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Abstract: Tetrachlorophthalimide is shown to be an excellent agent
for Mitsunobu displacement of primary hydroxyl groups in a wide
variety of substrates. Secondary alcohols also react readily, except
in carbohydrate derivatives where there is a low rate of success. In
a competition experiment between phthalimide and its tetrachloro
counterpart, there was no trace of a product from the former.
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Mitsunobu reactions have emerged as common synthetic
methods for substitution of hydroxyl groups by both inter-
molecular and intramolecular displacement.1 Thus cyclic
imides have been widely used for introducing amino func-
tionalities.2 In this connection, the phthaloyl group 1 is of
interest since it is also widely used for nitrogen protection
in organic syntheses.3 However to avoid the harsh proce-
dure needed for phthalimide deprotection, our group has
been interested in use of the tetrachloro analog (TCP) 2
for nitrogen protection.4 Mild cleavage of TCP is
possible5 in the presence of acetate, benzoate and unsub-
stituted phthalimide, as demonstrated in the synthesis of
nodulation factor NodRf-III (C18:1, MeFuc).6

The four electron-withdrawing chlorine atoms on the aro-
matic ring not only faciliate nucleophilic attack at the im-
ide carbonyls, but should also enhance the acidity of the
imidic hydrogen. Thus tetrachlorophthalimide (TCP-NH)
3 should be more effective than unsubstituted phthalimide
(Pht-NH) 4 in Mitsunobu reactions. In this manuscript we
report our work on this problem.

The Mitsunobu reactions with TCP-NH were studied by
the following general procedure: To the mixture of alco-
hol, triphenylphosphine (TPP, 1.3 eq) and TCP-NH (1.3
eq) was added anhydrous THF (0.1-0.2 M). The mixture,
usually a white slurry, was stirred vigorously under argon

at room temperature. Diethyl azodicarboxylate (DEAD,
1.3 eq) was added by syringe, and the reaction mixture,
usually a yellow clear solution, was stirred overnight.
THF was then removed in vacuo. The residue was dis-
solved in CHCl3 or CH2Cl2 and washed with water. Puri-
fication of the organic residue by column chromatography
was readily monitored by UV visualization. 

The results for a variety of primary alcohols are shown in
Table 1. For simple primary alcohols (entries 1-4), the
yields are uniformly over 70%. The procedure also works
well to convert carbohydrate primary alcohols into TCP-
protected nitrogen functions (entries 5-8). The presence of
benzyl, allyl, benzoate or acetate protecting groups does
not compromise the outcome. The success of the n-pent-
enyl glucoside precursor (entry 8) allows the amino syn-
thon to be incorporated into these novel glycosyl donors,7

prior to coupling reactions.
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(-)-Menthol 5a was chosen as a secondary alcohol and
was found to react readily to give 5b in 69% yield by the
general procedure. However attempts with carbohydrate
secondary alcohols were not encouraging. For precursor
6, more than 90% starting material was recovered, after
stirring for 95 hours at room temperature. Product 7 was
obtained in only trace amounts. For precursor 8, no reac-
tion occurred at all after refluxing for over 100 hours. The
failure for these two reactions could be reasoned by the
difficulty for the bulky TCP-N nucleophile to approach
the already sterically-hindered secondary alcohol and the
difficulty for the sterically-hindered secondary alcohol to
approach  the activated triphenylphosphine to form the
oxyphosponium salt.

The Mitsunobu efficiency was assessed by allowing TCP-
NH and Pht-NH to compete for sugar alcohol 9. Thus 1
equivalent of 9, 1.2 equivalents each of 3 and 4, 2.4 equiv-
alents each of DEAD and TPP were dissolved in THF and
stirred at room temperature overnight. The isolated mate-
rial was shown by 1H and 13C NMR to be exclusively 10,
with a 88% isolated yield. Compound 11, synthesized in-
dependently, was not detected. This excellent Mitsunobu
selectivity can be reasoned by the more acidic proton in 3. 

The merits of the process can be seen by the ease of depro-
tection. Thus treatment of 10 with 4.5 equivalents of eth-
ylenediamine in MeCN/THF/EtOH (2:1:1) at 60 °C was
complete after 2 hours. The product obtained in 97% yield
was the benzamide 12, identifiable by its mass spectrum
(FAB 505.2 M+), and its failure to react with acetic anhy-
dride in methanol. In the case of 13 (see Table 1, entry 7),
comparable deprotection gave amine 14a, survival of the
C2-OAc group being evident from the NMR spectrum.

Acetylation in methanol then gave the acetamide 14b in
70% overall yield from 13.

In conclusion, tetrachlorophthalimide has been success-
fully employed in Mitsunobu reactions to convert a free
hydroxyl into a delicately tetrachlorophthalimido protect-
ed nitrogen function. This reaction provides new possibil-
ities in organic synthesis for nitrogen introduction, and
nitrogen protection-deprotection manipulations.
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