SYNTHESIS AND REACTIVITY OF GEM-DIMETALLIC ORGANIC COMPOUNDS. PART 1.

P. Knochel^{*} and J.F. Normant

Laboratoire de Chimie des Organo-éléments, tour 44 Université P. & M. Curie, 4 place Jussieu 75252 PARIS Cédex 05 France

Summary - A number of gem-dimetallic compounds 4a-i have been prepared by carbometallation of an alkenyl organometallic derivative of Mg, Li or Al by an allylic zinc bromide. The 1-magnesia-1-zincaalkenes <u>4a-b</u> react smoothly with various aldehydes in the presence of $BF_{3}.OEt_{2}$ to furnish (E)-1,5-dienes in high yields and high isomeric purity.

1

R² Met¹ winaalkanes² as well as some 1 1-dimension 3 1,1-dilithia⁵- and 1,1-dipotassia⁶- alkanes are known, but only a few synthetic applications of these reagents have been reported $^{1-6}$. In 1971. M. Gaudemar⁷ reported the addition of allyl zinc bromide on

propenyl-, iso-propenyl-, pentenyl-, 1-propylvinyl- Grignard reagents which lcd to 1-magnesia-1-zincaalkenes with yields of 24%, 26%, 58% and 36% respectively. This interesting approach to gem-dimetallic reagents has never been emphasized since then, and we decided to test its scope and limitations. We have found that a wide range of 1,1-dimetallic compounds are available in high yields by carbometallation of alkenyl organometallics of magnesium, lithium and aluminium by allylic zinc bromides using similar reaction conditions as M. Gaudemar 7 . The addition of a 1.5M THF solution of an allylic zinc bromide⁸ 2 to a 0.5M THF solution of diverse alkenyl-magnesium bromides⁹ 3 gives, after 0.75-3hr stirring at 35°, the gem-dimetallic species¹⁰ 4 in good yield (58-93%) ; see scheme 1 and table 1. An alkenyllithium like <u>3e</u> reacts also well, but in this case the reaction has to be carried out at 5° due to the lower stability of the 1-lithia-1-zincaalkene 4h which decomposes slowly at room temperature (see entry 8 of table 1). Preliminary studies¹¹ show that an alkenylaluminium compound is also able to add an allylic zinc bromide in fair yield (see entry 9). Treatment of the dimetallic compounds 4a and 4h with D_30^+/D_20 gives the corresponding 1,1-dideuterated alkenes (100% deuteration).

1039

1040

Table 1 - Addition of the allylic zinc bromides <u>2a-c</u> to the vinylic organometallic compounds <u>3a-3f</u> in THF leading to the 1,1-dimetallic reagents <u>4a-4i</u>

En	try	al z	lyli inc omid	c e	R ¹		r ²	a	lkenylmetalli compound	C MXn		R ³		R ⁴		к ⁵	P	roduc	t	Rea tim	icti ie (ion (h)	Y	a ield (%)	
•		1-		- 1		'		'		1			1		•		'		•				•		'
	1		2a	1	Н		Н		<u>3a</u>	MgBr	1	Н	C	6 ^H 13	1	Н		<u>4a</u>	1	C	.75	5	ļ	93	
I	2	1	2b	1	Me		H	ł	<u>3a</u>	MgBr	I	н	C	6 ^H 13	1	н	I	<u>4b</u>	Ι	C	.75	5	1	92	۱
l	3	ι.	<u>2c</u>	l	н	l	Me	l	<u>3a</u>	MgBr	l	н	ļC	6 ^H 13	l	н	l	<u>4c</u>	l	2	.5		l	82 ^b	l
I	4	Ι.	2a	ļ	Н	I	Н		<u>3b</u>	MgBr	ł	Н	1	ЪН,	ĺ.	SiEta		<u>4d</u>	I	1	.75	5	1	90	۱
1	5	Ι.	<u>2c</u>	l	Н	I	Me	1	<u>3b</u>	MgBr	1	Н	1	Н	I	SiEt	, ,	<u>4e</u>	1	3	1		1	83	I
Į.	6	Į _	2a	ļ	н	ļ	H	l	<u>3c</u>	MgBr	I	Ph	ļ	н	ļ	н	ĺ	<u>4f</u>	l	1			Ļ	58	ļ
1	7	1	<u>2a</u>	ł	Н	I	Н	I	<u>3d</u>	MgBr	ł	Me	l	Me		Н	1	<u>4g</u>	ł	2	2		l	69 ^C	ł
ł	8	Ι.	<u>2a</u>	I	Н	1	Η	I	<u>3e</u>	Li	1	Н	C	6 ^H 13		Н	L	<u>4h</u>	Ι	15	, d		1	90	۱
ł	9	<u>ا</u>	2a	ł	Н	ł	H	ł	<u>3f</u>	AlEt,	, 0	C6H1	3	H	1	н	ł	<u>4i</u>	ł	1	e		ł	71	ł
1											_														I
(a	i) t	he	yiel	ds	ar	e	the	se	of isolated	alkenes	; (obta	ine	d af	te	r hyd	iro	lysis	01	F tł	ne o	dime	ta	llic	l
ł	5	pec	ies	<u>4</u> .	A1	1	rea	ict	ions were per	formed	or	na	10-	20mm	101	scal	le.								ł
(b	(b) this compound is a 7:3 mixture of two diastereoisomers ; the starting alkenyl													İ											
1	Grignard reagent used was a 9:1 mixture of Z,E isomers.													ł											
) (c	(c) in this case 4g was quenched with Me ₃ SnCl. The yield indicated is that of the flash-													1											
I	c	hro	mato	gra	aph	ii	all	y	purified 2,2-	dimethy	/1-	-5-p	ent	enyl	t	rimet	thy	lsṫan	inai	ne (cor	npar	e	with	1
1	t	he	foll	ow:	ing	F	oub]	lic	ation).																I
(c	l) t	his	rea	ct	ior	1	nas	to	be performed	at 5°.]
(e) In this case 1.75eq. of allyl zinc bromide is used.													۱											
1																									1

