OXIRANE RING OPENING REACTIONS WITH THIOLS CATALYZED BY LANTHANIDE COMPLEXES

Angelos E.VOUGIOUKAS and Henri B.KAGAN*

Laboratoire de Synthèse Asymétrique associé au CNRS, Bât. 420, Centre d'Orsay, Université Paris-Sud, 91405 Orsay Cedex France

 $\frac{Summary}{Summary} : LnCl_3 \quad (Ln = Ce, Sm) \text{ and } Eu(fod)_3 \text{ act as Lewis-acid catalysts in stereo- and regio-selective epoxide ring opening reactions with thiols under mild conditions in CH_2Cl_2.$

The application of lanthanide chemistry to organic synthesis has been growing considerably since the late seventies¹. Lanthanide complexes have been used as Lewis-acid catalysts in some organic transformations such as the Diels-Alder² and the Friedel-Crafts³ reactions. Recently, their applications to the cross-aldol addition reaction of aldehydes to silyl enol ethers and the cyanohydrin formation have been reported⁴. Another type of reaction, the oxirane ring opening with various nucleophiles (eg : Me₃SiCN, Me₃SiN₃, RSH, etc.) has been reported previously to be promoted by certain Lewis acids such as $AlCl_3^5$, $AlEt_3^6$, $ZnCl_2^7$, ZnI_2^8 , $Ti(O-iPr)_4^9$, $VO(O-iPr)_4^{10}$, etc., usually necessitating long reaction times (5-7 days) at ambient temperature. Anhydrous lanthanide trichlorides, which are considered as hard acids¹, are now reported to catalyze the oxirane ring opening reaction with thicls stereo- or regio-selectively under mild conditions.

Two types of Ln-catalyzed processes were considered : (i) the stereoselective reaction of cyclohexene oxide with certain thiols (eqn.(1)) and (ii) the regioselective alkyl-monosubstituted epoxide ring opening

6065

$$0 + R-SH \xrightarrow{\text{Ln(III) cat.}}_{\text{CH}_2\text{Cl}_2 - r.t.} \qquad 0H \qquad (1)$$

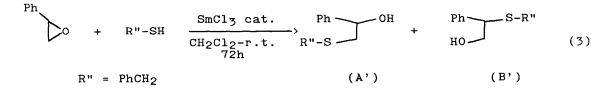
Entry N°	R	Catalyst (mol equiv.)		Rxn. Time (h)	Isolated yield (%)	
1	Phenyl	SmC13	(0.1)	48	84	
2	Phenyl	CeCl3	(0.1)	72	77	
3	Phenyl	Eu(fod)3 ^a	(0.05)	120	41	
4	p-Tolyl	SmC13	(0.1)	72	84	
5	p-Tolyl	Eu(fod)3 ⁰	(0.05)	120	49	
6	p-Anisyl	SmCl ₃	(0.1)	48	81	
7	p-Anisyl	CeCl3	(0.1)	48	74	
8	Benzyl	SmC13	(0.1)	120	78	
9	Benzyl	CeCl3	(0.1)	120	75	

a : Homogeneous solution. $Eu(fod)_3 = tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato)europium (III).$

with them (eqn.(2)). The results are summarized in Tables (I) and (II) respectively.

A typical preparative procedure (equations (1) and (2)) involves the addition of equimolar amounts of reagents (eg : cyclohexene oxide and phenyl thiol, 8 mmol each-Table (I), entries (1) and (2)) to a suspension of LnCl₃ (0.1 mol equiv.) in CH₂Cl₂ (2 ml) under argon at ambient temperature. After the given time¹¹ (Tables (I) and (II)) the solvent was evaporated <u>in vacuo</u> and the residue was extracted with hexane/ethyl acetate (4:1) and then chromatographed (flash/SiO₂,hex./EtOAc = 4:1). The isolated yields of the products are summarized in Tables (I) and (II). Their identity was confirmed by ¹H and ¹³C NMR spectroscopy¹²⁻¹⁴. When SmCl₃ or CeCl₃ are used as catalysts, traces of <u>cis</u>-2-thioethercyclohe-xan-1-ol (ca.5%) can be detected by NMR¹⁵.

It is worth mentioning that when $Eu(fod)_3$ is used as catalyst in the reaction of cyclohexene oxide with a thiol (eqn.(1)). the <u>trans-2-thioe-</u>thercyclohexan-1-ol appears to be the <u>only</u> product as shown by ¹H and ¹³C


6067

Entry N°	R	R'	Catalyst	(mol equiv.)	R×n.Time (h)	Isolated (A)(%)	•
1	Me	p-Anisyl	SmC13	(0.1)	72	84	a
2	Me	Benzyl	SmC13	(0.1)	72	81	a
3	Et	p-Anisyl	SmC13	(0.1)	72	83	a
4	Et	Benzyl	SmC13	(0.1)	72	77	a
5	Me	p-Tolyl	CeC13	(0.1)	72	82	a
6	Me	p-Tolyl	Eu(fod)3	b (0.05)	120	51	a

a : Traces of (B) were not observed by TLC. b : Homogeneous solution.

NMR spectroscopy (Table (I), entries (3) and (5)). The enantioselective version of this reaction using chiral lanthanide reagents has not been developed yet¹⁶.

