mol, in 15 mL of water). The reaction mixture was stirred at 0 °C for 30 min, filtered, and diluted with 150 mL of water. The resulting mixture was filtered. The filtrate was poured onto 200 g of ice to give 5.8 g of red crystals. The crude product was recrystallized by dissolving in 12 mL of warm chloroform and precipitating with 25 mL of hexane, giving 4.9 g (40%) of 3f as red crystals: mp 118-119 °C; ¹H NMR (CDCl₃) δ 2.77 (s, 3 H), 3.14 (s, 6 H), 6.62 (s, 1 H), 7.1-7.4 (m, 3 H), 7.5-7.8 (m, 2 H).

Anal. Calcd for C₁₂H₁₅NS: C, 70.2; H, 7.36; N, 6.82; S, 15.6. Found: C, 70.3; H, 7.03; N, 6.77; S, 15.4. 5-*p*-Tolylisoxazole (5a).¹¹ Typical Procedure for 5a-d. To

a solution of 3.78 g (0.020 mol) of **2a** in 50 mL of absolute methanol at 0 °C was added a solution of 2.48 g (0.022 mol) of hydroxylamine-O-sulfonic acid in 20 mL of absolute methanol over a period of 2 min. After being stirred at room temperature for 20 min, the reaction mixture was poured into a mixture of cold saturated sodium bicarbonate solution (160 mL) and ice-water (140 mL). The resulting reaction mixture deposited 2.60 g (82%) of 5a as off-white crystals: mp 60-61 °C (lit.¹¹ mp 58-60 °C); ¹H NMR $(CDCl_3) \delta 2.39 (s, 3 H), 6.43 (d, J = 2 Hz, 1 H), 7.24 (d, J = 8 Hz, 1 H)$ 2 H), 7.66 (d, J = 8 Hz, 2 H), 8.22 (d, J = 2 Hz, 1 H); IR (KBr) 3140, 3100, 1620, 1600, 1510, 1460, 1200, 1320, 1070, 1020, 940, 920, 880, 830, 800 cm⁻¹.

5-p-Tolylisothiazole (6a).³¹ Typical Procedure for 6a-f. To a stirred suspension of 2.05 g (0.010 mol) of 3a in a mixture of 1.6 mL (0.020 mol) of pyridine and 75 mL of absolute ethanol at room temperature was added a solution of 1.30 g (0.0115 mol) of hydroxylamine-O-sulfonic acid in 20 mL of absolute methanol over a period of 2 min. The temperature of the reaction was maintained with a water bath. The reaction mixture was stirred at room temperature for 0.5 h. The solvents were removed under reduced pressure at room temperature to leave a residue which

was partitioned between 30 mL of water and 150 mL of ether. The aqueous layer was extracted with another 50 mL of ether. The combined ether solution was washed with 30 mL of saturated sodium bicarbonate solution and dried over Na_2SO_4 (for 6f the reddish ether solution of the crude product was decolorized with activated carbon (Darco)). After removal of the ether, the residue (1.31 g) was recrystallized from 15 mL of hexane to give 1.14 g (65%) of 6a as slightly tan crystals: mp 83–84 °C (lit.³¹ no melting point reported); ¹H NMR (CDCl₃) δ 2.39 (s, 3 H), 7.24 (d, J =8 Hz, 2 H), 7.36 (d, J = 2 Hz, 1 H), 7.48 (d, J = 8 Hz, 2 H), 8.42 (d, J = 2 Hz, 1 H); mass spectrum, m/e 175 (M⁺); IR (KBr) 1495, 1410, 1310, 1240, 1120, 1060, 840, 800, 750, 480 cm⁻¹

Anal. Calcd for C₁₀H₉NO (175.25): C, 68.5; H, 5.18; N, 7.99; S, 18.3. Found: C, 68.2; H, 5.23; N, 8.05; S, 18.6.

Acknowledgment. We thank Dr. W. Gore and Mr. G. Morton and staff for the measurement and interpretation of spectral data and Mr. L. Brancone and staff for microanalysis.