The alkenyl magnesium reagent can be substituted in various positions (see entry 1-7 of table 1). If the vinylic magnesium bromide $\underline{3}$ is β , β 'disubstituted (R³ and R⁴ are different from H), then the addition reaction is less efficient (see entry 7). Addition of 1-trime-thylsilylvinyl magnesium bromide leads to the "trimetallic species" $\underline{4d}$ and $\underline{4e}$ which have a carbon bearing formally three different metals (Zn, Mg, Si); see entries 4 and 5. We suppose that the carbometallation proceeds first by the formation of the mixed allylvinyl-zinc compound $\underline{5}$ (see scheme 1) which then undergoes a (3,3) signatropic rearrangement (a process which can be called a "metalla-Claisen" reaction) leading to the 1,1-bimetallic species $\underline{4}^{10}$. This reaction occurs under milder conditions than the carbometallation

of alkenes^{12,13} with allylic organometallic compounds (M=ZnR,MgX) which would give the same products after hydrolysis.

We find now that the 1- magnesia -1-zincaalkenes <u>4</u> react with a number of organic substrates¹⁴ leading to useful transformations. Addition of 1.1equiv. of $BF_3.0Et_2^{15}$ to a cooled solution (-90°) of the bimetallic species <u>4a</u> or <u>4b</u> ($\approx 0.2M$ in THF), followed by the addition of 1.1equiv. of an aldehyde, warming up of the reaction mixture to -50° in 15min. and stirring the resultant solution 45min. at -50° to -60° furnishes after hydrolysis the 1,5-dienes <u>6a-6h</u> in good yields and good stereoisomeric purity (E/Z ratio generally over 90/10); see scheme 2 and table 2.

<u>Table 2</u> : Synthesis of the 1,5-dienes <u>6a-6g</u> and of the 1,5,7-triene <u>6h</u> through the addition of the 1-magnesia-1-zincaalkenes <u>4a</u> and <u>4b</u> to aldehydes in the presence of BF₃.0Et₂

1	Dimetallic	^R 2CH0	Product	t	R ¹	R ²	1	o.p.	1	Yield
Entry	reagent		I	Ι		I	(%	torr)	E:Z ^b	(%) ^a
	I		_	I		l	1			
1	<u>4a</u>	PhCHO	<u>6a</u>		н	Ph	102	2°/0.05	99:1	78
2	<u>4a</u>	EtCH0	<u>6b</u>	1	Н	Et	10	5°/13	95:5	61
3	<u>4a</u>	PentCH0	<u>6c</u>	1	Н	Pen	t 80	5°/0.1	94:6	75
4	<u>4a</u>	isPrCHO	<u>6d</u>	1	Н	isP	'r 50	5°/0.1	99:1	75
5	<u>4b</u>	isPrCHO	<u>6e</u>	1	Me	isP	r 64	4°/0.1	98:2	79
6	<u>4a</u>	(CH3)2CHCH2CH0	<u>6f</u>	1	Н	(CH3)20	HCH2 6	5°/0.1	88:12	! 85
7	<u>4a</u>	tertBuCHO	<u>69</u>	I	Н	tertB	u 5	3°/0.1	99:1	49 ^C
8	<u>4a</u>	Ph-CH=CH-CHO	6h	I	Н	Ph-CH=	CH-	-	92:8	58

- (a) the yields given are those of distillated or chromatographically purified materials. All spectroscopic data (I.R., 1 H-NMR and 13 C-NMR) are compatible with the structures indicated.
- (b) the E:Z ratio is determined by 13 C-NMR.
- (c) the reaction mixture is warmed up to -20° after addition of ${\rm BF}_3.0{\rm Et}_2$ and pivalic aldehyde

The reaction shows a good chemioselectivity since ketones like 3-pentanone or ethyl levulinate do not react ; a sterically hindered aldehyde like pivalic aldehyde (see entry

7 of table 2) does not react at low temperature and the reaction mixture has to be warmed up to -20°. On the contrary, aromatic aldehydes are very reactive since benzaldehyde is the only aldehyde that reacts with $\underline{4a}$ in the absence of $BF_3.0Et_2$ (although the yield and the stereoselectivity are lower : 47% ; E:Z ratio (92:8). (E)-Cinnamaldehyde reacts with 4a smoothly and leads to the (E,E)-1,5,7 triene 6h in fair yield and with a 92:8 isomeric purity of the newly formed double bond (see entry 8 of table 2).

