777

New Reaction Mode of the Horner-Wadsworth-Emmons Reaction for the Preparation of α -Fluoro- α , β -unsaturated Esters

Shigeki Sano, Tsuyoshi Ando, Kenji Yokoyama, and Yoshimitsu Nagao*

Faculty of Pharmaceutical Sciences, The University of Tokushima, Sho-machi, Tokushima 770-8505, Japan

Fax +81-886-33-9503; E-mail ynagao@ph.tokushima-u.ac.jp

Received 14 April 1998_

Abstract: Excellent *E*-selectivity was observed in the Horner-Wadsworth-Emmons (HWE) reactions of ethyl 2-fluoro-2-diethylphosphonoacetate **1** with alkyl aryl ketones **2a-f** using Sn(OSO₂CF₃)₂ and *N*-ethylpiperidine. Mg(II)-promoted HWE reactions of **1** with aldehydes **2h,i** afforded α -fluoro- α , β -unsaturated esters **3h,i** in a *Z*-selective manner depending on the reaction temperatures.

 α -Fluoro- α , β -unsaturated esters play an important role in the preparation of biologically active fluorine compounds, and various synthetic methods have been developed.¹ Most of the construction methods for the α -fluoro- α , β -unsaturated esters have shown Zselectivity.² However, Horner-Wadsworth-Emmons (HWE) reactions of aldehydes with ethyl 2-fluoro-2-diethylphosphonoacetate 1 can preferentially furnish E- α -fluoro- α , β -unsaturated esters.³⁻⁵ There have been a few reports on the HWE reactions with ketones in the presence of some base but the stereoselectivity is not clear or poor.⁶ Recently, we have developed a new reaction mode of the HWE reaction using Sn(OSO₂CF₃)₂ and N-ethylpiperidine to obtain excellent Z-selectivity in the reactions of methyl bis(trifluoroethyl)phosphonoacetate with l alkyl aryl ketones.⁷ We now wish to report highly E-selective HWE reactions of ethyl 2-fluoro-2-diethylphosphonoacetate 1 with alkyl aryl ketones 2a-f using $Sn(OSO_2CF_3)_2$ and N-ethylpiperidine as shown in Scheme 1. A tendency to afford Z-alkenes in the Mg(II)-mediated HWE reactions of fluorophosphonate 1 with aldehydes is also described. All reaction conditions and results are summarized in Tables 1-3.

The HWE reactions of alkyl aryl ketones **2a-f** with **1** in the presence of sodium hydride in THF 0 °C gave the corresponding α -fluoro- α , β -unsaturated esters **3a-f** with modest *E*-selectivity (Table 1, entries 1-6). On the other hand, treatment of **2a-f** with **1** in the presence of Sn(OSO₂CF₃)₂ and *N*-ethylpiperidine in CH₂Cl₂ at 0 °C afforded alkenes **3a-f** in a highly *E*-selective manner, respectively (Table 2,

Table 1. NaH / THF mediated Horner-Wadsworth-Emmons reactions
of 1 with ketones 2a-g and aldehydes 2h,i ^a

Entry	Ketone or Aldehyde	<i>t /</i> h	Yield (%) ^b	Alkene (<i>E/Z</i>) ^c
1	2a	1	78	3a (85 : 15)
2	2b	2	93	3b (87 : 13)
3	2c	18	49	3c (78:22)
4	2d ^{<i>d</i>}	43	40	3d (72:28)
5	2e	1	97	3e (86 : 14)
6	2f	1	84	3f (90:10)
7	2g	1	86	3g (49:51) ^e
8	2h	1	82	3h (83 : 17)
9	2 i	1	82	3i (83 : 17)

^a Conditions: THF, 0 °C, 1 / NaH / 2 (1.7 : 1.5 :1)

