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ABSTRACT: A series of multi donor-acceptor substituted giyre derivative dyes were synthesed
by three-component catalyst-free domino reactiom@thanol agueous at room temperature. The
pyridine derivative dyes with thermally stable ftascence exhibit aggregation-induced emission
(AIE) in both aqueous solution and solid state ttuéhe restricted intramolecular rotation as well.
Furthermore, the family of molecule dyes showedlgaae full range of color emitters from blue
to green and to orange. Moreover, the importanakye$ for heavy and transition metal ion species
detection applications was demonstratéalthe “turn off” detection of A% in aqueous solution
with the simple synthetic approach and high salggtand sensitivity.
Keywords Domino reaction, pyridine skeleton dyes, aggregainduced emission, fluorescent
probe, Ad* detection
1. Introduction

Recently, photo-induced responsive organic lumiaeesalyes have been attracted much

scientific and commercial attention [1]. Especialhey have been shown various applications, such
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as materials presenting semiconducting, fiber $witcfluorescent sensor, and modulator [2]. In
order to gain a long-lived organic dyes and to tthne electron-hole combination efficiency, the
researchers have been devoted to the investigatitre multi donor-acceptor (D-A) systems such
as D-A-D [3], A-D-A [4], and A-D-A-A [5]. In additon, aggregation-induced emission (AIE) dyes,
as a kind of typical luminescent materials, wera-emissive in solution and highly fluorescent
upon aggregate formation, which were contradictedhe expected aggregation caused quench
(ACQ) effect of most traditional fluorophores [6Moreover, fluoregens bearing the AIE
characteristic have been widely explored in bioging, organic light-emitting diodes(OLEDS), as
well as other fluorescent probes [7].

According to the green characteristics of atom eooy bond forming economy, and structural
economy [8], new multi-component domino approadbeshe synthesis of fluorescent compounds
containing multi D-A groups have been a very irgérgy research topic [5, 9]. For example,
Mukho-padhyay,et al synthesized A-D-A-A systemsia a one-pot multi-component reaction
catalyzed by zinc titanate nano-powder [5]; Gladawd co-workers reported a one-pot domino
reaction to synthesize D-A systems of methylthibs$ituted thiophene and pyrrole derivatives [9a].

4-aryl-2,6-diamino-3,5-dicyanopyridine derivativéswhich exhibit z-conjugated flat rigid
planar structure were a typical multi donor-accefA-D-A-D) systems and were complied with
structure characteristics of organic luminescentens dyes. Samadet al reported the synthesis
of 6 by the amination of 2-amino-6-chloro-4-phenyl-8jsyano pyridine [10] which was obtained
from the condensation of malononitrile with trigtloythobenzoate in the presence of pyridine [11].
And 6 were also obtained by the cyclization of arylideaéononitrile, ethyl cyanoiminoacetate,
and ammonium acetate in refluxing absolute ethd8oheme 1) [12]. However, these synthetic

methods suffer from significant limitations suchlew yield, toxic, and harsh reaction conditions.
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To the best of our knowledge, a one-pot multi-congsd approach for the construction of this
skeleton has not reported in the literature. Thoeegfa more general, efficient, and viable routta wi
operational simplicity for the synthesis of funci#ized 2, 6-dicyanoanilines is highly desirable.
Moreover, the optical properties of such systemewever investigated.

Owing to their simplicity, high sensitivity, and aletime detection, the construction of
fluorescent probes for detecting heavy and tramsitietal ion species, have received a great deal of
attentions [13]. Recently, several gold ion selectnolecular sensors based on various fluorophore
units including rhodamine [14], BODIPY [15], flumeein [16], and naphthalimide [17] dyes have
been reported. However, the most prominent drawlmcthose type of probes were the cross
interferences with coexisting ions or only usedaim organic or organic-containing solution.
Moreover, some of the fluorescent probes sometsu#ier from intricate synthetic procedures.

Herein, we report on a rapid, efficient and conganiprocedure for the synthesis of title dyes
6 via three component domino reaction in one pot (Sch&mé&hese compounds showed AIE
behaviour and can be used for gold ions detectioagueous solution with high selectivity and
sensitivity.