We continue actively our study on the synthesis and on the reactivity of these 1,1-dimetallic organic compounds. Its extension to hetero substituted vinylic and allylic partners is also examined.

Acknowledgements :

We thank Madame Monique Baudry for the synthesis of various starting materials, the Vieille Montagne Company for a generous gift of zinc of high purity and the C.N.R.S. for financial support (U.A. 473).

References and notes :

- H.C. Brown and G. Zweifel, J. Am. Chem. Soc. <u>83</u>, 3834 (1961); G. Zweifel and H. Arzoumanian, Tetrahedron Lett. 2535 (1966); G. Cainelli, G. Dal Bello and G. Zubiani, Tetrahedron Lett. 4315 (1966); H.C. Brown in Organic Synthesis Today and Tomorrow, Editors B.M. Trost and C.R. Hutchinson, Pergamon Press (1981) p. 135.
- 2. G. Wilke and H. Müller, Ann. 629, 222 (1960) ; G. Zweifel and R.B. Steele, Tetrahedron Lett. 6021 (1966)
- 3. F. Bertini, P. Grasselli, G. Zubiani and G. Cainelli, Tetrahedron, 26, 1281 (1970) ; J.W. Bruin, G. Schat, O.S. Akkerman and F. Bickelhaupt, J. Organomet. Chem. 288, 13 (1985)
- 4. J.J. Eisch and A. Piotrowski, Tetrahedron Lett. 24, 2043 (1983)
 5. a/ A. Maercker, M. Theis, A.J. Kos and P. von R. Schleyer, Ang. Chem. 95, 755 (1983); Ang. Chem. Int. Ed. Engl. 22, 733 (1983); A. Maercker and R. Dujardin Ang. Chem. 96, 222 (1984); Ang. Chem. Int. Ed. Engl. 23, 224 (1984); A. Maercker and R. Dujardin, Ang. Chem. 97, 612 (1985); Ang. Chem. Int. Ed. Engl. 24, 571 (1985); b/ H. Kawa, B.C. Manley and R.J. Lagow, J. Am. Chem. Soc. 107, 5313 (1985)
- 6. E.M. Kaiser, F.E. Henoch and C.R. Hauser, J. Am. Chem. Soc. 90, 7287 (1968)
- 7. M. Gaudemar, Compt. Rend. Acad. Sc. Paris, Série C, 273, 1669 (1971); Y. Frangin and M. Gaudemar, Compt. Rend. Acad. Sc. Paris, Série C, 278, 885 (1974); M. Bellasoued, Y. Frangin and M. Gaudemar, Synthesis, 205 (1977)
- 8. M. Gaudemar, Bull. Soc. Chim. France, 974 (1962)
- 9. Trisubstituted alkenyl organometallics like 1-cyclooctenylmagnesium bromide did not add allylzinc bromide, even under forcing reaction conditions.
- 10. The real structure of these dimetallic species is certainly more complex than the one indicated on formula 4 (dimeric species can be considered : compare with ref. 5b). However this formulation of 4, deduced from the reaction stoechiometry, allows us to rationalize the properties of these species (see also the following publication).
- 11. The addition of allylic zinc bromides to alkenyl boron and aluminium compounds is currently under study in our laboratory : we have observed that allylic aluminium bromide ((C₃H₇)₃Al₂Br₃) and the in situ generated ((C₃H₇)₃Al.AlMe₃) do not react with alkenyl magnesium derivatives under our standard reaction conditions.
- 12. H. Lehmkuhl, Bull. Soc. Chim. France (II), 87 (1981) and references cited.
- 13. Even the intramolecular version of the carbometallation of alkenes by allylic magnesium bromides requires rather severe reaction conditions : W. Oppolzer in Selectivity - a Goal for synthetic Efficiency - Workshop Conferences Hoechst/Volume 14 edited by W. Bartmann and B.M. Trost p. 135-167 (1984) Verlag Chemie.
- 14. The 1-magnesia-1-zincaalkenes are less reactive than Grignard reagents ; thus compounds $\underline{4}$ (MXn=MgBr) do not react with ketones, esters, anhydrides or various iodo derivatives (with or without Pd° catalysis and Ni° catalysis affords no clean reaction), vinylic sulfones, α , β unsaturated esters, Me₃SiCl. For other reactions of reagents <u>4</u> see the following publication.
- 15. A number of other Lewis- acids has been tested : TiCl₄, TiCl₂(0isPr)₂, Cp₂TiCl₂, B(0Me)₃, BBu₃, SnCl₄.THF ; none of these shows the activity of BF₃.OEt₂ as promoter in the synthesis of 1,5 dienes.