ISOLATION AND STRUCTURES OF TWO NEW p-HYDROXYSTYRENE GLYCOSIDES, PTELATOSIDE-A AND PTELATOSIDE-B FROM BRACKEN, PTERIDIUM AQUILINUM VAR. LATIUSCULUM, AND SYNTHESIS OF PTELATOSIDE-A

Makoto OJIKA, Kazumasa WAKAMATSU, Haruki NIWA, Kiyoyuki YAMADA, and Iwao HIRONO[†]
 Department of Chemistry, Faculty of Science, Nagoya University, Chikusa, Nagoya 464
 † Department of Carcinogenesis and Cancer Susceptibility, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108

Two new p-hydroxystyrene glycosides, ptelatoside-A and ptelatoside-B were isolated from the carcinogenic fraction of aqueous extracts of bracken, <u>Pteridium</u> <u>aquilinum</u> var. <u>latiusculum</u>, and their structures were established to be $p-\beta$ -primeverosyloxystyrene and $p-\beta$ -neohesperidosyloxystyrene, respectively by chemical and spectral means. A synthesis of ptelatoside-A was achieved.

The edible plant, bracken (<u>Pteridium aquilinum var. latiusculum</u>: Warabi in Japanese) has been known to show carcinogenicity to various experimental animals.¹⁾ Recently we have examined the constituents of the aqueous extracts of this plant, isolated a novel norsesquiterpene glucoside, ptaquiloside (<u>9</u>) from the fraction exhibiting strong carcinogenicity, and revealed the carcinogenic property of ptaquiloside (<u>9</u>).²⁾ In order to examine whether or not this carcinogenic fraction contains another type of carcinogen(s), we have performed further scrutiny of this same fraction, resulting in the isolation of two new <u>p</u>-hydroxystyrene glycosides, ptelatoside-A (<u>1</u>) and ptelatoside-B (<u>2</u>). Herein we wish to describe the structural elucidation of these two new <u>p</u>-hydroxystyrene glycosides, <u>1</u> and <u>2</u>, and the unambiguous synthesis of ptelatoside-A (<u>1</u>).

The dried powdered bracken (3 kg) was extracted with boiling water (3 x 30 l, 10 min each). The combined aqueous extracts were concentrated and treated with the resin Amberlite XAD-2. The portion adsorbed on the resin was eluted with methanol and repeatedly partitioned (<u>n</u>-BuOH - H₂O). The <u>n</u>-BuOH fraction (<u>ca</u>. 0.3 *) exhibiting strong carcinogenicity to rats was separated by chromatography on silica gel [CHCl₃ - MeOH (4:1)] and then alumina [MeOH - H₂O (4:1)] to give a mixture of glycosides. Further purification by preparative HPLC³⁾ afforded two new glycosides, ptelatoside-A (<u>1</u>) (120 mg, 0.004*) and ptelatoside-B (<u>2</u>) (90 mg, 0.003*), respectively.

Ptelatoside-A (<u>1</u>): $C_{19}H_{26}O_{10}$;⁴⁾ mp 183-185 °C (H₂O - acetone); $[\alpha]_D^{22}$ -104° (<u>c</u> 0.68, H₂O); UV (MeOH) λ_{max} (ϵ) 254 nm (19 500), 288 (shoulder) (1 700), 299 (shoulder) (1 000); IR (KBr) 3410, 1628, 1606, 1511 cm⁻¹; ¹H NMR (CD₃OD, 90 MHz) δ 4.33 (1H, d, J = 7.0 Hz, H-1"), 5.11 (1H, dd, J = 10.8, 1.1 Hz, H-8), 5.64 (1H, dd, J = 17.6, 1.1 Hz, H-8), 6.68 (1H, dd, J = 17.6, 10.8 Hz, H-7), 7.07 and 7.37 (total 4H, AA'BB' system, aromatic protons); ¹³C NMR (Table 1).