^b Isolated yield

^{c 1}H NMR (400 MHz, CDCl₃) analysis

^d Reflux

^e HPLC (TSK-GEL Silica 60, hexane - propan-2-ol) analysis

aldenydes 2n,I"							
Entry	Ketone or Aldehyde	Solvent	<i>t /</i> h	Yield (%) ^b	Alkene (<i>E/Z</i>) ^c		
1	2a	CH ₂ Cl ₂	23	91	3a (97 : 3)		
2	2b	CH ₂ Cl ₂	21	92	3b (99:1)		
3	2b	THF	18	97	3b (93 : 7)		
4	2c	CH ₂ Cl ₂	20	95	3c (97:3)		
5	2d	CH ₂ Cl ₂	20	97	3d (98 : 2)		
6	2e	CH ₂ Cl ₂	19	94	3e (98 : 2)		
7	2f	CH ₂ Cl ₂	22	73	3f (99 : 1)		
8	2g	CH ₂ Cl ₂	22	86	3g (54 : 46) ^a		
9	2h	THF	14	92	3h (84 : 16)		
10	2i	THF	16	86	3i (95 : 5)		

Table 2. $Sn(OSO_2CF_3)_2 / N$ -ethylpiperidine / THF or CH_2Cl_2 mediatedHorner-Wadsworth-Emmons reactions of 1 with ketones 2a-g andaldehydes $2h.i^a$

 a Conditions: THF or CH_2Cl_2, 0 °C, 1 / Sn(OSO_2CF_3)_2 / N-ethylpiperidine / (1.4 : 1.68 : 1.54 : 1)

^b Isolated yield

^{c 1}H NMR (400 MHz, CDCl₃) analysis

^d HPLC (TSK-GEL Silica 60, hexane - propan-2-ol) analysis

Table 3. MgBr_2 / Et_3N / THF or i-PrMgBr / THF mediated Horner-Wadsworth-Emmons reactions of 1 with aldehydes $2h,i^a$

Entry	Aldehyde	Conditions	T/°C	Yield (%) ^b	Alkene (<i>E/Z</i>) ^c
1	2h	(A)	0	89	3h (19:81)
2	2h	(B)	reflux	86	3h (25 : 75)
3	2h	(B)	40	95	3h (26:74)
4	2h	(B)	0	82	3h (23:77)
5	2h	(B)	-40	43	3h (33:67)
6	2h	(B)	-78	34	3h (51 : 49)
7	2h	(B)	-100	13	3h (64 : 36)
8	2i	(A)	0	77	3i (53 : 47)
9	2i	(B)	reflux	74	3i (37:63)
10	2i	(B)	0	82	3i (70 : 30)
11	2 i	(B)	-78	12	3i (95 : 5)

^a Conditions: (A); THF, 1 h, 1 / MgBr₂ / Et₃N / 2 (1.4 : 1.68 : 1.54 : 1), (B); THF, 1 h, 1 /i-PrMgBr / 2 (1.7 : 1.5 : 1)

^b Isolated yield

^{c1}H NMR (400 MHz, CDCl₃) analysis

entries 1,2, and 4-7).⁸ The geometry of α -fluoro- α , β -unsaturated esters **3a-g** was assigned on the basis of ¹H-¹H NOE experiments (400 MHz, CDCl₃) of the corresponding primary alcohols derived by reduction of 3a-g with DIBAL-H in CH₂Cl₂ at 0 °C. When THF was employed as the solvent instead of CH2Cl2 in the same Sn(II)-promoted reaction of alkyl aryl ketone 2b with 1, E-selectivity of the alkenic product 3b decreased from 99 : 1 to 93 : 7. Interestingly, the NaH-promoted reactions of the ketones 2c,d bearing bulky i-Pr or t-Bu group in THF was hard to obtain the highly *E*-selective products **3c**,**d** (Table 1, entries 3 and 4), while the Sn(II)-promoted reactions of 2c,d in CH₂Cl₂ gave 3c,d in an excellent E-selective manner and in good yields (Table 2, entries 4 and 5) as well as those of the ketones 2a,b. Thus, the stereochemical outcome with high E-selectivity in the Sn(OSO₂CF₃)₂mediated HWE reactions of ketones 2a-f with fluorophosphonate 1 can be rationalized in terms of a six-membered transition state as shown in Fig. 1 (e.g. 2b).⁷ The stereoselectivity in the NaH-promoted HWE reactions of 2a-g with 1 seems to depend on the relative bulkiness between both substituents of the ketones in a plausible non-chelationcontrolled transition state. Under both reaction conditions as described above, the HWE reactions of ketone 2g with 1 gave a ca. 1 : 1 mixture of E- and Z-isomers of 3g (Table 1, entry 7; Table 2, entry 8), respectively.