Registry No. 2a, 18103-98-5; 2b, 18096-70-3; 2c, 28587-05-5; 2d, 73387-60-7; 2e, 1201-93-0; 2f, 34523-87-0; 3a, 31639-16-4; 3b, 40185-70-4; 3c, 31639-15-3; 3d, 31639-14-2; 3e, 24301-15-3; 3f, 75101-71-2; 5a, 7064-35-9; 5b, 3672-48-8; 5c, 7064-32-6; 5d, 7064-31-5; 6a, 49602-75-7; 6b, 10514-28-0; 6c, 49602-89-3; 6d, 49602-97-3; 6e, 1075-21-4; 6f, 1732-45-2; 7a, 7089-19-2; 7b, 39812-29-8; 7c, 7089-20-5; 7d, 52117-14-3; 7e, 39812-71-0; 7f, 75101-73-4; p-methylacetophenone, 122-00-9; p-methoxyacetophenone, 100-06-1; p-chloroacetophenone, 99-91-2; p-bromoacetophenone, 99-90-1; acetophenone, 98-86-2; N,-N-dimethylformamide dimethyl acetal, 4637-24-5; N,N-dimethylformamide diethyl acetal, 1188-33-6; N,N-dimethylacetamide dimethyl acetal, 18871-66-4; (γ -chloro-p-methylcinnamylidene)dimethylammonium phosphorodichloridate, 72633-12-6.

Reaction of β -Keto Esters with 2-Amino-1,3,4-thiadiazoles. A **Reinvestigation**¹

Gabriel Kornis,* Pamela J. Marks, and Constance G. Chidester

The Upjohn Company, Kalamazoo, Michigan 49001

Received June 17, 1980

2-Amino-5-substituted-1,3,4-thiadiazoles react with ethyl acetoacetate under basic conditions to give 3-oxo-N-(5-substituted-1,3,4-thiadiazol-2-yl)butanamides 4.² During acid cyclization, 4 rearranges to give a mixture of thiadiazolopyrimidones 3 and 5, the ratio varying with the nature of the substituents. Under acidic conditions, the butenoic ester 2 can also be isolated; however, it does not rearrange and yields only the expected 3. With ethyl benzoylacetate under acidic and basic conditions, only one compound is formed whose structure was determined as the enol form of 4d by X-ray diffraction. In strong acid, it also cyclizes and rearranges to give a mixture of 3 and 5 in a 9:1 ratio.

The reactions of 2-amino-5-substituted-1,3,4-thiadiazoles 1 with β -keto esters have been previously investigated by Okabe et al.,² who found that in the presence of polyphosphoric acid (PPA) 2,7-substituted-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-ones 3 were obtained (Scheme I). With ethyl acetoacetate (AAE) in the presence of sodium methoxide (NaOMe) 3-oxo-N-(5-substituted-1,3,4-thiadiazol-2-yl)butanamides 4a and 4b were isolated which, on cyclization in sulfuric acid (H_2SO_4) , gave 2,5-substituted-7H-1,3,4-thiadiazolo[3,2-a]pyrimidin-7-ones 5a and 5b.³

The reaction of 1f with AAE in toluene⁴ and a catalytic amount of p-toluenesulfonic acid monohydrate (TosOH) yielded a mixture of the ethyl ester of 3-[(1,3,4-thiadiazol-2-yl)amino]-2-butenoic acid 2f and 3f.

We now report that the H_2SO_4 cyclization of 4 gives rise to a mixture of isomers and also our new findings concerning the reactivity of ethyl benzoylacetate (BAE) with 1.

Results and Discussion

In our hands the H_2SO_4 cyclization of 4a gave not only 5a but also the isomeric 3a, the latter identical in all respects with the product obtained from the PPA cyclization of 1a with AAE. As the intermediate 4a was rigorously

⁽¹⁾ Presented in part at the Second Chemical Congress of the North American Continent, Las Vegas, NV, August 1980, Abstract no. 90.
(2) Okabe, T.; Taniguchi, E.; Maekawa, K. J. Fac. Agric., Kyushu Univ. 1973, 17, 195-202.

⁽³⁾ Okabe, T.; Maekawa, K.; Taniguchi, E. Agric. Biol. Chem. 1973, 37, 1197-1201.