Ptelatoside-B (2): $C_{20}H_{28}O_{10}$;⁴⁾ amorphous powder; $[\alpha]_D^{23}$ -94.8° (<u>c</u> 1.00, H₂O); UV (MeOH) λ_{max} (ϵ) 254 nm (17 800), 288 (shoulder) (1 900), 299 (shoulder) (1 100); IR (KBr) 3430, 1628, 1605, 1512 cm⁻¹; ¹H NMR (CD₃OD, 90 MHz) δ 1.29 (3H, d, J = 6.2 Hz, H-6"), 5.01 (1H, d, J = 7.0 Hz, H-1'), 5.11 (1H, dd, J = 10.8, 1.1 Hz, H-8), 5.28 (1H, d, J = 1.5 Hz, H-1"), 5.62 (1H, dd, J = 17.6, 1.1 Hz, H-8), 6.67 (1H, dd, J = 17.6, 10.8 Hz, H-7), 7.00 and 7.35 (total 4H, AA'BB' system, aromatic protons); ¹³C NMR (Table 1).

In the ¹H NMR spectrum of <u>1</u>, the signals at $\delta_{\rm H}$ 7.37, 7.07, 6.68, 5.64, and 5.11 strongly suggested the presence of <u>p</u>-O-substituted styrene moiety in <u>1</u>, which was further supported by the ¹³C NMR spectrum ($\delta_{\rm C}$ 157.0, 117.7, 128.4, 133.5, 136.7, and 114.0) and the UV spectrum of <u>1</u>. On acidic methanolysis [H₂SO₄ - MeOH (1:200), reflux, 3.5 h], <u>1</u> gave a mixture of methyl glycosides of D-xylose^{5a)} and D-glucose^{5b)} together with a phenol <u>5</u>⁶⁾ [mp 98-100.5 °C (Et₂O - hexane)], a methanol adduct of the aglycone, <u>p</u>-hydroxystyrene. Acetylation of <u>1</u> (Ac₂O - Py, room temp, 14 h) gave the corresponding hexaacetate <u>3</u>⁷⁾ [mp 97.5-100 °C (MeOH), [α]²⁰_D -54.4° (<u>c</u> 1.0, CHCl₃)]. In the ¹³C NMR spectrum of <u>1</u>, the signals at $\delta_{\rm C}$ 69.1, 100.9, and 104.1 suggested the sugar moiety of <u>1</u> to be represented as β -D-xylopyranosyl-(1+6)- β -D-glucopyranosyl (β -primeverosyl), which was further supported by the detailed analysis of ¹H NMR spectrum of <u>3</u>. Consequently ptelatoside-A was determined to be <u>p</u>- β -primeverosyloxystyrene (<u>1</u>).⁸

Comparison of the ¹H NMR and ¹³C NMR spectra of <u>2</u> with those of <u>1</u> revealed the presence of the same aglycone, <u>p</u>-hydroxystyrene in <u>2</u> as in <u>1</u>. On acidic methanolysis [H₂SO₄ - MeOH (1:200), reflux, 3.5 h], <u>2</u> gave a mixture of methyl glycosides of D-glucose^{5b} and L-rhamnose^{5C} together with the phenol <u>5</u>.⁶ Acetylation of <u>2</u> (Ac₂O - Py, room temp, 14 h) gave the corresponding hexaacetate $\frac{4^{9}}{1}$ [amorphous powder, $[\alpha]_{D}^{24}$ -29.4° (<u>c</u> 0.47, CHCl₃)]. The signals at δ_{C} 61.4, 76.8, 99.2, and 102.1 in the ¹³C NMR spectrum of <u>2</u> and the signals at δ_{H} 3.87, 4.60, and 5.43 in the ¹H NMR spectrum of <u>4</u> suggested the sugar moiety to be represented as α -L-rhamnopyranosyl-(1+2)- β -D-glucopyranosyl (β -neohesperidosyl). Ptelatoside-B was thus determined to be <u>p</u>- β -neohesperidosyloxystyrene (<u>2</u>).

