

Tetrahedron Letters 40 (1999) 5713-5716

TETRAHEDRON LETTERS

Palladium-Catalyzed Enantioselective Synthesis of Cyclohexene Derivatives via Kinetic Resolution

Toyoki Nishimata,^a Kentaro Yamaguchi,^b and Miwako Mori^{*a}

^aGraduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan ^b Chemical Analysis Center, Chiba University, Yayoicho, Inage-ku, Chiba 263-0022, Japan

Received 14 April 1999; revised 27 May 1999; accepted 28 May 1999

Abstract: Reaction of (\pm) -methyl 2-arylcyclohexenyl carbonate with tosyl amide in the presence of a catalytic amount of Pd₂dba CHCl₃ and (S)-BINAPO produced 2-arylcyclohexenyl tosyl amide with a high ee along with the starting material with a high ee. The reaction involved two processes, and (+)- and (-)-methyl 2-arylcyclohexenyl carbonate gave the same (π -allyl)palladium complex with a chiral ligand, which gave 2-arylcyclohexenyl tosyl amide with a high ee hy enantioselective substitution. The intermediary (π -allyl)palladium complex was synthesized, and the results of X-ray crystallography are shown. © 1999 Elsevier Science Ltd. All rights reserved.

Key Words: Asymmetric Synthesis, (n-Allyl)palladium Complex, Kinetic Resolution, Pd2dba-CHCl, (S)-BINAPO

Asymmetric synthesis via (π -allyl)palladium complex is a useful synthetic tool, and its mechanism has been ingeniously studied by Trost and others.¹ Many natural products have been synthesized via (π allyl)palladium complex with a chiral ligand. During the course of our model study² on the total synthesis of (+)-crinamine, (-)-haemanthidine, and (+)-pretazettine, when (\pm)-1a was reacted with 3a in the presence of Pd₂dba·CHCl₃ and (S)-BINAPO, the desired product (S)-2a with 83% ee was obtained in 73% yield. We were very surprised to find that the recovered starting material (R)-1a³ showed 60% ee in 12% yield. This means that kinetic resolution would occur upon the formation of (π -allyl)palladium complex. The fact that kinetic resolution occurred on palladium-catalyzed enantioselective allylic alkylation was found by Prof. Hayashi, and recently a few group reported in regard to this phenomenon.⁴

Scheme 1

0040-4039/99/\$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. *PII*: S0040-4039(99)01079-5

Table '	1 Kine	etic resc	olution	of	1a
---------	--------	-----------	---------	----	----

Figure 1 The ees of 2a and 1a on each time.

run	time (h)	(<i>S</i>)-2a (% ee)	(<i>F</i>)-1a (% ee)
1	3	86	30
2	6	87	46
3	19	88	65
4	47	88	78
5	75	88	79
6	120	88	91
7	165	88	93
_			

The reaction was carried out using 5 mol % of Pd₂dba-CHCl₃ and 5 mol % of (S)-BINAPO in THF at 0 °C.

To confirm this, the same reaction was carried out at 0 °C and and the time courses of the ees of the product 2a and the starting material 1a were monitored by HPLC.⁵ The results are shown in Table 1. Apparently, kinetic resolution was also shown in this reaction; that is, after 3 h, the ee of the product (S)-2a was 86%, while the ee of the recovered starting material (R)-1a was 30 % ee. Although the same ee of (S)-2a was obtained in each time, the ee of the recovered starting material (R)-1a gradually increased, and after 165 h, (R)-1a with 93% ee was obtained in 14% yield along with (S)-2 with 88% ee in 60% yield. These results are shown in Figure 1.

On the other hand, when the reaction of (\pm) -1a with dimethyl malonate 3b was carried out in the presence of a palladium catalyst and (S)-BINAPO, (-)-2b was obtained in 41% yield but the ee was only 30%. However, the recovered starting material showed 71% ee. When the same reaction was carried out using (\pm) -1b as the substrate in the presence of NaH, the ee of the recovered starting material was 96%, but the ee of 2b was only 11%.