⁽⁴⁾ Lauer, R. F.; Zenchoff, G. J. Heterocycl. Chem. 1976, 13, 291.

purified and identified, the presence of intermediate 2a which would lead to 3a can be ruled out. It is therefore concluded that a rearrangement had taken place. To establish whether intermediate 2a also rearranges, it was cyclized under the same conditions as for 4a, but only the expected 3a was obtained despite strenuous efforts to detect even a trace of 5a. Similarly, when 1a was reacted with AAE in the presence of TosOH in refluxing toluene, or in PPA at 135 °C, only 3a could be isolated, identical in all respects with the product obtained from the H_2SO_4 cyclization of 2a.

A number of analogues 4b and 4c were synthesized and highly purified to verify the generality of the 4 to 3 rearrangement. Cyclization under the usual conditions afforded a mixture of 5b,c and 3b,c. The isomer distribution was obtained by NMR analysis on the crude reaction mixtures and was as follows: 5a, 70%; 3a, 30%; 5b, 80%; 3b, 20%; 5c, 92%; 3c, 8%. Similar rearrangements are known to occur with aminopyridines⁵ and thiadiazoles⁴ to yield, however, only one isomer.

The only reaction of 1 with BAE was reported by Okabe et al.,² who found that in the presence of PPA 3d and 3e were formed. We confirmed this result but found that the reaction of 1a with BAE in refluxing toluene in the presence of TosOH or in MeOH–NaOMe yielded a highly insoluble product which was shown by X-ray crystallography to be the enolic form of 4d (see also Figure 1).

Cyclization of 4d in H_2SO_4 gave a mixture of 3d and 5d. While the isolation of a mixture of both isomers is a further example of the rearrangement described above, there is a notable difference. With BAE, the percentage of 3d and 5d is 90 and 10, respectively, while with AAE the percentage of 3a and 5a is 30 and 70, respectively. One explanation for this reversal is the deactivating effect of the phenyl group leading to enhanced 1,3 acyl migration.

The structure proof for 5d is based on its similarity to 5a and dissimilarity to 3a. Thus, compounds 5 when compared to compounds 3 have a higher melting point, are more polar on silica gel, and absorb in the IR at about 1640

Figure 1. Numbering, conformation, and bond lengths (Å) for 4d. Standard deviations for bond lengths are 0.002-0.004 Å.

cm⁻¹ (3 absorb at about 1680 cm⁻¹),⁶ and in the NMR spectrum the 5-Me group and 6-H are more shielded. From the limited number of compounds synthesized in this series, it also appears that when R_2 is phenyl, the aromatic region for 5 is a very narrow multiplet centered at about δ 7.6, while for 3 the aromatic region shows two distinct broad multiplets centered at δ 7.4 and 7.9.

It is therefore concluded that in the presence of TosOH 1a reacts with AAE on the ketonic function to give 2a which, on treatment with H_2SO_4 , cyclizes exclusively to 3a. In the presence of NaOMe, however, nucleophilic attack on the carboethoxy group yields the intermediate 4a which cyclizes through partial rearrangement to a mixture of mainly 5a and 3a. In contrast, the reaction of 1a with BAE occurs exclusively on the carboethoxy group, with TosOH or NaOMe, to give the inter- and intramolecularly hydrogen-bonded intermediate 4d. 4d on acid cyclization also partially rearranges to a mixture of 5d and 3d; the major constituent, however, is the rearranged 3d.

Experimental Section

Melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected. IR spectra were

⁽⁶⁾ Okabe, T.; Taniguchi, E.; Maekawa, K. J. Fac. Agric., Kyushu Univ. 1975, 20, 7.
(7) We have no explanation for the discrepancy in melting point. In

⁽⁷⁾ We have no explanation for the discrepancy in melting point. In our hands, three procedures furnished the same product with a melting range between 193 and 200 °C.

recorded on a Perkin-Elmer 137 or 299B instrument. ¹H NMR spectra were recorded on a Varian A-60D or HFT-80 spectrometer, using tetramethylsilane as an internal standard. Mass spectra were obtained with a Varian MAT CHF mass spectrometer. GC was done on a Hewlett-Packard Model 5830A linked to a Model 18850A terminal, using a 4-ft glass column with 3% UCW 982 on Chromosorb WHP (100-120 mesh). Chromatography was on gravity columns or two in series Merck Lobar size C high-pressure LC columns. Organic phases were dried over sodium sulfate and evaporated under reduced pressure. The following starting thiadiazoles were made by literature procedures: 1a,^{8,9} 1b,⁸ 1c,^{8,10} 1d.4

