## Anchimeric Assistance by $\gamma$ -Aryl Groups in Solvolysis of Organosilicon lodides. Some Remarkably Large Remote Substituent Effects

## Colin Eaborn,\* Karen L. Jones, and Paul D. Lickiss

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

The very large spread of rates in reactions of the iodides  $(Me_3Si)_2C(SiMe_2C_6H_4X)(SiMe_2I)$  (X = *p*-OMe, *p*-Me, H, *p*-CI, or *m*-CF<sub>3</sub>) with  $(CF_3)_2CHOH$  and  $CF_3CH_2OH$  (the compound with X = *p*-OMe is  $1.9 \times 10^5$  and  $6.5 \times 10^4$  times, respectively, as reactive as that with X = *m*-CF<sub>3</sub>) is attributed to nucleophilic assistance by the aryl group to the leaving of the I<sup>-</sup> ion.

It was shown previously that in reactions of the iodides (Me<sub>3</sub>Si)<sub>3</sub>C(SiR<sub>2</sub>I) with electrophiles, such as Ag<sup>I</sup> salts or trifluoroacetic acid, rearranged products of the type (Me<sub>3</sub>- $Si_2C(SiR_2Me)(SiMe_2Y)$  can be formed exclusively (e.g. R = Ph or Et along with unrearranged products (Me<sub>3</sub>Si)<sub>3</sub>C-(SiR<sub>2</sub>Y), apparently via a cation of the type [(1), Z = Me].<sup>1</sup> Analogous 1,3-migration of a vinyl group was observed in the reaction of (Me<sub>3</sub>Si)<sub>2</sub>C(SiMe<sub>2</sub>CH=CH<sub>2</sub>)(SiEt<sub>2</sub>I) with silver salts, and the much greater ease of reaction of the iodide  $(Me_3Si)_2C(SiMe_2CH=CH_2)(SiMe_2I)$  than of  $(Me_3Si)_3C$ -SiMe<sub>2</sub>I toward CF<sub>3</sub>CH<sub>2</sub>OH or CF<sub>3</sub>CO<sub>2</sub>H was attributed to nucleophilic assistance by the vinyl group to the rate-determining departure of the iodide ion to form the cation [(1), R =Me,  $Z = CH=CH_2$ .<sup>2</sup> The corresponding 1,3-migration of the Ph group was recently observed in the reaction of (Me<sub>3</sub>- $Si_2C(SiMe_2Ph)(SiEt_2I)$  with  $Ag^I$  salts, and attributed to formation of the cation [(2), R = Et, X = H].<sup>3</sup>

That observation did not, however, show that the aryl group participated in the rate-determining step, and an earlier attempt to detect such participation in the reactions of the related iodide  $(Me_2PhSi)_3CSiMe_2I$  gave ambiguous results.<sup>4</sup> We have now demonstrated beyond reasonable doubt that the aryl groups in  $(Me_3Si)_2C(SiMe_2C_6H_4X)(SiMe_2I)$  can provide powerful anchimeric assistance in alcoholysis.

The iodides were made (in low yields) by the route shown in Scheme 1. Rate constants were determined by <sup>1</sup>H n.m.r. spectroscopy for their reactions with (CF<sub>3</sub>)<sub>2</sub>CHOH and CF<sub>3</sub>CH<sub>2</sub>OH, both of which can provide strong electrophilic assistance to the leaving of the iodide ion. (For the exact compositions of the media see the footnotes to Table 1; some CDCl<sub>3</sub> was present to ensure dissolution of the iodide and Et<sub>3</sub>N to prevent cleavage of the Si–aryl bonds by formed HI.) Observed first-order rate constants, k, and relative rate constants,  $k_{rel}$ , are shown in Table 1. The product from the reaction with  $CF_3CH_2OH$  was the expected alkoxide (Me<sub>3</sub>-Si)<sub>2</sub>C(SiMe<sub>2</sub>C<sub>6</sub>H<sub>4</sub>X)(SiMe<sub>2</sub>OCH<sub>2</sub>CF<sub>3</sub>), but that from reaction with (CF<sub>3</sub>)<sub>2</sub>CHOH was the hydroxide, (Me<sub>3</sub>Si)<sub>2</sub>C-(SiMe<sub>2</sub>C<sub>6</sub>H<sub>4</sub>X)(SiMe<sub>2</sub>OH), presumably formed from traces of water, which competes successfully with (CF<sub>3</sub>)<sub>2</sub>CHOH for the intermediate cation because of the bulk and low nucleophilicity of this alcohol.