2. Resultsand discussion
2.1 Synthesis

In the initial experiment, we explored the optimuoconditions for the synthesis of
4-aryl-2,6-diamino-3,5-dicyanopyridine derivative® by the reaction of benzaldehyd#s,
malononitrile2 and ammonium hydroxidé as model substrate. The effects of different cataly
solvents, and temperatures on the model reactioe &eamined and the results were listed in Table
1. Some available base such as NaOH, Na)@HBU, CHNH,, (CHs)sN can promote the

reaction [18], and ammonia was the best, probabbtabse of the relatively lower nucleophilicity
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[8d]. Moreover, the excess ammonia was necessaapl€Tl, entries 1-6). The reaction was
performed in CHCl;, CH;CN, THF, CHCH,OH, CHOH, H,O and methanol aqueous (Table 1,
entries 7-12). Gratifyingly, we found that whileetiheaction was run in a mixture of methanol and
water (volume ratio 6:1), the best result was oietdi These observations led to a conclusion that
methanol aqueous is the solvent of choice, althaugbntrol experiment proved that water alone
cannot promote the reaction (Table 1, entry 12).[Additionally, methanol-water combination as
solvent afforded a simple and clean purificationtted products. The yields decreased when the
temperature was higher than 20, probably the more by-product was formed (Tableritries
13-16). Therefore, the optimal reaction conditioasvthe reaction of benzaldehyde)(with 2.0
equivalents of malononitrile2] and 2.0 equivalents ammonium hydroxidg gt room temperature
(25°C) in methanol aqueous for 3.0 h and the yiel@zofvas 83% (Table 1, entry 13).

Furthermore, to demonstrate the scope and gewnedlithis procedure for the synthesis of
2,6-diamino-3,5-dicyanopyriding, a series of aromatic aldehyd&s-o were employed to react
with 2 and4 under the optimized conditions. As shown in Tahlall the reactions underwent well
to provide the desired 2,6-diamino-3,5-dicyanopped 6a-o0 in good yields. Some fused aromatic
aldehydes such as 3-pyridinecarbox-aldehyde, 1lthafiehyde, 9-anthraldehyde afforded the
desired productgb-6d in 79-85% vyields, respectively (Table 2, entrie4)2To study the electronic
and steric influences on the annulation strategyide range of aldehydedsderived from benzene
containing both electron-withdrawing and electr@malting groups in para, ortho or meta positon
were employed and tolerated well (Table 2, entidsl). And steric hindrance as 2,6-disubstituted
benzaldehyde also gave the desired pro@acin 78% yield (Table 2, entry 15). Moreover, the
structure of the domino reaction produéc was unambiguously confirmed by X-ray
crystallography (Fig. 1).
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In order to propose a suitable mechanism for thendtion of 6, a reaction between
benzaldehydda and equimolar of malononitril2 in the presence of ammonium hydroxidlevas
allowed to stir for 30 min. The intermedia®a of Knoevenagel condensation was separated, and
then 3a reacted with equimolar of malononitri and ammonium hydroxidd in the optimal
condition for 3.0 h to give the produéa in 81% yield. Hence we can conclude that the react
proceeds through the formation of intermedid8te and a reasonable mechanistic pathway for
one-pot three-component domino reaction is outline8icheme 3 and represented by the formation
of 6a. During the domino reaction process, the Knoevehagndensation of one equivalent
benzaldehydda with one equivalent malononitril2 was the initial step to form intermedis@a
under the alkaline base condition [20]. Interme=iZd is supposed to undergo Michael addition
with another equivalent malononitriizunder the catalysis of ammonia to furnish interrathba
[21], followed by nucleophilic attacking of ammondaon the cyano carbon &g, to generate the
cyclic intermediatéa. Intermediaté’a was isomerized and dehydrated subsequently tadedkie
desired produdda[22].

2.2 Thermal stable properties

The thermal properties of selectéaland6c were gauged by both thermogravimetric analysis
(TGA) and differential scanning calorimetry (DS®pth of them exhibited high thermal stability
as demonstrated by its TGA (Fig. 2), with its 5%ighé loss temperature being up to 301.8 and
313.9 °C. 6c showed a higher melting temperature with a highelecular weight. DSC analysis
indicated that there were no phase transformatio6aoand 6¢c before the samples completely
melted [23]. These results revealed that compo6rus/e excellent themally stable properties with
the more potential applications in organic semiecmbolr or fluorescent sensor [24].