These results indicate that there are two independent pathways in the asymmetric synthesis of (S)-2a: that is, kinetic resolution and asymmetric substitution. If the reaction rate of (S)-1 with Pd(0) having (S)-BINAPO is faster than that of (R)-1 with Pd(0) having (S)-BINAPO, kinetic resolution would occur and (R)- 1 would remain unchanged. In this process, (R)-1 also can react with Pd(0) having (S)-BINAPO to produce the same π -allylpalladium complex. The intermediary $(\pi$ -allyl)palladium complex 4 reacts with nucleophile enantioselectively to give (S)-2. Thus, both (S)- and (R)-1 can be converted into (S)-2. If the starting material is recovered, (R)-1 with a high ee can be obtained.

The structure of the intermediary chiral (π -allyl)palladium complex 4 was examined. Reaction of (±)-1c with PdCl₂ gave η^2 -palladium complex 5, which was reacted with (S)-BINAPO followed by treatment with silver salt to give (π -allyl)palladium complex 6 as colorless needles. Reaction of a stoichiometric amount of 6a with 3a in the presence of NaH in THF at 0 °C gave (S)-2a with 87% ee in 83% yield, the same as that obtained by a catalytic reaction. This indicates that 6 is an intermediate for this asymmetric reaction.

The results of X-ray crystallography of **6b** are shown in Figure 1.⁶ Interestingly, the cyclohexenyl ring coordinated by the palladium metal appears a chair-like form, and the bond lengths of C45-Pd. C46-Pd and C50-Pd are 2.22 Å, 2.24 Å, and 2.23 Å, respectively. Although the mechanism for the origin of the enantioselectivity is not clear from the ORTEP drawing of this X-ray crystallography. the result is quite interesting.

Bond distances	<u> </u>	\sim
bond	distance (Å)	
Pd(1)-P(1)	2.309(3)	∞)04
Pd(1)-P(2)	2.311(3)	
Pd(1)-C(45)	2.22(1)	
Pd(1)-C(46)	2.24(1)	
Pd(1)C(50)	2.23(1)	
P(1)O(1)	1.627(7)	
P(2)O(2)	1.609(7)	
C(45)C(46)	1.49(2)	
C(45)C(50)	1.45(2)	
C(45)C(51)	1.41(1)	
C(46)H(33)	0.97	P2 alpa (1) OC45
C(50)-H(40)	0.99	PL D HPL PLC46
Bond angles		
bond	angle (deg)	
P(1)-Pd(1)-P(2) 107.1(1)	
Pd(1)-P(1)-O	(1) 122.2(3)	
Pd(1)-P(2)-O((2) 114.8(3)	
P(1)-Pd(1)-C((46) 92.6(3)	
P(1)-Pd(1)-C	(50) 158.8(3)	Ύ́́́́́́́́́́́
C(46)-Pd(1)-C	C(50) 66.4(4)	A 8-0
C(46)-C(45)-C	C(50) 112(1)	
		· · · · · · · · · · · · · · · · · · ·

Table 2. Selected bond distances and bond angles.

In conclusion, there are two independent pathways in an asymmetric nucleophilic substitution into racemic methyl 2-arylcyclohexenyl carbonate in the presence of Pd₂dba CHCl₃ and (S)-BINAPO. The first step is the formation of chiral π -allyl palladium complex, which was obtained from both (S)- and (R)-methyl 2-arylcyclohexenyl carbonate. In this process, kinetic resolution was observed. The next step proceeded by nucleophilic substitution into the chiral (π -allyl)palladium complex to produce (+)- or (-)-2-arylcyclohexenyl derivatives along with the starting material with a high ee. Further studies are in progress.