The features of the results, and suggested explanations, are

**Table 1.** Observed (k) and relative  $(k_{rel})$  first-order rate-constants, m reactions of the iodides  $(Me_3Si)_2C(SiMe_2C_6H_4X)(SiMe_2I)$  with ROH at 35 °C.

|                   | $\mathbf{R} = (\mathbf{CF}_3)_2 \mathbf{CH}^{\mathbf{a}}$ |                     | $R = CF_3CH_2^b$     |                       |
|-------------------|-----------------------------------------------------------|---------------------|----------------------|-----------------------|
| Х                 | $10^{6} k/s^{-1}$                                         | k <sub>rel</sub>    | $10^{6} k/s^{-1}$    | k <sub>rel</sub>      |
| p-OMe             | $3.05 \times 10^{3}$                                      | 151                 | $1.40 \times 10^{3}$ | 80                    |
| p-Me              | $6.3 \times 10^{2}$                                       | 31                  | $1.65 	imes 10^2$    | 9.4                   |
| H                 | $2.02 \times 10$                                          | 1.00                | $1.75 \times 10$     | 1.00                  |
| p-Cl              | $3.7 \times 10^{-1}$                                      | $1.8	imes10^{-2}$   | $8.5 	imes 10^{-1}$  | $4.9 \times 10^{-2}$  |
| m-CF <sub>3</sub> | $1.58 \times 10^{-2}$                                     | $7.8 	imes 10^{-4}$ | $2.17 	imes 10^{-2}$ | $1.24 \times 10^{-3}$ |

<sup>a</sup> A solution of 5—10 mg of the iodide and *ca*. 2 mol. equiv. of  $Et_3N$  in 600 µl of CDCl<sub>3</sub> was mixed with 200 µl of (CF<sub>3</sub>)<sub>2</sub>CHOH. <sup>b</sup> As footnote a, but with 400 µl of CDCl<sub>3</sub> and 500 µl of CF<sub>3</sub>CH<sub>2</sub>OH.



$$(Me_{3}Si)_{2}CCl_{2} \xrightarrow{i, ii} (Me_{3}Si)_{2}C(Cl)(SiMe_{2}C_{6}H_{4}X)$$

$$\downarrow i, iii$$

$$(Me_{3}Si)_{2}C(SiMe_{2}C_{6}H_{4}X)(SiMe_{2}I) \xleftarrow{iv} (Me_{3}Si)_{2}C(SiMe_{2}C_{6}H_{4}X)(SiMe_{2}H)$$

Scheme 1. Reagents and conditions: i, Bu<sup>p</sup>Li in tetrahydrofuran–Et<sub>2</sub>O–C<sub>5</sub>H<sub>12</sub> at -110 °C; ii, XC<sub>6</sub>H<sub>4</sub>SiMe<sub>2</sub>F, -110 °C then to 20 °C; iii, Me<sub>2</sub>SiHCl, -110 °C then to 20 °C; iv, I<sub>2</sub> in CCl<sub>4</sub> in presence of an excess of PhSiMe<sub>3</sub> for X = H, p-Cl, and m-CF<sub>3</sub> and of XC<sub>6</sub>H<sub>4</sub>SiMe<sub>3</sub> for X = p-OMe and p-Me.

as follows: (a) In the reactions with both alcohols there is a remarkably large spread of rates; the *p*-OMe is  $1.9 \times 10^5$  times as reactive as the *m*-CF<sub>3</sub> compound in (CF<sub>3</sub>)<sub>2</sub>CHOH, and the corresponding factor in CF<sub>3</sub>CH<sub>2</sub>OH is  $6.5 \times 10^4$ . The magnitudes of these substituent effects seem to leave no doubt that the aryl group must be nucleophilically involved in the rate-determining transition state, which can confidently be assumed to be formation of the intermediate [(2), R = Me] in an S<sub>N</sub>1 process. (b) Values of log  $k_{rel}$  in both media gave excellent linear plots against  $\sigma$ -constants, with values of  $\rho$  of -7.77 (corr. coeff., 0.9994) and -6.68 (corr. coeff., 0.997), respectively.