2.3 Optical properties
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The optical properties of compoun@lsvere examined by UV-vis and photoluminescence (PL)
techniques in different solvent (Table 3). Interegy, the compounds showed PL nearly in the
full-color region from blue a) to green §l) and to orange6(m) emitters by importing different
groups such as OH, CN substituted on ortho positfophenyl scaffold. However, the correlation
between optical properties and the molecular sirastcan currently be described only empirically.
Compoundst showed the similar structure containing an arylataring and a pyridine acceptor
centres in a cross-shaped configuration (Fig.riljhése multi D-A systems, the donor Ngtoups
and acceptor CN groups form-dz orbital overlap between pyridine center [23a, &34 afford the
m-conjugated interaction rigid planar structure whitead to the photoluminescence [26].
Furthermore, novel intermolecular interactions weoéiced. As shown in Fig. 3, in the crystal of
compoundéc, there were a number of molecular pairs, and ek in a parallel and face-to-face
style. Each molecular pair was joined by hydrogends and formed a dimer. Considering the
special crystal structure and the relational flsoemt emissions in different solvent, it was
reasonable to speculate tibatbelong to the aggregation-induced emission (AlEjemal [6a].

2.3.1 AIE properties oda

We then examined photophysical propertie6afAs we can see from the inserts of Fig. 4, the
non-solvent in HO solution and the separated solidéafvere strongly luminescent under the UV
lamp (365 nm), while the good solvent solutionsT{HF, CHCN, acetone) were not luminescent
(Fig. 4). A solvent--nonsolvent photoluminescen@s\walso studied. Compoud was separately
dispersed in THF (solvent)-water (nonsolvent) nmetaystems, with the concentration being kept
at 30uM and fw stands for the water fraction. The photographFig. 5a clearly shows the
fluorescence enhancement6afalong with the increase & in THF/water mixture due to the poor

solubility of 6a in aqueous media. The photoluminescence inteasitypnsolvent (in KD) solution
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was about twenty times higher than in THF solvéhtusual fluorescence amplification was also
observed in both dilute and higher concentratidfig. (5c). The planar aromatic molecules with
strong assembly properties exhibited amplified fsoent sensing ability because of growing
unidirectionalz-z stacking and aggregation of the compound [9d]. fll@escent emission of the
6a was apparently induced by aggregation formation, the compound was revealing an obvious
AIE effect [6b, 7b, 27].

2.3.2 Mechanism of enhanced AIE

Many researchers have reported that the free oatatf such peripheral phenyl rings consume
the excited state energy by nonradiative decag tjuenching the emission in the solution [28]. In
other words, energy loss of the excited state whkad to structural flexibility. To gain insightet
mechanism of enhanced AIE @d, we changed structural flexibility by importingeetron-donating
group (compoundél) and electron-withdrawing group (compoudh) on ortho position of
benzaldehyda [29].

As shown in Fig. 6, compoun@sg, 6l, andém exhibit characteristic absorptions at 300-520 nm
in their electronic spectra corresponding to #h&* transitions. Andom show an extraordinarily
fluorescence peak between 400-550 nm. The largshiédin UV absorbance and fluorescence of
6l andém compared with that dda were probably due to the hydrogen-bonding contatt©OH
and -CN which lead to the restricted rotation & @€+C single bonds between the aryl ring and the
central pyridine plane [30]. In addition, -OH armdN groups can formx-z stacking interactions
between aryl ring with the pyridine plane and dgseaprove the intramolecular rigidity [31].

Further support provided by tHel NMR titration experiments at various THF-waterxtares
with different water fractionsf{) (Fig. S1), revealing thaba would undergo the aggregation

process in aqueous media. Well-resolved protonassgwith chemical shifts and splitting patterns
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consistent with the chemical formulation are obsdrin the THF solution and no proton signals
observed in the D solution due to the poor solubility of 6a i@ With the increase dfv in
agueous mixture, the active hydrogen of amino gnongton signal disappeared for the hydrogen
exchange between,D and NH group. Further increasing the water compositiomlal@esult in a
lower field shift and a splitting patterns of thgrels corresponding to the phenyl group, suggestiv
of the presence of compound aggregation mmdstacking in THF/water mixtures with different
water fractions. For those reasons, it was reasertabconsider that the mechanism of enhanced
AIE of 6a was due to restricted intramolecular rotation (HB2].
2.4 Application for detection of AU