References and Notes

- 1. Recent reviews: (a) Hayashi, T. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: Weinheim, 1993 and references cited therein. (b) Trost, B. M.; van Vranken, D. L. Chem. Rev. 1996, 96, 395 and references sited therein.
- 2. (a) Mori, M.; Kuroda, S.; Zhang, C.-S.; Sato, Y. J. Org. Chem. 1997, 62, 3263. (b) Nishimata. T.; Mori, M. J. Org. Chem. 1998, 63, 7586.
- 3. The absolute configuration of (R)-1 was determined as follows. Hydrolysis of (R)-1 with K₂CO₃ in methanol gave allyl alcohol, which was treated with DEAD, PPh, and 3b in THF to give (S)-2a.
- (a) Hayashi, T.; Yamamoto, A.; Ito, Y. J. Chem. Soc., Chem. Commun. 1986, 1090. (b) Gais, H.-J.; Eichelmann, H.: Spalthoff, N.: Gerhards, F.; Frank, M.; Raabe, G. Tetrahedron: Asymmetry 1998, 9, 235. (c) Lloyd-Jones, G. C.; Stephen, S. C. J. Chem. Soc., Commun. 1998, 2321. (d) Ramdechul, S.; Dierkes, P.; Aguado, R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Osborn, J. A. Angew. Chem. Int. Ed. 1998, 37. 3118. (e) Trost, B. M.; Hembre, E. J. Tetrahedron Lett. 1999, 40, 219.
- 5. Reaction Procedure: A solution of (±)-1a (45.6 mg, 0.150 mmol), 3a (47.4 mg, 0.165 mmol), Pd₂dba·CHCl₃ (3.9 mg, 3.75 µmol), and (S)-BINAPO (4.9 mg, 7.5 µmol) in THF (1.5 mL) was stirred at 0°C. In each time, 10 µL of the solution was sucked up. The solution was developed on TLC (toluene/ethyl acetate, 9/1), and 2a and the starting material were purified. The ees were determined by HPLC (DAICEL CHILALPAC AD, hexane/2-propanol, 9/1). The relative ratio k_y/k_k of 1a (46%ee, 46% conversion) is calculated to be 5.2 using an established equation for kinetic resolution. K_y/K_k=ln[(1-C/100)(1-ee/100)]/ln[(1-C/100)(1-ee/100)] (C=conversion); (R)-1a: [cd]_D²² +123 (c 0.30, CHCl₃, 83% ee); (S)-2a: ¹H NMR (500 MHz, CDCl₃) δ 1.08 (6 H, brt, J = 7.0 Hz). 1.53-2.21 (6 H. m). 2.41 (3 H. s), 3.03 (2 H. m), 3.23 (1 H. ddd, J = 7.0, 8.9, 14.3 Hz), 3.35 (1 H. ddd, J = 7.0, 9.2, 14.2 Hz), 3.51 (1 H. ddd, J = 6.8, 9.2, 14.2 Hz). 3.60 (1 H. ddd, J = 7.0, 9.0, 14.3 Hz), 3.87 (3 H. s), 4.57 (1 H. ddd, J = 4.0, 6.0 Hz), 5.08 (1 H. brs), 6.69 (1 H. brs). 6.62 (1 H. d. J = 8.3 Hz). 6.68 (1 H. d. J = 1.6, 8.3 Hz), 6.88 (1 H. d. J = 1.6 Hz), 7.19 (2 H. d. J = 8.0 Hz), 7.60 (2 H. d. J = 8.0 Hz); IR (neat) v 2924, 1516, 1600 cm⁻¹; El-MS m/z 503 (M'), 457, 217; [Cd]_D²³ -55.8 (c 0.63, CHCl₃, 92% ee). Anal. calcd for C₂₇H₃₇NO₈S: C. 64.39; H, 7.40; N. 2.78; S. 6.37. Found: C, 64.35; H, 7.41; N, 2.61; S. 6.25.
- Crystal data for 6b •CHCl₃•C₆H₆: empirical formula C_{as}H₅₆Cl₃F₆O₄Pd; orthorhombic; space group P2₁2₁2₁; a = 19.542(7) Å, b = 26.97(1) Å, c = 11.695(3) Å; No. of observations (I>2.50s(1)) 4446; R 0.068; Rw 0.074.