Since the cation (2) closely resembles a Wheland-intermediate in an electrophilic aromatic substitution, and since the spread of rates is high, a correlation with  $\sigma^+$ -constants, or with  $[\sigma^+ r(\sigma^+ - \sigma)]$  with a value of r fairly close to unity, was expected. (Correlations with  $\sigma^+$ , even for low values of  $\rho$  of 0.89 and 1.27, respectively, were found for solvolyses of the tosylates,  $XC_6H_4CH_2CH_2O_3SC_6H_4Me$ -p in EtOH and CF<sub>3</sub>CH<sub>2</sub>OH, which involve anchimeric assistance by 1,2bridging).<sup>5</sup> We very tentatively suggest that the origin of this anomaly may lie, at least in part, in the severe steric hindrance to solvation around the forming cationic centres on the route to the intermediate [(2), R = Me]. The transition state is presumably not far along the reaction co-ordinate towards [(2), R = Me] and there is little disturbance of the  $\pi$ -system of the aryl group, but because there is little dispersal of the charge by solvation a large part of it has to be taken up by the aromatic ring, and thus the substituent effects are abnormally large.

For comparison, the effects of the substituents were examined (under pseudo first-order conditions) for the  $S_N 2$  displacement reaction of the iodides with KNCS in MeCN. Values of  $k_{rel}$  at 35 °C for a mixture of a solution of the iodide

(5—10 mg) in 50 µl of CCl<sub>4</sub> with 500 µl of 0.25 M KCNS in MeCN were as follows: X = p-OMe, 0.84; *p*-Me, 0.93; H, 1.00; *p*-Cl 1.4; *m*-CF<sub>3</sub>, 1.93. A plot of log  $k_{rel}$  against  $\sigma^0$  is reasonably linear (r = 0.996;  $\rho = 0.55$ ). The substituent effects are consistent with normal through-bond transmission of electronic effects.

It is noteworthy that 1,3-aryl bridging is unknown for carbocations, whereas anchimeric assistance by more remote aryl groups, and, of course, by  $\beta$ -aryl groups, is well known.<sup>7</sup>

We thank the S.E.R.C. for support, the Royal Society for a University Research Fellowship (to P. D. L.), and the Department of Education for Northern Ireland for a research studentship (to K. L. J.).

Received, 14th November 1988; Com. 8/04530E

## References

- C. Eaborn, D. A. R. Happer, S. P. Hopper, and K. D. Safa, J. Organomet. Chem., 1980, 188, 179; C. Eaborn, *ibid.*, 1982, 239, 93;
   C. Eaborn, in 'Organosilicon and Bio-organosilicon Chemistry,' ed. H. Sakurai, Ellis Horwood, Chichester, 1985, pp. 123–130.
- 2 G. A. Ayoko and C. Eaborn, J. Chem. Soc., Perkin Trans. 2, 1987, 1047.
- 3 C. Eaborn, P. D. Lickiss, S. T. Najim, and W. A. Stańczyk, J. Chem. Soc., Chem. Commun., 1987, 1461.
- 4 C. Eaborn and A. I. Mansour, J. Chem. Soc., Perkin Trans. 2, 1985, 729.
- 5 F. L. Schadt and P. v. R. Schleyer, J. Am. Chem. Soc., 1973, 95, 7860.
- 6 D. B. Azarian, C. Eaborn, and P. D. Lickiss, J. Organomet. Chem., 1987, 328, 255.
- 7 P. Vogel, 'Carbocation Chemistry', Elsevier, Amsterdam, 1985, pp. 267—272; W. J. le Noble, 'Highlights of Organic Chemistry,' Dekker, New York, 1974, pp. 730—749.