To investigate the potential application @d for detecting metal ions, the responses of the
fluorescence ofa probe solution (HD/DMSO, v:v, 100:1) toward All, CuF*, AI**, zr?*, PE*, Ag',
Cu', Ni**, c&*, cd*, cd*, F&¢*, Mn**, Mg?*, Na', and K aqueous solutions were studied (Fig. 7).
The results showed that only Zugave significant quenching effect on the fluoresee of 6a,
indicating the high selectivity da for the detection and specific recognition of*Ain aqueous
solution. The effect of coexisting metal ions o tuenched fluorescence intensity 6af was
performed which showed high anti-interference frother coexisting metal ions. These results
indicated thasa could properly detect Aliions in the mixtures of other species. To the bésur
knowledge, this is the first reported example witthe framework of AIE behavior whereby the
addition of A" “quenches” the fluorescent signal.

The flourescence response of prdizein the aqueous solution toward various amounts of
concentration At was examined. The flourescence intensity was medsmmediately for each
addition of Ad*in the range from 0.3 uM to 100 uM. As shown in.Fgthe fluorescence intensity

at 466 nm decrease rapidly with the loveemcentration of A%l and reaches the saturation of
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intensity at about 1 equiv. Alwhich reveals the possible formation of a 1:1 clempetweerba
and AU [33]. This was further confirmed by the appearaota peak at m/z 607.4 assignable to
6a-Au** (6a+AuCly +2H,0 complex) in the ESI-MS spectrum (Fig. S2) [34heTquenching effect
might be attributed to activate unsaturated boridSM of 6a and form of complexes 1:1 between
Au®*" and6a [14, 15]. Moreover, the quenching o& Bourescence intensity shows a nearly linear
curvature at relatively low Ali concentrations (0.3 ~ 4.0M, Fig. S3). The linear regression
equation ¢, uM) can be expressed ad/le = 0.094 + 0.088for Au®>* with correlation coefficients
(R?) of 0.9946. The limit of detection is 0.3 uM fouX. Therefore, compounéa could be used as
a “turn-off” type fluorescent sensor in aqueousugoh with the simple synthetic approach, high
selectivity and sensitivity.
3. Conclusions

In conclusion, the novel approaches provide conoisges for the synthesis of some new
fluorescent multi donor-acceptor pyridine derivativin good yields by three-component
catalyst-free domino reaction. A logical mechaniam well as a successful illation of a key
intermediate was proposed. Furthermore, theseipgriderivatives showed nearly the full range of
color emitters and AIE effect. Moreover, the compadsl can be used as fluorescent probe for
detection of Ad" in aqueous solution with the simple synthetic apph and high selectivity and
sensitivity.
4. Experimental section
4.1 Materials and Instrumentation
The solvent and all reagents were purchased framnwrcial sources and used without further
purification. Water was deionized. The solutionshaf metal ions were prepared from their chloride

salts, except for Ag which was AgNQ@. Melting points were determined using XT4 micrqseo
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melting pint apparatus (uncorrected). Infrared @$Rgctra were recorded on a Perkin Elmer FT-IR
spectrophotometer with KBr-pelletdd and®*C NMR spectra were recorded at a Bruker 100, 400
or 500 MHz spectrometer with TMS as the internahdard. Mass spectra were recorded on a
ZAB-HS mass spectrometer using ESI ionization. Eletal analyses were performed on an
ElementarVario EL. The crystal structure was deieeth on a Bruker SMART 1000 CCD
diffractometer. Ultraviolet-visible (UV) absorptiomere measured on a Hitachi U-3900H
spectrophotometer using quartz cells of 1.0 cm [eathth (190-1100 nm scan range). Fluorescence
spectra measurements were performed on a HitaZBi0B-spectrofluorimeter with quartz cuvettes
of 1.0 cm path length with a xenon lamp as thetation source. TG and DSC were recorded on
TG-DTA 6200 LAB SYS.
4.2 General procedure for the synthesis of multiateacceptor substituted pyridines derivatives

A solution of aldehyde (10 mmol), malononitrile (8@mol) and 25% ammonium hydroxide
(20 mmol) in the mixture of ethanol (60 mL) and &rafl0 mL) was stirred at proper temperature.
After the reaction was completed as indicated byCTlhe precipitate of compounds was
collected by filtration. The crude product was ystallization from 95% enthanol and THF solvent
to provide the pure target products.
4.3 Preparation of receptdda solution

6a was dissolved into THF solvent with a higher corration of 21000uM and then diluted
to 10uM by deionized water (18.5 ©) when used for measurements. The ration betwednaitd
H20 is 1:999 (v/v).