Preliminary experiments suggest that the reaction of aryl-substituted epoxides with thiols catalyzed by LnCl₃ in CH₂Cl₂ is less selective than in the cases reported in Table (II). For example, styrene oxide reacts with benzyl thiol in the presence of SmCl₃ (0.1 mol equiv.) yielding a mixture of products¹⁷ (eqn. (3); A'/B' = 3:1; 75% total isolated yield). Low selectivity for this reaction when using other catalysts has also been reported¹⁸.

We are currently investigating further applications of lanthanide complexes to organic synthesis.

<u>Acknowledgements</u> : We are grateful to CNRS for financial support and for a fellowship to one of us (AEV).

REFERENCES - NOTES :

- (1) H.B.Kagan and J.L.Namy, "Lanthanides in Organic Synthesis" in <u>Tetrahedron</u>, <u>42</u>, 6573 (1986); a review article.
- (2) M.Bednarski, C.Maring and S.Danishefsky, <u>Tetrahedron Lett.</u>, <u>24</u>, 3451 (1983); M.Quimere and K.Jancowski, <u>J.C.S.Chem.Commun.</u>, 676 (1987).
- (3) N.Mine, Y.Fujiwara and H.Taniguchi, Chem.Lett., 357 (1986).
- (4) A.E.Vougioukas and H.B.Kagan, Tetrahedron Lett., in press.
- (5) J.C.Mullis and W.P.Weber, <u>J.Org.Chem.</u>, <u>47</u>, 2873 (1983); W.Lidy and W.Sundermeyer, <u>Tetrahedron Lett.</u>, <u>14</u>, 1449 (1973).
- (6) H.Babu Mereyala and B.Frei, Helv.Chim.Acta, 69, 415 (1986).
- (7) G.O.Spessard, A.R.Ritter, D.M.Johnson and A.M.Montgomery, <u>Tetrahedron Lett.</u>, <u>24</u>, 655 (1983).
- (8) P.G.Gassman and R.S.Gremban, <u>Tetrahedron Lett.</u>, <u>25</u>, 3259 (1984); P.G. Gassman and T.L.Guggenheim, <u>J.Am.Chem.Soc.</u>, <u>104</u>, 5849 (1982).
- (9) D.Sinou and M.Emziane, <u>Tetrahedron Lett.</u>, <u>27</u>, 4423 (1986) and references therein.
- (10) C.Blandy, R.Choukroun and D.Gervais, Tetrahedron Lett., 24, 4189 (1983).
- (11) The reaction progress was followed by TLC (SiO_2 , hex./EtOAc = 4:1).
- (12) Typical spectral data, eg. Table (I), entry (4) : 1 H-NMR (CDCl₃, 250MHz, δ) : 7.4(m,2H, phenyl), 7.1(m,2H, phenyl), 3.7(m,1H, >CH-OH, cis), 3.2(m,1H, >CH-OH, trans), 2.6(m,1H, CH-S-),2.3(s,3H,Me),2.0(m,2H,-CH₂-),1.6(m,2H, -CH₂-),1.2(m,4H,-CH₂-). 1 3C-NMR (CDCl₃, 62.9MHz,ppm) : trans : 138,134,130,128,71.5,56.0,33.5,32.5,26.5,24.5,21.0 (all s); cis : 138,134,130,128,73.0,66.5,35.0,33.5,25.5,23.5,21.0(all s).
- (13) Typical spectral data, eg. Table (II), entry (4), product (A) : $^{1}H-NMR(CDCl_{3},250MHz, \delta)$: 7.3(m,5H,phenyl), 3.7(s,2H,-S-CH₂-Ph), 3.5(m,1H, $\geq CH_{-}OH$),2.6(dd,1H,J=3.5, 14.3Hz, -S-CH_AH_B-C-OH),2.35(dd,1H,J=18.8,32.6Hz,-S-CH_AH_B-C-OH), 1.5(m,2H,MeCH₂-),0.85(t,3H,Me). $^{13}C-NMR$ (CDCl₃,62.9MHz,ppm) : 139.0,129.5,128.5,127.0,71.5,38.5,36.5,29.0,10.5(all s).
- (14) Authentic <u>cis</u>- and <u>trans</u>-2-thioethercyclohexan-1-ols : R.L.Crumbie, B.S.Deal, J.E.Nemorin and D.D.Ridley, <u>Aust.J.Chem.</u>, <u>31</u>, 1965 (1978) ; G.H.Posner, D.Z.Rogers, C.M.Kinzig and G.M.Gurría, <u>Tetrahedron Lett.</u>, <u>16</u>, 3597 (1975).
- (15) The <u>trans</u>- and <u>cis</u>- products (Table (I)) appeared to be inseparable by TLC as well as by flash chromatography.
- (16) For an enantioselective ring opening reaction of cyclohexene oxide with thiols catalyzed by chiral zinc complexes, see : H.Yamashita and T.Mukaiyama, <u>Chem.Lett.</u>, 1643 (1985).
- (17) Products (A') and (B') were separated by each other (flash/SiO₂, hex./EtOAc =4:1) and dully characterized.
- (18) L.Birkofer and W.Kaiser, Liebigs Ann.Chem., 266 (1975).

(Received in France 29 September 1987)