Kurzmitteilungen:

Cleavage Reactions of 4-Thiazolidinone-2-thiones:

57

Synthesis and Reactions of New 1,2,4-Triazoles and Their Biological Activities

Ringspaltung bei 4-Thiazolidinon-2-thionen: Synthese, Reaktionen und biologische Wirkung neuer 1,2,4-Triazole

Hamed A. Ead* and Nadia H. Metwalli

Department of Chemistry, Faculty of Science, Cairo University, Giza, A.R. Egypt.

Received April 14, 1989

In the last few years we have been involved in a programme aimed for exploring potential utilities of thiazolidinones in heterocyclic syntheses. During this phase of our research we reported on condensation reactions of thiazolidinones with nucleophiles¹⁻⁴). In conjunction with this work we report here on reactions of thiazolidinones with a nucleophile that leads to ring cleavage.

The reaction of 5-phenylhydrazono-2-thioxo-4-thiazolidinone (1) with hydrazine hydrate affords a product C₉H₉N₅S₂. Structure **3** was suggested for this product. Its ¹H-NMR spectrum showes 9 H, two singlets at δ 13.3 and 13.5 (2 NH) besides a multiplet at δ 6.7-7.4 corresponding to 7 H (5H, arom. + 2H; NH, SH). The formation of **3** is assumed to proceed via the cyclization of 4-(α -phenylhydrazono-mercaptoacetyl)thiosemicarbazide (**2**). The formation of the 4-(1-phenylhydrazono-1-mercaptomethyl)-1,2,4-triazol-4-ine-3-thione (**3**) or tautomers like **3a** via the reaction of 1,2,4-triazoles from reaction of substituted rhodanines with hydrazine hydrate under similar conditions⁵⁻⁸).

Refluxing of 3 with formaldehyde or benzaldehyde in absol. ethanol gave the new fused thiazolo[4,3-c]triazoles 4a and b. Heating of 3 with acetone gave 4c. The structures of 4a-c were deduced from elemental and spectral data.

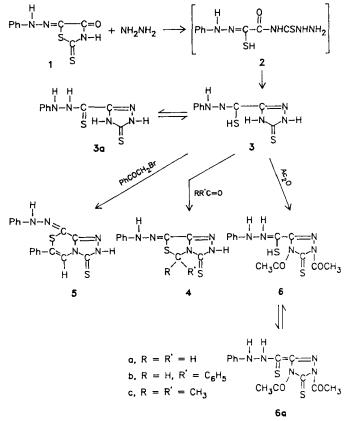
3 reacted with phenacyl bromide in the presence of triethylamine to give the thiazolo[5,4-c]thiazine 5.

Treatment of 3 with acetic anhydride affords the diacetyl derivative 6.

Biological Results

Results of antimicrobial activity tests are shown in Table 1: only 4a and 5 show slight effect on some organisms.

The authors wish to thank Dr. Nagwa M. Morsy, Department of Botany, the same University, for the biological tests.


Experimental Part

Melting points uncorr.- IR spectra: Pye Unicam SP-1100 Spectrophotometer, KBr.- ¹H-NMR spectra: Varian EM-390 90 MHz, DMSO-d₆, TMS as intern. standard, chem. shifts δ ppm.- Microanalysis: Microanalytical Center, Cairo University.- 1 was prepared according to lit.⁹⁾.

Table 1: Antimicrobial Activities in vitro

	3	4a	4b	5	6
E. Coli	-	_	-	-	_
B. subtilis	-	-	-	5 mm	-
B. cereus	-	3 mm	-	-	-
Sarcina sp.		-	-	5 mm	-
Micrococcus sp.	-	_	-	-	
Mycobacterium sp.	_	-	-	-	
Actinomyces sp.	-	_	-	-	_
Saccharomyces sp.	_			-	_

Inhibition zone around the disc (each disc contains 100 μ g).

4-(1-Phenylhydrazono-1-mercaptometyl)-1,2,4-triazol-4-ine-3-thione (3)

A mixture of (0.01 mole) 5-phenylhydrazono-2-thioxo-4-thiazolidinone (1) and hydrazine hydrate (0.01 mole) was left overnight at room temp.

Table 2: Data of compounds 3-6.