Subsequently, the similar Sn(II)- and NaH-promoted reactions of aldehydes **2h**,**i** with fluorophosphonate **1** afforded the corresponding α -fluoro- α , β -unsaturated esters **3h**,**i** with a good or excellent *E*-selectivity (Table 1, entries 8 and 9; Table 2, entries 9 and 10). The geometry of **3h**,**i** was determined by the coupling constants between fluorine and the adjacent olefinic proton in their ¹H NMR analysis (400 MHz, CDCl₃) as follows; *E*-**3h** ($J_{\text{H-F}} = 22.3 \text{ Hz}$, lit.⁵ 22 Hz), *Z*-**3h** ($J_{\text{H-F}} = 35.1 \text{ Hz}$), *E*-**3i** ($J_{\text{H-F}} = 21.4 \text{ Hz}$), and *Z*-**3i** ($J_{\text{H-F}} = 32.8 \text{ Hz}$). Previously, we reported a characteristic reaction mode with Mg(II) in the aldol type reactions,

Figure 1. Plausible six-membered transition state involving Sn(II) chelation

which was quite different from that with Sn(II).⁹ Thus, tentative HWE reactions of benzaldehyde **2h** with **1** at various temperatures employing MgBr₂-triethylamine or *i*-PrMgBr gave Z-selective **3h** (Table 3, entries 1-5), which was contrary to the *E*-selectivity in the cases of Sn(II)- and NaH-promoted reactions at 0 °C (Table 1, entry 8; Table 2 entry 9). The Mg(II)-promoted HWE reaction of **2i** with **1** gave **3i** in the modest *Z*-selective manner (Table 3, entry 9). Interestingly, the stereoselectivity of α -fluoro- α , β -unsaturated esters **3h**,**i** in the Mg(II)-promoted reactions of aldehydes **2h**,**i** with **1** was variable depending on the reaction temperatures. The *Z*-selective manner (Table 3, entries 2-5 and 9) in the Mg(II)-promoted reactions of **2h**,**i** changed to *E*-selective one (Table 3, entries 7, 10, and 11) with decreasing the reaction temperature.⁴ These results made it possible to prepare the *Z*-isomers of α -fluoro- α , β -unsaturated esters by exploiting the Mg(II)-promoted HWE reaction.

References and Notes

- (1) Burton, D. J.; Yang, Z.-Y.; Qui, W. *Chem. Rev.* **1996**, *96*, 1641 and references cited therein.
- Normant, J. F.; Foulon, J. P.; Masure, D.; Sauvetre, R.; Villieras, J. Synthesis 1975, 122. Ishihara, T.; Kuroboshi, M. Chemistry Lett. 1987, 1145. Matsuo, N.; Kende, A. S. J. Org. Chem. 1988, 53, 2304. Welch, J. T.; Herbert, R. W. J. Org. Chem. 1990, 55, 4782. Allmendinger, T. Tetrahedron 1991, 47, 4905. Usuki, Y.; Iwaoka, M.; Tomoda, S. J. Chem. Soc., Chem. Commun. 1992, 1148. Clemenceau, D.; Cousseau, J. Tetrahedron Lett. 1993, 34, 6903.
- (3) Liu, R. S. H.; Matsumoto, H.; Asato, A. E.; Denny, M.; Shichida, Y.; Yoshizawa, T.; Dahlquist, F. W. J. Am. Chem. Soc. 1981, 103, 7195. Asato, A. E.; Kini, A.; Denny, M.; Liu, R. S. H. J. Am. Chem. Soc. 1983, 105, 2923. Tsai, H.-J.; Thenappan, A.; Burton, D. J. Tetrahedron Lett. 1992, 33, 6579. Patrick, T. B.; Lanahan, M. V.; Yang, C.; Walker, J. K.; Hutchinson, C. L.; Neal, B. E. J. Org. Chem. 1994, 59, 1210. Tsai, H.-J.; Thenappan, A.; Burton, D. J. J. Org. Chem. 1994, 59, 7085. Piva, O. Synlett 1994, 729. Shinada, T.; Sekiya, N.; Bojkova, N.; Yoshihara, K. Synlett 1995, 1247.
- (4) Etemad-Moghadam, G.; Seyden-Penne, J. Bull. Soc. Chim. Fr. 1985, 448.
- (5) Thenappan, A.; Burton, D. J. J. Org. Chem. **1990**, 55, 4639.
- (6) Machleidt, H.; Wessendorf, R. Justus Liebigs Ann. Chem. 1964, 674, 1. Lovey, A. J.; Pawson, B. A. J. Med. Chem. 1982, 25, 71. Elkik, E.; Francesch, C. Bull. Soc. Chim. Fr. 1985, 783.
- (7) Sano, S.; Yokoyama, K.; Fukushima, M.; Yagi, T.; Nagao, Y. *Chem. Commun.* **1997**, 559.
- (8) A typical procedure is as follows. To a suspension of $Sn(OSO_2CF_3)_2$ (820 mg, 1.97 mmol) and 2-fluoro-2-