Ethyl 3-[(5-Methyl-1,3,4-thiadiazol-2-yl)amino]-2-butenoate (2a). To a vigorously stirred suspension of 2-amino-5methyl-1,3,4-thiadiazole (1a, 5.75 g, 0.05 mol) in benzene (400 mL) were added ethyl acetoacetate (13.0 g, 0.1 mol) and TosOH (0.38 g, 0.002 mol). The reaction vessel was equipped with a Dean-Stark trap and the mixture heated under reflux for 26 h. The white solid (4.4 g) was filtered and identified as starting material by its melting point and mixture melting point of 210-213 °C identical TLC behavior in three solvent systems, and same retention time on GC. The filtrate was evaporated and chromatographed on silica gel in ethyl acetate. The least polar fractions were combined to yield 2a (1.6 g, 60%) which was recrystallized twice from ethyl acetate-Skelly B and once from methylene chloride-Skelly B, mp 50-52 °C. The absence of 1a, 3a, 4a, and 5a was ascertained by TLC and GC: IR (CHCl₃) 2980, 1625, 1480, 1270, 1145 cm⁻¹; NMR (CDCl₃) δ 1.30 (t, 3, CH₃CH₂), 2.42 (s, 3, CH₃), 2.67 (s, 3, CH₃), 4.20 (q, 2, CH₂CH₃), 4.95 (s, 1, C=CH). Anal. Calcd for C₉H₁₃N₃O₂S: C, 47.56; H, 5.76; N, 18.49; S,

14.11. Found: C, 47.86; H, 5.54; N, 18.41; S, 14.02.

2,5-Dimethyl-7H-1,3,4-thiadiazolo[3,2-a]pyrimidin-7-one (5a) and 2,7-Dimethyl-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3a). Procedure A. 3-Oxo-N-(5-methyl-1,3,4-thiadiazol-2-yl)butanamide (4a,² 4.6 g, 0.023 mol) in concentrated sulfuric acid (15 mL) was kept at 60 °C for 5.5 h, cooled, poured on ice (200 mL), basified with sodium carbonate, and extracted with chloroform $(4 \times 60 \text{ mL})$. The combined extracts were washed with brine and dried and the solvent was removed to yield a solid (3.6 g, 99%). This consisted of a mixture of 5a (70%) and 3a (30%) (NMR), which upon recrystallization from methanol, then toluene, and finally Skellysolve B yielded 5a (1.2 g, 33%): mp 191-194 °C (lit.3 mp 189.5 °C); IR (CHCl₃) 2990, 1635, 1505, 1450, 1416, 1235, 1173, 950, 860, 830, 660, 620 cm⁻¹; NMR (CDCl₃) δ 2.53 (sh s, 3, CH₃), 2.68 (s, 3, CH₃), 6.15 (sh s, 1, CH).

Anal. Calcd for $C_7H_7N_3OS$: C, 46.39; H, 3.89; N, 23.23. Found: C, 46.65; H, 3.82; N, 23.34.

The combined mother liquors were chromatographed (highpressure LC). Elution with toluene-ethanol (6:1) yielded 3a (0.6 g, 16.6%) which, after crystallization from ethyl acetate-hexane, had mp 155-158 °C (lit.3 mp 153-154 °C): IR (CHCl₃) 2990, 1685, 1565, 1495, 1430, 1392, 1360, 1185, 1131, 1000, 905, 839, 588 cm⁻¹; NMR (CDCl₃) δ 2.37 (s, 3, CH₃), 2.73 (s, 3, CH₃), 6.30 (s, 1, CH).

Anal. Calcd for C₇H₇N₃OS: C, 46.39; H, 3.89; N, 23.23. Found: C, 46.53; H, 3.59; N, 23.56.

Further elution with the same solvent system yielded 5a (0.8 g, 22%) which, after recrystallization from toluene, had a melting point and mixture melting point of 190-193 °C with the 5a isolated above by crystallization.

2,7-Dimethyl-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3a). A suspension of 2a in concentrated sulfuric acid was reacted according to procedure A to give 3a in an 80% yield, identical in all respects with the 3a obtained from the $\mathrm{H_2SO_4}$ cyclization of 4a, or of 1a with PPA.² The absence of 5a in the crude product was ascertained by GC and TLC.