2-Benzylidenemalononitrile (3a): White solid; m.p. = 78-79C; IR (KBr, v, cm?): 3032,
2223, 1591, 1567, 1450, 1218, 957, 755NMR (400 MHz, DMSOH6) &: 8.55 (s, 1H), 7.96-7.94

(m, 2H), 7.72-7.60 (m, 3H) ppr®C NMR (100MHz, DMSOd6), § = 161.6, 134.4, 131.3 (2C),
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130.5 (2C), 129.5, 114.2, 113.2, 81.6 pMiS (ESI): (n/z) =155.1 ([M+H]', 100).
2,6-Diamino-4-phenylpyridine-3,5-dicar bonitrile (6a):*? Yellow solid; m.p. > 300°C; IR
(KBr, v, Cm'l): 3475, 3425, 3363, 3220, 3158, 2205, 1674, 16886, 1558, 1540, 1458, 76\
NMR (400 MHz, DMSOd6) §: 7.55-7.54 (m, 3H), 7.48-7.47 (m, 2H), 7.27 (s,)4HC NMR
(L00MHz, DMSOHS6), § = 165 (2C), 161, 128.6 (3C), 128.3 (2C), 138, 51611,4, 79.8 (2C) ppm;
MS (ESI): (n/z) =236.0 ([M+H]’, 100).
4,6-Diamino-2-(pyridin-3-yl)-3,5-dicar bonitrile (6b):*? Green brown solid; m.p. > 30€C;
IR (KBr, v, cm'l): 3408, 3333, 3177, 2202, 1651, 1582, 1530, 1838; ‘H NMR (400 MHz,
DMSO-d6) §: 8.74-7.67 (m, 2H), 7.97-7.96 (m, 1H), 7.60-7.59, (LH), 7.34 (s, 4H)*C NMR
(100MHz, DMSOd6), 6 = 165.7, 161.1, 157.5, 151.2, 148.5, 136,4, 1323,6, 115.2, 114.8, 83.6,
83.4ppmMS (ESI): (n/z) =237.0 ((M+H], 100).
2,6-Diamino-4-(naphthalen-1-yl)pyridine-3,5-dicar bonitrile (6c): White solid; m.p. > 300
°C; IR (KBr, v, cm'l): 3262, 3062, 2929,1685, 1650, 1555, 1450, 1380411224, 990, 754H
NMR (400 MHz, DMSO#€) J: 8.10-8.05 (3H, m, Ar-H), 7.67-7.59 (m, 4H), 7.834H);*C NMR
(L00MHz, DMSOd), § = 160.8 (2C), 158.9, 133, 132.9, 129.6, 128.5 (AQy.2, 126.4, 126.2,
125.4, 124.3, 116.1 (2C), 81.3, 67.0 ppag (ESI): (n/z) =284.0 ([M-HJ, 100); Anal. Calcd. for
Ci7/H1aNs: C, 71.57; H, 3.89; N, 24.55%. Found: C, 71.653192; N, 24.43%.
2,6-Diamino-4-(anthracen-9-yl)pyridine-3,5-dicarbonitrile (6d): Yellow solid; m.p. =
173-175°C; IR (KBr, v, cmi®): 3436, 2219, 1686, 1637, 1445, 1368, 1129, 1083;'H NMR (400
MHz, CDCk) &: 8.08-7.96 (4H, m, Ar-H), 7.61-7.52 (m, 4H), 4.(3 4H); *C NMR (100MHz,
CDCls), § = 160.8(2C), 158.9, 133, 132.9, 129.6(2C), 12&5(A27.2, 126.4, 126.2 (2C), 125.4
(2C), 124.3 (2C), 116.1 (2C), 81.3 (2C) pp™S8 (ESI): M/z) =334.0 ([M-HJ, 100); Anal. Calcd.