diethylphosphonoacetate **1** (330 µL, 1.64 mmol) in anhydrous CH₂Cl₂ (5 mL) was added *N*-ethylpiperidine (247 µL, 1.80 mmol) at 0 °C. The mixture was stirred at 0 °C for 1 h under argon, and alkyl aryl ketone **2b** (155 µL, 1.17 mmol) was added. After being stirred at 0 °C for 21 h under argon, the reaction mixture was poured into H₂O (15 mL) and then extracted with CHCl₃ (3 x 50 mL). To the CHCl₃ extract was added *n*-hexane (300 mL), and the mixture was submitted to filtration through a silica gel short column. The filtrate was evaporated *in vacuo* to afford a crude product **3b** (*E* : *Z* = 99 : 1), which was purified by chromatography on a silica gel column eluting with *n*-hexane/AcOEt (20 : 1) to obtain α -fluoro- α , β -unsaturated esters *E*-**3b** (37.6 mg, 91%) and *Z*-**3b** (2.4 mg, 1%) as a pale yellow oil, respectively. *E*-**3b**: ¹H NMR (400 MHz, CDCl₃) δ 0.99 (3 H, t, *J* = 7.3 Hz), 1.00 (3 H, t, *J* = 7.3 Hz), 2.55 (2 H, dq, ⁴*J*_{H,F} = 3.6 Hz, *J* = 7.3 Hz), 4.02 (2 H,

q, *J* = 7.3 Hz), 7.10-7.17 (2 H, m), 7.30-7.38 (3 H, m); IR (NaCl) 2980, 2937, 1729, 1656, 1444, 1265, 1151, 763, 700 cm⁻¹; HREI-MS calcd for $C_{13}H_{15}O_2F$ MW 222.1056, found *m/e* 222.1057 (M⁺); Anal. Calcd for $C_{13}H_{15}O_2F$: C, 70.25; H, 6.80. Found: C, 69.96; H, 6.92. *Z*-**3b**: ¹H NMR (400 MHz, CDCl₃) δ 1.03 (3 H, t, *J* = 7.3 Hz), 1.37 (3 H, t, *J* = 7.3 Hz), 2.90 (2 H, dq, ⁴*J*_{H,F} = 1.8 Hz, *J* = 7.3 Hz), 4.34 (2 H, q, *J* = 7.3 Hz), 7.28-7.43 (5 H, m); IR (NaCl) 2975, 2932, 1725, 1642, 1445, 1247, 1142, 766, 699 cm⁻¹; HREI-MS calcd for $C_{13}H_{15}O_2F$ MW 222.1056, found *m/e* 222.1069 (M⁺).

(9) Sano, S.; Kobayashi, Y.; Kondo, T.; Takebayashi, M.; Maruyama, S.; Fujita, T.; Nagao, Y. *Tetrahedron Lett.* **1995**, *36*, 2097. Sano, S.; Liu, X.-K.; Takebayashi, M.; Kobayashi, Y.; Tabata, K.; Shiro, M.; Nagao, Y. *Tetrahedron Lett.* **1995**, *36*, 4101. Hayashi, K.; Kogiso, H.; Sano, S.; Nagao, Y. Synlett **1996**, 1203.