2-Ethyl-5-methyl-7H-1,3,4-thiadiazolo[3,2-a]pyrimidin-7one (5b) and 2-Ethyl-7-methyl-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3b). 3-Oxo-N-(5-ethyl-1,3,4-thiadiazol-2-yl)butanamide (4b)³ in concentrated sulfuric acid was reacted according to procedure A to give a 96% yield of a mixture of 5b (80%) and **3b** (20%). Chromatography on silica gel and elution with ethyl acetate yielded 3b which, after crystallization from

toluene-hexane, had mp 110-113 °C (lit.³ mp 112 °C): IR (CHCl₃) 2970, 1675, 1558, 1548, 1490, 1385, 1352, 1170, 1125, 895, 830 cm⁻¹; NMR (CDCl₃) δ 1.45 (t, 3, CH₂CH₃), 2.37 (s, 3, CH₃), 3.11 (q, 2, CH₂CH₃), 6.32 (m, 1, CH).

Anal. Calcd for C₈H₉N₃OS: C, 49.21; H, 4.65; N, 21.52; S, 16.42. Found: C, 49.02; H, 4.66; N, 21.42; S, 16.33.

Further elution with ethyl acetate-methanol (2:1) yielded 5b which, after crystallization from ethyl acetate, had mp 158-160 °C (lit.³ melting point not stated): IR (CHCl₃) 2965, 1625, 1495, 1440, 1405, 1185, 1123, 930, 850, 819, 650 cm⁻¹; NMR (CDCl₃) δ 1.42 (t, 3, CH₂CH₃), 2.53 (sh s, 3, CH₃), 3.02 (q, 2, CH₂CH₃), 6.18 (sh s, 1, CH).

Anal. Calcd for $C_8H_9N_3OS$: C, 49.21; H, 4.65; N, 21.52, S, 16.42. Found: C, 49.30; H, 4.97; N, 21.39; S, 16.24

5-Methyl-2-phenyl-7H-1,3,4-thiadiazolo[3,2-a]pyrimidin-7-one (5c) and 7-Methyl-2-phenyl-5H-1,3,4-thiadiazolo[3,2a]pyrimidin-5-one (3c). Concentrated sulfuric acid and 4c were reacted according to procedure A to give a 95% yield of a mixture of 5c (92%) and 3c (8%). Chromatography on silica gel and elution with ethyl acetate gave 3c which, after crystallization from ethanol-water, had mp 193-196 °C (lit.3 mp 169-172 °C7): IR $(CHCl_3)$ 3000, 1703, 1692, 1575, 1505, 1490, 1450, 1400, 1366, 1270, 1132, 1100, 902, 840, 683 cm⁻¹; NMR (CDCl₃) δ 2.38 (s, 3, CH₃), 6.35 (s, 1, CH), 7.50–7.80 (m, 3, Ar H), 7.85–8.17 (m, 2, Ar H).

Anal. Calcd for C₁₂H₉N₃OS: C, 59.24; H, 3.73; N, 17.27; S, 13.18. Found: C, 59.18; H, 3.60; N, 17.38; S, 13.45.

Further elution with the same solvent yielded 5c which, after crystallization from ethanol, had mp 237-238 °C: IR (CHCl₃) 2973, 1630, 1621, 1500, 1480, 1438, 1405, 1273, 1186, 1172, 1125, 1090, 995, 989, 930, 850, 678, 650, 591 cm⁻¹; NMR (CDCl₃) δ 2.64 (sh s, 3, CH₃), 6.23 (sh s, 1, CH), 7.50–7.77 (m, 3, Ar H), 7.77–8.05 (m, 2, Ar H).

