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Practical and highly enantioselective alkylation of aldehydes catalyzed
by a titanium complex of 3-aryl H8-BINOL
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Abstract—A titanium complex derived from 3-(3,5-diphenylphenyl)-H8-BINOL exhibits high catalytic activity and enantioselectivity in
the alkylation of aldehydes. Enantioselectivities comparable to or higher than 20 mol % of the parent H8-BINOL are obtained with
2 mol %-catalyst loadings. The reaction can be carried out without rigorous exclusion of water.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The asymmetric addition of organometallic reagents to
carbonyl compounds is a reaction of fundamental impor-
tance in modern synthetic organic chemistry.1 There has
been a continuing interest in developing 1,1 0-bi-2-naphthol
1 (BINOL) based titanium(IV) catalysts for the asymmetric
addition of diorganozincs to aldehydes (Scheme 1).
Following the seminal discovery of Nakai2 and Chan,3 a
variety of derivatives have been examined as chiral ligands
to improve the enantioselectivity of the parent BINOL.4 Of
these derivatives, H8-BINOL 3 is one of the best ligands for
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Scheme 1. Asymmetric alkylation of aldehydes catalyzed by titanium(IV)
complexes of BINOL derivatives.
realizing excellent enantioselectivity in the reaction of
aromatic aldehydes at 20 mol % catalyst loading.5

We recently reported that the titanium catalysts derived
from 3-substituted unsymmetric BINOLs exhibit an
enhanced activity, allowing the reduction of the catalyst
amount.6,7 By using less than 1 mol % of 3-(3,5-diphenyl)-
phenyl-BINOL 2, enantioselectivities comparable to or
higher than 20 mol % of the parent BINOL were obtained.
The remarkable effect of the 3,5-diphenylphenyl group
prompted us to examine the corresponding H8-BINOL
derivatives 4 as a chiral ligand.

Herein we report a highly enantioselective alkylation of
aldehydes catalyzed by titanium(IV) complex derived from
3-substituted H8-BINOL 4. The practicality of the reac-
tion was demonstrated by excellent enantioselectivities
(94–98% ee) at a low catalyst loading (2 mol %) and by
the possible use of a commercial reagent and solvent as
received without rigorous exclusion of water.
2. Results and discussion

Ligand (R)-4 was prepared from H8-BINOL (R)-3 in four
steps (Scheme 2). After protection of the phenolic oxygens
with a methyl group,8 treatment of the resulting dimethyl
derivative 5 with bromine (1.0 equiv) at 0 �C gave mono-
bromide 6. A Pd(PPh3)4-catalyzed coupling of bromide 6
with 3,5-diphenylphenylboronic acid9 followed by depro-
tection of the dimethyl derivative 6 with BBr3 furnished
(R)-4.
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Scheme 2. Preparation of H8-BINOL derivative (R)-4. Reagents and
conditions: (a) MeI, K2CO3, acetone;8 (b) Br2 (1 equiv), CH2Cl2 (66%); (c)
3,4-Ph2C6H3B(OH)2, Pd(PPh3)4 (5 mol %), Ba(OH)2Æ8H2O, aqueous diox-
ane (93%); (d) BBr3,CH2Cl2 (100%).
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The reaction of benzaldehyde with diethylzinc (3 equiv)
was carried out in CH2Cl2 at 0 �C in the presence of
(R)-4 (2 mol %) and titanium tetraisopropoxide (1.4 equiv)
(Table 1, entry 2). As we anticipated, the reaction pro-
ceeded rapidly under these conditions, and was complete
within 3.5 h to give (R)-1-phenylpropanol in 98% ee. Under
similar conditions, a control reaction using the parent
H8-BINOL 3 did not attain full conversion of the aldehyde
after 5 h, affording the product in lower enantioselectivity
(75% ee) than reported5a for the reaction at 20 mol % cata-
lyst loading (98% ee) (entry 1). A slightly decreased, but
still high, enantioselectivity (96% ee) was obtained in the
reaction with 1 mol % of 4 (entry 3). Judging from conver-
sions after 1 h, the turnover efficiency of the catalyst
derived from 4 is significantly improved by the introduc-
tion of the 3,5-diphenylphenyl group, while being slightly
inferior to a catalyst derived from 3-(3,5-diphenylphenyl)-
BINOL 2 (entries 2,3 vs entries 4,5).