for C;1H1aNs: 75.21; H, 3.91; N, 20.88%. Found: C, 75.38; B,73N, 20.79%.
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2,6-Diamino-4-(4-chlor ophenyl)pyridine-3,5-dicar bonitrile (6e):*? White solid; m.p. >300
°C; IR (KB, v, Cm'l): 3478, 3419, 3364, 3173, 2209, 1622, 1573, 13581, 1453, 1313, 1035,
764;'H NMR (400 MHz, DMSOs) §: 7.65 (m, 1H), 7.55-7.47 (m, 3H), 7.35 (m, 4C NMR
(L00MHz, DMSOdg), § = 165 (2C), 160, 138.9, 132.1, 131.4, 130.1, 129127.7, 115.7 (2C),
80.4 (2C) ppmMS (ESI): (m/z) =268.1([M-HJ, 100).

2,6-Diamino-4-(fluor ophenyl)pyridine-3,5-dicar bonitrile (6f): Gry solid; m.p. >300C; IR
(KBr, v, Cm'l): 3480, 3424, 3367, 2204, 1624, 1569, 1515, 14335, 844 'H NMR (400 MHz,
DMSO-dg) J: 7.57-7.53 (m, 2H), 7.36-7.40 (m, 2H), 7.28 (m)4HC NMR (100MHz, DMSOds),
§ = 163.2 (2C), 163.0, 160.9, 130.7, 130.9 (2C),.41615.7, 115.5 (2C), 79.9, 77.62 ppvS
(ESI): (m/z) = 254.3([M+H]’, 100); Anal. Calcd. for GHsFNs: C, 61.66; H, 3.18; N, 27.66%.
Found: C, 61.75; H, 3.13; N, 27.68%.

2,6-Diamino-4-(4-methoxyphenyl)pyridine-3,5-dicar bonitrile (6g): White solid; m.p. >300
°C; IR (KBr, v, Cm'l): 3480, 3435, 3370, 3155, 2205, 1674, 1627, 18829, 1268, 1176, 1020,
841;'H NMR (400 MHz, DMSO¢) 6: 7.44-7.42 (m, 2H), 7.21 (s, 4H), 7.09-7.07 (m)2Bi83 (s,
3H); °C NMR (500MHz, DMSOde), 5 = 161.6 (2C), 160.9, 159.9, 130.4, 127.5 (2C),.412ZC),
114.4 (2C), 80.2 (2C), 55.8 ppvS (ESI): (n/z) = 264.1 ([M-H], 100); Anal. Calcd. for
C14H11Ns0: C, 63.39; H, 4.18; N, 26.40%. Found: 63.48; H94N, 26.30%.

2,6-Diamino-4-(4-hydroxyphenyl)pyridine-3,5-dicar bonitrile (6h): White solid; m.p. >300
°C; IR (KBr, v, cm): 3416, 3368, 3166, 2205, 1626, 1565, 1539, 13023, 841 H NMR (400
MHz, DMSO-«g) d: 9.97 (s, 1H), 7.33-7.30 (m, 2H), 7.19 (m, 4HP®6.88 (m, 2H)*C NMR
(500MHz, DMSO#g), & = 161.6 (2C), 160.2, 159.4, 130.4, 125.9 (2C),312C), 115.7 (2C), 80.1
(2C) ppmMS (ESI): (n/z) =250.1 ([M-HJ, 100); Anal. Calcd. for GHgNsO: C, 62.15; H, 3.61; N,

27.87%. Found: 62.21; H, 3.62; N, 27.78%.