Compd	M.p. °C	Yield %	Mol. formula	Mol. Weight	Analysis Calcd./Found			¹ H-NMR (δ ppm)
				_	С	Н	S (%)	
3a 233-5 70	70	C9H9N5S2	251.2	43.0	3.61	25.5	two s, 13.3; 13.5 (2H, 2 NH); 6.7-7.4	
					42.6	3.40	25.0	(m, 7H, arom. + 2 NH).
4a	226-7	70	C ₁₀ H ₉ N ₅ S ₂	263.2	45.6	3.45	24.3	5.4-5.6 (s, 2H, CH ₂); 13.3 (s, 1H, NH);
					45.2	3.25	23.8	7.2-7.6 (m, 6H, arom. + NH).
4b	235-6	65	$C_{16}H_{13}N_5S_2$	339.3	56.6	3.86	18.8	5.2 (1H, CH); 13.3 (s, 1H, NH); 7.1-7.5
					57.0	3.81	18.6	(m, 11H, arom. + NH).
4c	240-2	75	$C_{12}H_{13}N_5S_2$	291.3	49.5	4.5	21.9	2.2 (s, 6H, 2 CH ₃); 13.2 (s, 1H, NH);
					49.5	4.4	21.6	7.2-7.5 (m, 6H, arom. + NH).
5	244-5	65	$C_{17}H_{13}N_5S_2$	351.3	58.1	3.73	18.2	13.6 (s, 1H, NH); 7.0 (s, 1H, CH);
					57.7	3.62	18.0	7.2-7.6 (m, 11H, arom. + NH).
ба	246-7	75	$C_{13}H_{13}N_5O_2S_2$	335.3	46.6	3.91	19.1	2.4 (s, 6H, 2 OCH ₃); 7.2-7.6 (m, 7H,
					46.2	3.73	18.9	arom. + 2 NH).

The product was triturated with cold ice-hydrochloric acid. The solid was filtered off and washed two times with H_2O to afford an orange precipitate which crystallized from ethanol as orange crystals (Table 2).

Reaction of 3 with formaldehyde and benzaldehyde to afford 4a and b

To a solution of 3 (0.01 mole) in absol. ethanol, formaldehyde (40%) or benzaldehyde (0.01 mole) was added. The mixture was refluxed for 2 h then left to cool. The solid was filtered off, washed with ethyl alcohol and crystallized from ethanol/dioxane to afford yellow crystals of 4a or b, respectively (Table 2).

Reaction of 3 with acetone to afford 4c

0.01 Mole 3 were refluxed in acetone (30 ml) for 1 h, then left to cool, filtered off and the solid was crystallized from acetone to give yellow crystals (Table 2).

Reaction of 3 with Phenacyl bromide to afford 5

A solution of equimolar amounts of 3 (0.01 mole) and phenacylbromide in DMF (15 ml) in the presence of a few drops of triethylamine was heated under reflux for 5 h, then left to cool, and filtered off. The solid was purified by crystallization (Table 2).

Acylation of 3 to afford 6

A solution of 3 (0.01 mole) in acetic anhydride (30 ml) was heated for 1 h and then cooled. On dilution with water a crude precipitate was separated. This solid was purified by crystallization from glacial acetic acid (Tables 2).

Methods used in Biological Tests

I. Test Organisms: Differnt strains of bacteria, actinomycetes, and yeast fungi (Table 1).

II. Test Media: A solid nutrient material as described by Wickerham¹⁰⁾.

III. Test for Antimicrobial Activity: Antimicrobial activity was tested by the diffusion plate method¹¹⁾. Each pore received about 0.1 ml, equivalent to 100 μ g of the test compound.

References

- N. A. Kassab, M. H. Elnagdi, N. A. Messeha, and H. A. Ead, J. Prakt. Chem. 314, 799 (1972).
- 2 N. A. Kassab, M. H. Elnagdi, and H. A. Ead, J. Prakt. Chem. 315, 265 (1973).
- 3 N. A. Kassab, S. O. Abdallah, and H. A. Ead, Z. Naturforsch. 31b, 853 (1976).
- 4 N. A. Kassab, S. O. Abdallah, and H. A. Ead, Z. Naturforsch. 31b, 380 (1976).
- 5 J. S. Davidson, J. Chem. Soc. 1964, 5903.
- 6 O. P. Shavika, S. N. Baranov, and V. N. Artemov, Dokl. Akad. Nauk. SSR 186, 1102 (1969); C.A. 71, 70540 r (1969).
- 7 O. P. Shvaika, V. N. Artemov, and S. M. Baranov, Ukr. Khim. Zh. 37, 172 (1971); C.A. 74, 125534 m (1971).
- 8 V. N. Artemov, S. N. Baranov; N. A. Kovach, and O. P. Shvaika, Dokl. Akad. Nauk. SSR 211, 1369 (1973); C.A. 80, 3422b (1974).
- 9 A. P. Grishchuk and S. N. Baranov, Zhur. Obschchci. Khim. 28, 896 (1958); C.A. 52, 17234 (1958).
- 10 I. J. Wickerham, Tech. Bull. 1029 (1951).
- D. Greenwood, Antimicrobial Chemotherapy, p. 92, Bailliere Tindall, London 1983.

[KPh509]