The addition of diethylzinc to other aldehydes was exam-
ined by using ligand 4 (2 mol %) (Table 2).10 For all the
aromatic aldehydes examined, the reactions were accom-
plished within 5 h and the corresponding ethylation
products were obtained in excellent enantioselectivity
(94–98% ee) (entries 1–8). In comparison with 3-(3,5-diphen-
ylphenyl)-BINOL 2,6 4 consistently showed enhanced
enantioselectivity. The observed selectivities were compara-
ble to or higher than those obtained with 20 mol % of the
unsubstituted H8-BINOL 3.5 Ligand 4 exhibited slightly
lower, but acceptable selectivities in the reaction of an
Table 1. Asymmetric ethylation of benzaldehyde with unsymmetric BINOL 4

Et2Zn
Ph H

O
Ti(OiPr)4 (1

CH2Cl2
+

2, 3, or 4 (1

Entry Ligand mol %

1 3 2
2 4 2
3 4 1
46 2 2
56 2 1

a Reactions were carried out with Et2Zn (3 equiv) and Ti(Oi-Pr)4 (1.4 equiv) in
b After 3.5 h.
c After 2 h.
unsaturated aldehyde and an aliphatic aldehyde (entries 9
and 10).

Another practical advantage of using ligand 4 is that the
reaction can be carried out without rigorous exclusion of
water. Reactions could be carried out with commercial tita-
nium tetraisopropoxide and dichloromethane as received
by using non-dried glassware to give products without a
noticeable deterioration in enantioselectivity (entries 2
and 7).11

We have previously proposed6 that the high catalytic activ-
ity of the titanium complex derived from BINOL derivative
2 can be attributed to the steric inhibition of the formation
of six-coordinate titanium aggregates 8 and 10 based upon
recent mechanistic studies12 (Scheme 3; R 0 = 3-(3,5-diphen-
yl)phenyl). It was assumed that the asymmetric alkylation
proceeds through complex 9 with a five-coordinate tita-
nium center, but not through six-coordinate titanium com-
plex 10. At low catalyst loading, a large excess of titanium
tetraisopropoxide with respect to BINOL 1 (and H8-BI-
NOL 3) might result in the formation of the 1:2-aggregate
8 (R 0 = H), which can serve as a catalyst sink to reduce an
overall catalyst activity. The introduction of the aryl group
at the 3-position of BINOL 1 (and H8-BINOL 3) destabi-
lizes 8 and 10 sterically, thereby maintaining the sufficient
concentration of 7 and 9 even at the lower catalyst loading.
The enhancement of catalytic activity observed for the
complex derived from 3-substituted H8-BINOL 4 provides
additional support for our rationalization. The observation
that the high enantioselectivity of the parent compound 3
(20 mol %) is retained in 4 (2 mol %) is inconsistent with
the assumed activated complex 8, where the R 0 substituent
locates far away from the reaction site.
3. Conclusion

In conclusion, we have shown the enhanced catalytic activ-
ity of the titanium complexes derived from the 3-substi-
tuted BINOL 4 in asymmetric alkylation of aldehydes.
The low catalyst loading, the excellent enantioselectivities,
and the ease of operation without the need for rigorous
exclusion of water attest to its practicality.
a

.4 equiv), 
, 0 ºC

Ph

OH-2 mol%)
(1)

Conversion (%) ee (%)

After 1 h After 5 h

49 80 75
98 >98b 98
76 >98 96

>98 — 93
96 >98c 94

CH2Cl2 at 0 �C.



Table 2. Asymmetric ethylation of aldehydes catalyzed by titanium complex derived from H8-BINOL derivative 4a

Et2Zn
R H

O
Ti(OiPr)4 (1.4 equiv), 

CH2Cl2, 0 ºC
+ R

OH 4 (2 mol%)
(2)

Entry Aldehyde Yieldb (%) eec (%) 3d 2e

1 PhCHO 77 98 98 94
2f 97 97
3 p-MeC6H4CHO 80 98 92 92
4 m-MeOC6H4CHO 96 98 96 95
5 o-ClC6H4CHO 88 94 92 77
6 1-NaphthylCHO 73 99 98 95
7f 94 97
8 2-NaphthylCHO 95 98 — 90
9 PhCH@CHCHO 97 94 — 92

10 PhCH2CH2CHO 80 90 — 85

a Reactions were carried out with Et2Zn (3 equiv) and Ti(Oi-Pr)4 (1.4 equiv) in CH2Cl2 at 0 �C for 3–5 h.
b Isolated yield.
c Determined by chiral stationary phase HPLC; Chiralcel OB (entry 5) or Chiralcel OD (other entries).
d Values refer to the ee reported for the reaction using H8-BINOL 3 (20 mol %).5a

e Values refer to the ee reported for the reaction using BINOL derivative 2 (1 mol %) under otherwise identical conditions.6
f The reaction was carried out with commercial Ti(Oi-Pr)4 and CH2Cl2 as received by using a non-dried glassware.
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Scheme 3. Plausible titanium aggregates.
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