In order to confirm the structure of the glycoside <u>1</u> unambiguously and secure a large amount of <u>1</u> for examining carcinogenicity of <u>1</u>, the synthesis of <u>1</u> was attempted and executed as follows. <u>p</u>-Ethylphenyl 2,3,4,6-tetra-O-acetyl- β -Dglucopyranoside (<u>6</u>)¹⁰) was converted to <u>p</u>-ethylphenyl 2,3,4-tri-O-acetyl- β -Dglucopyranoside (<u>7</u>)¹¹) [mp 138-139 °C (EtOH - hexane), [α]_D²² -13.2° (<u>c</u> 1.35, CHCl₃)] in 65% overall yield by the sequence: (i) methanolysis (NaOMe - MeOH, room temp, 1 h); (ii) tritylation [(Ph)₃CCl - Py, 100 °C, 12 h]; (iii) acetylation (Ac₂O - Py, room temp, 3 h); (iv) detritylation (AcOH - H₂O, 100 °C, 50 min). Condensation of <u>7</u> with α -acetobromo-D-xylose [Hg(CN)₂ - HgBr₂, MeCN, room temp, 1 h]¹²) gave the desired disaccharide <u>8</u>¹¹) [mp 84.5-87 °C (EtOH - hexane), [α]_D²³ -46.4° (<u>c</u> 1.0, CHCl₃)] in 86% yield. Photobromination¹³) of <u>8</u> (hv, Br₂ - NaHCO₃, CHCl₃, room temp, 30 min) followed by dehydrobromination¹³) (AcONa, AcOH - Ac₂O, reflux, 40 h) gave the hexaacetate <u>3</u>¹¹ [mp 97.5-100 °C (MeOH)] in 73% yield, which was identical to the hexaacetate <u>3</u> derived from natural <u>1</u> in all respects (mp, mmp,

 $[\alpha]_{p}$, ¹H NMR, and chromatographic properties). Finally methanolysis of 3 (NaOMe - MeOH, room temp, 1.5 h) afforded p-β-primeverosyloxystyrene (1) [mp 182-184 °C (H₂O - acetone)] in 88% yield. Spectral properties (¹H and ¹³C NMR, IR, and UV) and physical properties (mp, mmp, and $[\alpha]_{p}$) of synthetic <u>l</u> were identical to those of natural 1.

So far, reports on the natural occurrence of p-hydroxystyrene and its derivatives are quite few: whereas p-hydroxystyrene itself was isolated from Papaver somniferum L.¹⁴⁾ in 1945, isolation of its β -D-glucoside from Cheilanthes kuhnii¹⁵⁾ was described rather recently in 1980. Isolation of p-hydroxystyrene glycosides (1 and 2)¹⁶⁾ from the carcinogenic fraction of the bracken extracts is significant, because styrene and styrene oxide are known to be the mutagens in Salmonella typhimurium.¹⁷⁾ Carcinogenicity of ptelatoside-A (1) to rats is currently under investigation.

We are grateful to Dr. K. Matsushita, JEOL Ltd., for measurements of the ¹H NMR (270 MHz) spectra.

Table 1. ¹³C NMR Spectral Data^{a)}

No	<u>1</u>	<u>2</u>
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	157.0 (s) 117.7 (d) 128.4 (d) 133.5 (s) 128.4 (d) 117.7 (d) 136.7 (d) 114.0 (t) 100.9 (d) (163)* 73.7 (d) 76.1 (d) 104.1 (d) (158)* 73.7 (d) 104.1 (d) (158)* 73.7 (d) 104.1 (d) (158)* 73.7 (d) 104.1 (d) (158)* 73.7 (d) 104.1 (d) 105.1 (d)	156.8 (s) 117.2 (d) 128.5 (d) 133.3 (s) 128.5 (d) 136.7 (d) 136.7 (d) 114.0 (t) 99.2 (d) (164)* 76.8 (d) 70.1 (d)c) 70.1 (d)c) 61.4 (t) 102.1 (d) (173)* 70.4 (d)d) 71.1 (d) 72.8 (d) 60.8 (d)
6"	-	17.6 (q)

- a) Spectra were taken at 22.5 MHz in D₂O. Chemical shifts were relative to TMS: δ (TMS) = δ (dioxane) - 67.4.
- b,c,d) Values bearing the same superscript may be interchanged.
- This value is ${}^{1}J_{C-H}$ (Hz).