3-Hydroxy-N-(5-methyl-1,3,4-thiadiazol-2-yl)-3-phenyl-2propenamide (4d, Enol Form). Procedure B (TosOH Method). To a vigorously stirred suspension of 1a (8.16 g, 0.075 mol) in toluene (200 mL) was added PhCOCH₂COOEt (21.6 g, 0.112 mol) followed by TosOH (0.25 g, 0.00131 mol). The reaction vessel was equipped with a Dean-Stark head and the mixture was heated under reflux for 23 h. The mixture was cooled, and the precipitate was filtered (10.78 g, 55%) and recrystallized from DMF to give 4d (3.6 g, 22%): mp 255-256 °C; IR (Nujol) 2900, 2705, 1610, 1560, 1455, 1400, 1373, 1310, 1270, 1210, 1195, 1080, 1005, 993, 973, 870, 827, 770, 749, 690, 629 cm⁻¹; NMR (Me₂SO) δ 2.67 (s, 3, CH₃), 4.38 (s, 2, CH₂), 7.50–7.87 (m, 3, Ar H), 7.87–8.22 (m, 2, Ar H), 12.33-12.66 (br s, 1, NH); mass spectrum, m/e (relative intensity) 105 (100), 77 (38), 115 (38), 142 (31), 147 (20), 69 (9), 233 (8), 191 (7), 51 (7), 74 (7).

Anal. Calcd for $C_{12}H_{11}N_3O_2S$: C, 55.15; H, 4.24; N, 16.08; S, 12.27. Found: C, 54.88; H, 4.50; N, 16.11; S, 12.16.

Procedure C (NaOMe Method). To a suspension of 1a (8.7 g, 0.075 mol) in dry methanol (130 mL) was added sodium methoxide (4.46 g, 0.0825 mol) followed by PhCOCH₂COOEt (15.86 g, 0.0825 mol) and the mixture was heated under reflux for 5 h. The reaction mixture was cooled, concentrated under reduced pressure, and acidified with 6 N HCl and the precipitate was filtered off to give 4d (13.6 g, 70%) which, after recrystallization from DMF- H_2O , was shown to be identical by melting point, TLC, IR, mass spectra, and elemental analysis with the 4d sample prepared above.

2-Methyl-7-phenyl-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3d) and 2-Methyl-5-phenyl-7H-1,3,4-thiadiazolo[3,2a]pyrimidin-7-one (5d). (a) Concentrated H_2SO_4 and 4d, made by the TosOH method, were reacted according to procedure A to give, in a 78% yield, a complex mixture which contained 3d and 5d in a ratio of 9 to 1. Chromatography over silica gel and elution with ethyl acetate gave 3d which was crystallized from ethanol: mp 196-198 °C (lit.3 mp 195.5 °C); IR (CHCI₃) 3000, 1685, 1587, 1557, 1515, 1487, 1449, 1382, 1372, 1243, 1183, 1130, 1100, 1027, 1010, 865, 845 cm⁻¹; NMR (CDCl₃) δ 2.75 (s, 3, CH₃), 6.87 (s, 1, CH), 7.28-7.62 (m, 3, Ar H), 7.78-8.12 (m, 2, Ar H).

Anal. Calcd for C₁₂H₉N₃OS: C, 59.24; H, 3.73; N, 17.27; S, 13.18. Found: C, 58.99; H, 3.56; N, 17.57; S, 13.29.

Further elution with toluene-ethanol (4:1) yielded 5d which was crystallized from methylene chloride-Skellysolve B: mp 209-211 °C; IR (CHCl₃) 3010, 1640, 1581, 1520, 1496, 1455, 1421, 1269, 1238, 1195, 1182, 1140, 1112, 1068, 874, 700 cm⁻¹; NMR

⁽⁸⁾ Bambas, L. L. Chem. Heterocycl. Compd. 1952, 4, 110-1.
(9) Freund, M.; Meinecke, C. Chem. Ber. 1896, 29, 2511.

⁽¹⁰⁾ Hoggarth, E. J. Chem. Soc. 1949, 1165.

Table I. Final Atomic Coordinates $(\times 10^4)$ and Standard Deviations for Compound 4d

	X	Y	Z
S(1)	7176(1)	4180(1)	206 (1)
C(2)	8298 (3)	2173(4)	83(1)
N (3)	9906(2)	2194 (3)	408 (1)
N(4)	10364 (3)	3866 (3)	783(1)
C(5)	9089 (3)	5031(4)	725(1)
C (5M)	9247(3)	6917 (5)	1084 (1)
N (6)	7648(2)	616(3)	-317(1)
C(7)	5966 (3)	293 (4)	-642(1)
O (7)	4866(2)	1485(3)	-594 (1)
$\mathbf{C}(8)$	5635(3)	-1462(4)	-1030(1)
C (9)	4037 (3)	-1929(4)	-1400(1)
0 (9)	2718(2)	-772(3)	-1417(1)
C (10P)	3597 (3)	-3684(4)	-1810(1)
C(11P)	4706 (3)	-5280(4)	-1721(1)
C(12P)	4294(3)	-6913(4)	-2115(1)
C (13P)	2756(3)	-6989(4)	-2610(1)
C(14P)	1643(3)	-5415(5)	-2704(1)
C (15P)	2049 (3)	-3785(4)	-2305(1)

 $(CDCl_3) \delta 2.63 (s, 3, CH_3), 6.42 (br s, 1, CH), 7.45-7.82 (m, 5, Ar$ H).

