CDCl3) δ -53.95 (s, 3F), -110.55 (s, 1F); HRMS (ESI) m/z: [M + H]
+ 

Calcd 

for C23H15F4N2O2 427.1064, found: 427.1068. 
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1-(3-chlorophenyl)-3-nitro-2,5-diphenyl-4-(trifluoromethyl)-1H-pyrrole (4q): Isolated as a yellow solid 

(28.7 mg, 65% yield), mp:188-190C. 
1
H NMR (400 MHz, CDCl3) δ 7.34 - 7.24 (m, 8H), 7.18 (d, J = 

7.4 Hz, 2H), 7.11 (d, J = 8.1 Hz, 1H), 7.02 (t, J = 8.0 Hz, 1H), 6.86 (s, 1H), 6.74 (d, J = 7.9 Hz, 1H);
 

13
C{

1
H}NMR (100 MHz, CDCl3) δ 136.5, 135.1 (q, JC-F = 3.3 Hz), 134.5, 131.0, 130.9, 130.8, 129.6, 

129.6, 129.4, 129.1, 129.0, 128.6, 128.2, 128.1, 127.4, 127.0, 126.0 (q, JC-F = 27.8 Hz), 121.8 (q, JC-F = 

268.4 Hz), 107.7 (q, JC-F = 34.8 Hz);
 19

F NMR (376 MHz, CDCl3) δ -53.98 (s, 3F);
 
HRMS (ESI) m/z: 

[M + H]
+ 

Calcd for C23H15ClF3N2O2 443.0769, found: 443.0762. 

1-(4-chlorophenyl)-3-nitro-2,5-diphenyl-4-(trifluoromethyl)-1H-pyrrole (4r): Isolated as a yellow solid 

(23.4 mg, 53% yield), mp: 259-261C. 
1
H NMR (400 MHz, CDCl3) δ 7.34 - 7.23 (m, 8H), 7.17 (d, J = 

7.2 Hz, 2H), 7.06 (d, J = 8.64 Hz, 2H), 6.77 (d, J = 8.68 Hz, 2H);
 13

C{
1
H} NMR (100 MHz, CDCl3) δ 

135.1 (q, JC-F = 3.8 Hz), 134.9, 134.8, 134.0, 131.0, 130.9, 130.8, 129.9, 129.6, 129.4, 129.1, 128.6, 

128.2, 128.1, 127.5, 121.8 (q, JC-F = 268.7 Hz), 107.6 (q, JC-F = 37.2 Hz).
19

F NMR (376 MHz, CDCl3) 

δ -53.95 (s, 3F); HRMS (ESI) m/z: [M + H]
+ 

Calcd for C23H15ClF3N2O2 443.0769; found: 443.0761. 
 

1-(4-bromophenyl)-3-nitro-2,5-diphenyl-4-(trifluoromethyl)-1H-pyrrole (4s): Isolated as a yellow solid 

(17.0 mg, 35% yield), mp: 277-278C.
 1
H NMR (400 MHz, CDCl3) δ 7.36 – 7.30 (m, 2H), 7.27 (dd, J 

= 8.2, 2.3 Hz, 4H), 7.25 – 7.19 (m, 4H), 7.17 (d, J = 7.4 Hz, 2H), 6.71 (d, J = 8.5 Hz, 2H), 
13

C{
1
H} 

NMR (100 MHz, CDCl3) δ 135.1 (q, JC-F = 3.6 Hz), 134.8, 134.5, 132.1, 131.0, 130.8, 130.8, 130.2, 

129.6, 129.4, 128.6, 128.2, 128.2, 127.5, 122.8, 121.8 (q, JC-F = 268.6 Hz), 107.6 (q, JC-F = 36.9 Hz).
19

F 

NMR (376 MHz, CDCl3) δ -53.95 (s, 3F); HRMS (ESI) m/z: [M + H]
+ 

Calcd for C23H15BrF3N2O2 

487.0264; found: 487.0261. 

1-(trifluoromethyl)naphthalen-2-amine (4t’): 10.8 mg, 51%. Yellow liquid; 
1
H NMR (400 MHz, 

CDCl3) δ 7.99 – 7.96 (m, 1H), 7.67 – 7.64 (m, 2H), 7.47-7.45 (m, 1H), 7.27 (t, J = 7.4 Hz, 1H), 6.76 (d, 

J = 8.9 Hz, 1H), 4.59 (s, 2H).
 13

C{
1
H} NMR (100 MHz, CDCl3) δ 143.8, 133.4, 131.5 (q, JC-F = 1.4 Hz), 

128.5, 128.0, 127.9, 127.3 (q, JC-F = 274.2 Hz), 123.1 (q, JC-F= 4.2 Hz), 122.9, 119.9, 102.6 (q, JC-F = 

28.2 Hz). 
19

F NMR (376 MHz, CDCl3) δ -51.99 (s, 3F); HRMS (ESI) m/z: [M + H]
+ 

Calcd for 

C11H9F3N 212.0682; found: 212.0690. 

The procedure of scale-up reaction: An oven dried 100 mL round-bottomed flask was charged with 

(E)-(2-nitrobut-1-en-3-yne-1,4-diyl)dibenzene (1a, 0.5 g, 2.0 mmol), p-toluidine (0.26 g, 2.4 mmol), 

Togni-Ⅱ reagent 3a (1.14 g, 3.6 mmol), [Cp
*
RhCl2]2 (0.124 g, 0.2 mmol), copper acetate monohydrate 

(0.8 g, 4.0 mmol), and was stirred in the presence of calcium hydroxide (0.44 g, 6.0 mmol) and 4Å 
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molecular sieves (0.6 g) in dimethylformamide (20 mL) under N2 atmosphere at room temperature . 

The mixture was stirred at room temperature for 0.5 h. The reaction mixture was filtrated by diatomite 

and washed by ethyl acetate (20 mL). The combined mixture was washed with brine (20 mL × 3) and 

then dried over anhydrous Na2SO4. The solvent was removed and the residue was purified by flash 

column chromatography on basic silica gel (EA/PE = 1/80) to afford the desired compounds 4a (0.43 g, 

51% yield). 

Reaction procedure of TEMPO with Togni-Ⅱ reagent: In a 10 mL dried sealed tube, 

(E)-(2-nitrobut-1-en-3-yne-1,4-diyl)dibenzene (1a, 25.0 mg 0.1 mmol,) was added, p-toluidine (2a, 

12.8 mg, 0.12 mmol, 1.2 equiv), Togni-Ⅱ reagent 3a (56 mg, 0.18 mmol, 1.8 equiv), [RhCp
*
Cl2]2 (6.2 

mg, 10 mol%), copper acetate monohydrate (40 mg, 0.2 mmol, 2.0 equiv), calcium hydroxide (22.0 mg, 

0.3 mmol, 3.0 equiv), 4Å MS (50 mg) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 31.2 mg, 0.2 

mmol, 2.0 equiv) were added, and were dissolved in dimethylformamide (1.0 mL) under N2 

atmosphere at room temperature, the sealed tube
  

was stirred
 
0.5 h, benzotrifluoride (29.2 mg, 0.2 

mmol, internal standard) was added.
 19

F NMR analysis of the reaction mixture showed that 

TEMPO-CF3 was formed in 51% yield.
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