 $6 R^1 = R^2 = Ac$ $\underline{7} R^1 = H, R^2 = Ac$ $8 R^{1} = 2, 3, 4 - Tri - 0$ acetyl-ß-D $xylopyranosyl R^2 = Ac$

9 (Ptaquiloside)

References

- I. A. Evans and J. Mason, Nature, 208, 913 (1965); A. M. Pamukcu and J. M. Price, J. Natl. Cancer Inst., 43, 275 (1969); I. Hirono, C. Shibuya, K. Fushimi, and M. Haga, J. Natl. Cancer Inst., 45, 179 (1970); Review: I. Hirono, CRC Critical Rev. Toxicol., 8, 235 (1981).
 2) H. Niwa, M. Ojika, K. Wakamatsu, K. Yamada, I. Hirono, and K. Matsushita,
- Tetrahedron Lett., 24, 4117 (1983); H. Niwa, M. Ojika, K. Wakamatsu, K. Yamada, S. Ohba, Y. Saito, I. Hirono, and K. Matsushita, Tetrahedron Lett., 24, 5371 (1983); I. Hirono, K. Yamada, H. Niwa, Y. Shizuri, M. Ojika, S. Hosaka, T. Yamaji, K. Wakamatsu, H. Kigoshi, K. Niiyama, and Y. Uosaki, Cancer Lett., in press.
- 3) A Column of 22 mm x 30 cm of Fuji Gel ODS-Q3; H₂O EtOH (80:20), flow rate 2 ml/min.
- The molecular formulas of these glycosides, <u>1</u> and <u>2</u> were determined based on the molecular ion peaks in SIMS [1, m/z 437 (M + Na)⁺; <u>2</u>, m/z 451 (M + Na)⁺] and ¹³C NMR spectra, and on the consideration of their components (the aglycone 4)
- derivative 5 and sugar components).
 5) Identified as: a) methyl 2,3,4-tri-O-acetyl-α-D-xylopyranoside (mp 82-83 °C);
 b) methyl 2,3,4,6-tetra-O-acetyl-α-D-glucopyranoside (mp 65-66 °C); c) methyl
- 2,3,4-tri-O-acetyl-α-L-rhamnopyranoside (mp 87-88 °C).
 6) 5: ¹H NMR (CDCl₃, 90 MHz) δ 1.42 (3H, d, J = 6.5 Hz), 3.20 (3H, s), 4.24 (1H, q, J = 6.5 Hz), 4.85 (1H, s), and 6.80-7.19 (total 4H, AA'BB' system); MS m/z 152 (M⁺), 137, and 120; IR (CHCl₃) 3620, 3300, 1613, 1599, 1515 cm^{-1}
- $\frac{cf}{3}$: $\frac{1}{1}$ Bohlmann, U. Fritz, and R. M. King, Phytochemistry, 18, 1403 (1979). $\frac{cf}{3}$: $\frac{1}{1}$ NMR (C₆D₆, 270 MHz) δ 1.56, 1.62, 1.67, 1.71 (3H each, s each, 4 x Ac), 1.73 (6H, s, 2 x Ac), 2.87 (1H, dd, J = 11.7, 9.0 Hz, H-5"), 3.48 (2H, m, H-5', H-6'), 3.80 (1H, m, H-6'), 3.85 (1H, dd, J = 11.7, 5.1 Hz, H-5"), 4.36 (1H, d, J = 6.9 Hz, H-1"), 4.87 (1H, d, J = 7.6 Hz, H-1'), 5.04 (2H, m, H-4', H-4"), 5.09 (1H, dd, J = 10.9, 1.0 Hz, H-8), 5.24 (1H, dd, J = 8.9, 6.9 Hz, H-2"), 7) 5.32 (1H, dd, J = 8.9, 8.2 Hz, H-3"), 5.41 (1H, dd, J = 9.6, 9.2 Hz, H-3'), 5.54 (1H, dd, J = 9.6, 7.6 Hz, H-2'), 5.68 (1H, dd, J = 17.5, 1.0 Hz, H-8), 6.67 (1H, dd, J = 17.5, 10.9 Hz, H-7), 7.00 and 7.40 (total 4H, AA'BB' system, aromatic H).