Anal. Calcd for C₁₂H₉N₃OS: C, 59.24; H, 3.73; N, 17.27; S, 13.18. Found: C, 58.43; H, 3.61; N, 17.35; S, 13.13.

(b) The above experiment was repeated, using 4d prepared by the NaOMe method (procedure C); the isolated products 3d and 5d were identical in all respects with the 3d and 5d samples described above.

3-Oxo-N-(5-phenyl-1,3,4-thiadiazol-2-yl)butanamide (4c). By procedure C. 1c was reacted with AcCH₂COOEt to give 4c (60%) which, after recrystallization from DMF-H₂O, had mp 239-241 °C: IR (Nujol) 3182, 2910, 2845, 1717, 1690, 1565, 1459, 1372, 1318, 1152, 684 cm⁻¹; NMR (Me₂SO) δ 2.26 (s, 3, CH₃), 3.85 (s, 2, CH₂), 7.52–7.77 (m, 3, Ar H), 7.92–8.17 (m, 2, Ar H).

Anal. Calcd for $C_{12}H_{11}N_3O_2S$: C, 55.15; H, 4.24; N, 16.08; S, 12.27. Found: C, 55.02; H, 4.26; N, 16.06; S, 12.47.

7-Methyl-2-phenyl-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3c). To a suspension of 1c (7.08 g, 0.04 mol) in polyphosphoric acid (30.0 g, 0.0887 mol) was added AcCH₂COOEt (6.0 g, 0.0461 mol) and the mixture was placed in an oil bath at 135–140 °C for 1 h. The cooled reaction mixture was treated with ice water, stirred at room temperature for 1 h, and filtered. The precipitate was thoroughly washed with water, dried (6.4 g, 66%), and recrystallized twice from ethanol, mp 199-201 °C (lit.³ mp 169-172 °C7). It was identical by melting point, IR, TLC, NMR, and elemental analysis with the 3c sample prepared above from 4c. The aqueous filtrate was extracted several times with chloroform, but only a negligible amount of oil was obtained which was discarded.

X-ray Crystallography. Crystal data for compound 4d $(C_{12}H_{11}N_3O_2S)$ were as follows: monoclinic, space group $P2_1/c$; z = 4; a = 8.310(1) Å b = 6.828(1) Å; c = 21.611(3) Å; $\beta = 107.79$ (1)°; $D_{\text{obsd}} = 1.47 \text{ g cm}^{-3}$; $D_{\text{calcd}} = 1.49 \text{ g cm}^{-3}$; $\mu(\text{CuK}) = 23.3 \text{ cm}^{-1}$; 2011 reflections (1883 reflections with intensities greater than one standard deviation).

Intensity data for all reflections with $2\theta < 145^{\circ}$ were collected by using the step-scan technique¹¹ at low temperature (about -155 °C) on a Syntex P1 diffractometer controlled by an IBM 1800 computer using graphite monochromatized Cu K α radiation (λ = 1.5418 Å). The data were corrected for systematic errors, including absorption.^{12a} All calculations were carried out on an IBM 370 computer, using the CRYM system of crystallographic programs.^{12b} The structure was solved by direct methods. Co-