- Recently, miyaginin was isolated from <u>Lespedeza thunbergii</u>, the assigned planar structure of which was the same one as that of 1: M. Kanao and H. Matsuda, Yakugaku Zasshi, 98, 366 (1978). However, miyaginin was found to be different from ptelatoside-A (1) by direct comparison of spectral and physical data, and miyaginin was shown to possess a different aglycone from that of 1
- (unpublished result). 9) $\underline{4}$: ¹H NMR (C₆D₆, 270 MHz) δ 1.36 (3H, d, J = 6.3 Hz, H-6"), 1.58, 1.63, 1.65, 1.70, 1.72, 2.08 (3H each, s each, 6 x Ac), 3.27 (1H, ddd, J = 9.9, 5.1, 2.5 Hz, H-5'), 3.87 (1H, dd, J = 9.6, 7.9 Hz, H-2'), 3.98 (1H, dd, J = 12.4, 2.5 Hz, H-6'), 4.24 (1H, dd, J = 12.4, 5.1 Hz, H-6'), 4.45 (1H, dq, J = 9.7, 6.3 Hz, H-6'), 4.60 (1H, dz = 7.0 Hz) = 5.08 (1H, d Hz, H-6'), 4.24 (1H, dd, J = 12.4, 5.1 Hz, H-6'), 4.45 (1H, dd, J = 9.7, 6.3 Hz, H-5"), 4.60 (1H, d, J = 7.9 Hz, H-1'), 5.08 (1H, dd, J = 10.9, 1.0 Hz, H-8), 5.14 (1H, dd, J = 9.9, 9.6 Hz, H-4'), 5.22 (1H, d, J = 1.7 Hz, H-1"), 5.43 (1H, dd, J = 3.3, 1.7 Hz, H-2"), 5.43 (1H, t, J = 9.6 Hz, H-3'), 5.55 (1H, dd, J = 17.5, 1.0 Hz, H-8), 5.56 (1H, dd, J = 10.2, 9.7 Hz, H-4"), 5.73 (1H, dd, J = 10.2, 3.3 Hz, H-3"), 6.59 (1H, dd, J = 17.5, 10.9 Hz, H-7), 7.00 and
- 10) B. Helferich and K.-H. Jung, Justus Liebigs Ann. Chem., <u>589</u>, 77 (1954).
 11) The IR and ^IH NMR spectra of this compound were in accord with the structure assigned. Satisfactory microanalyses were obtained for this compound.
 12) D. Welfourich and ^M Ort, Chem. Porc. <u>95</u>, 2612 (1962).
- 12) B. Helferich and W. Ost, Chem. Ber., <u>95</u>, 2612 (1962).
 13) B. Helferich and H.-J. Höfmann, Chem. Ber., <u>85</u>, 175 (1952); A. L. Clingman,
- J. Med. Chem., 7, 242 (1964). 14) H. Schmid and P. Karrer, Helv. Chim. Acta, 28, 722 (1945). 15) T. Murakami, T. Kimura, N. Tanaka, Y. Saiki, and C.-M. Chen, Phytochemistry, 19, 471 (1980).
- 16) During our investigation on these glycosides, 1 and 2, isolation of two p-hydroxystyrene glycosides similar to 1 and 2 from Dicranopteris dichotoma and Microlepia obtusiloba has been reported: T. Kuraishi, Y. Mitadera, T. Murakami, N. Tanaka, Y. Saiki, and C.-M. Chen, Yakugaku Zasshi, 103, 679 (1983).
- 17) Review: D. E. Hathway, "Foreign Compound Metabolism in Mammals," The Royal Society of Chemistry, London (1981), Vol. 6, p. 165.

(Received December 21, 1983)