Table II					
	related				
atom	atom	distance, Å	symmetry relation		
07	09	2.605(3)	internal hydrogen bond		
07	HO9	1.72(2)	internal hydrogen bond		
N3	N6	2.846(3)	2 - x, -y, -z		
N3	H6	1.85(2)	2-x, -y, -z		
S 1	C9	3.409(3)	1 - x, -v, -z		
S 1	O9	3.483 (3)	1-x, -y, -z		
N3	C5	3.400(3)	2-x, 1-y, -z		
09	C5M	3.291(3)	1-x, 1-y, -z		
09	C2	3.380(3)	1 - x, -y, -z		
07	C7	3.196 (3)	1 - x, -y, -z		
07	C11P	3.261(3)	x, y + 1, z		

ordinates, except hydrogen coordinates, and anisotropic thermal parameters were refined by multiple-matrix crystallographic least squares, minimizing the function $\sum \omega (F_o^2 - F_c^{*2})^2$, where weights ω were taken as the reciprocals of the variances $\sigma^2(F_0^2)$ and where F_c^* was as defined by Larson.¹³ A difference Fourier map clearly showed that all the hydrogens were very close to positions which could be generated by using standard geometry. Subsequently, hydrogens were included in the calculations at generated positions but were not refined. Atomic form factors are from "International Tables for X-ray Crystallography",¹⁴ except for hydrogen form factors which are taken from Stewart, Davidson, and Simpson.¹⁵ The final agreement index $R[R = \sum ||F_0| - |F_c|| / \sum |F_0|]$ was 0.051, and the standard deviation of fit was 2.68. The final value of the secondary extinction parameter g was 2.5 (2) \times 10⁻⁶.

Figure 1 shows the conformation of the molecule, the numbering, and bond distances not involving hydrogen. Final coordinates and standard deviations are listed in Table I. There is an intramolecular hydrogen bond between the hydroxyl and the carbonyl, and there is one intermolecular hydrogen bond between N6 in the chain and N3 in the thiadiazole ring of molecules related by a center of symmetry. Hydrogen-bond parameters and other intermolecular distances which are close to van der Waals separations are listed in Table II. The thiadiazole ring is planar; the propenamide chain atoms are in a plane tilted about 7° from the plane of the thiadiazole ring, and the plane of the phenyl ring is inclined 17.5° to the chain atoms and 10° to the thiadiazole ring. Distances in the thiadiazole ring and along the chain show shorter than normal lengths for single bonds and longer than normal double bond lengths, as would be expected in a highly conjugated system. Bond lengths in the thiadiazole ring are similar to those reported for other 1,3,4-thiadiazoles.¹⁶⁻¹⁸

Acknowledgment. We thank Dr. L. Baczynskyj for the mass spectra and the Physical and Analytical Chemistry unit of The Upjohn Company for the elemental analyses.

Registry No. 1a, 108-33-8; 1c, 2002-03-1; 2a, 75045-88-4; 3a, 41914-67-4; 3b, 41837-55-2; 3c, 42484-83-3; 3d, 42484-76-4; 4a, 42484-67-3; 4b, 42484-93-5; 4c, 75045-89-5; 4d, 75045-90-8; 5a, 41837-62-1; 5b, 55276-13-6; 5c, 75045-91-9; 5d, 65528-25-8; ethyl acetoacetate, 141-97-9; ethyl β -oxobenzenepropanoate, 94-02-0.

Supplementary Material Available: Table III (hydrogen coordinates), Table IV (anisotropic thermal parameters), and Table V (bond angles) (3 pages). Ordering information is given on any current masthead page.

⁽¹¹⁾ Duchamp, D. J. ACS Symp. Ser., No. 46 1977, 98–121.
(12) (a) Busing, W. R.; Levy, H. A. Acta Crystallogr. 1957, 10, 180. (b) The CRYM system of crystallographic programs was written by David J. Duchamp, The Upjohn Company, Kalamazoo, MI.

⁽¹³⁾ Larson, A. C. Acta Crystallogr. 1967, 23, 664-665.

 ^{(14) &}quot;International Tables for X-ray Crystallography"; Macgillavry,
 C. H., Rieck, G. D., Eds., Kynoch Press: Birmingham, 1962; Vol. III, pp 202-205.

⁽¹⁵⁾ Stewart, R. F.; Davidson, E. R.; Simpson W. T. J. Chem. Phys. 1965, 42, 3175.

⁽¹⁶⁾ Mathew, M.; Palenik, G. J. J. Chem. Soc., Perkin Trans. 2 1974, 532-536.

 ⁽¹⁷⁾ Flippen, J. L. Acta Crystallogr., Sect. B 1972, 28, 2749–2753.
 (18) Downie, T. C.; Harrison, W.; Raper, E. S. Acta Crystallogr., Sect.

B. 1972, 28, 1584-1590.