12/23



2,6-Diamino-4-(2-chlorophenyl)pyridine-3,5-dicar bonitrile (6i): White solid; m.p.>300C;
IR (KBr, v, cnit): 3365, 2209, 1662, 1624, 1577, 1553, 1539, 14946, 1094, 835H NMR (400
MHz, DMSOg) d: 7.63-7.61 (m, 2H), 7.53-7.51 (m, 2H), 7.31 (m,)4HC NMR (500MHz,
DMSO-dg), 8= 161.4 (2C), 159.1, 135.2, 134.4, 130.8 (2C), 222C), 116.8 (2C), 80.2 (2C) ppm;
MS (ESI): fn/z) =268.1([M-HJ, 100); Anal. Calcd. for GHsCINs: 57.90; H, 2.99; N, 25.97%.
Found: C, 57.80; H, 3.02; N, 25.83%.
2,6-Diamino-4-(2-ethoxyphenyl)pyridine-3,5-dicar bonitrile (6j): White solid; m.p. >300C;
IR (KBr, v, cmi®): 3497, 3455, 3344, 3228, 2208, 1640, 1619, 18620, 1449, 1227, 763H
NMR (400 MHz, DMSOds) 6: 7.48-7.46 (m, 2H), 7.40-7.26, (m, 1H), 7.20 () 47.07-7.04 (m,
1H), 4.12-3.97(q, 3HJ = 60.8), 1.29-1.26 (t, 2H] = 13.6);**C NMR (500MHz, DMSOd), & =
161.3 (2C), 158.1, 155.6, 131.7, 130.2 (2C), 12429, 116.8, 113.3 (2C), 81.3 (2C), 64.2, 14.9
ppm; MS (ESI): (n/z) = 278.3([M-H], 100); Anal. Calcd. for GH13NsO: 64.51; H, 4.69; N,
25.07%. Found: 64.59; H, 4.71; N, 24.96%.
2,6-Diamino-4-(3-nitrophenyl)pyridine-3,5-dicar bonitrile (6k): White solid; m.p. >300C;
IR (KBr, v, cm®): 3451, 3350, 3226, 2211, 1644, 1562, 1530, 134388;'H NMR (100 MHz,
DMSO-dg) 6: 8.42-8.40 (s, 1H), 7.98 (m, 1H), 7.86 (m, 2HB& (s, 4H);**C NMR (500MHz,
DMSO-d), 6 = 161.3 (2C), 157.9, 148.1, 137.1, 135.6, 131232, 123.8, 116.7 (2C), 80.3 (2C)
ppm;MS (ESI): (n/z) =279.2 (IM-HJ, 100); Anal. Calcd. for GHgNeO2: C, 54.34; H, 2.47; N,
24.21%. Found: C, 54.43; H, 2.48; N, 24.19%.
2,6-Diamino-4-(2-hydroxyphenyl)pyridine-3,5-dicar bonitrile (6l): White solid; m.p.
223-225°C; IR (KBr, v, cni'): 3345, 3132, 2210, 1647, 1608, 1559, 1541, 128%;'H NMR (400
MHz, CDCk) 6: 9.08-9.05 (s, 1H), 7.54-7.51 (m, 3H), 7.16-7.13(H), 4.05 (s, 4H)**C NMR

(100MHz, DMSO€), 6 = 166.7, 159.9, 154.8, 151.8, 133.5, 125.2, 123.8,6, 116.6, 115.5 (2C),
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75.4, 71.8 ppmMS (ESI): (n/z) =273.1([M+Na], 100); Anal. Calcd. for GHoNsO: 62.15; H,
3.61; N, 27.87%. Found: C, 62.25; H, 3.61; N, 2%76

2,6-Diamino-4-(2-cyanophenyl)pyridine-3,5-dicar bonitrile (6m): Reddish brown solid;
m.p. >300°C; IR (KBr, v, cmi’): 3548, 3476, 3412, 2208, 2204, 1637, 1618, 14984, 1111;H
NMR (400 MHz, DMSOdg) d: 7.65 (m, 1H), 7.56-7.46(m, 3H), 7.35 (s, 4HC NMR (100MHz,
DMSO-d), 6 = 166.1, 161.5, 158.8, 148.1, 136.1, 135.6, 13126,6, 123.9, 117.1, 115.7, 115.3,
84.0, 83.9 ppmyIS (ESI): fn/z) =259.3 ([M-H], 100); Anal. Calcd. for GHgNg: C, 64.61; H, 3.10;
N, 32.29%. Found: C, 64.74; H, 3.15; N, 32.17%.

2,6-Diamino-4-(2,4-dichlorophenyl)pyridine-3,5-dicar bonitrile (6n): White solid; m.p.
226-228°C; IR (KBr, v, cmi®): 3468, 3331, 3226, 2218, 1634, 1576, 1547, 1987;'H NMR (500
MHz, CDCk) d: 7.61 (s, 1H), 7.45-7.43 (m, 1H), 7.29 (m, 1HN&(s, 4H);"*C NMR (100MHz,
DMSO-dg), 6 = 163.7 (2C), 160.5, 137.2, 135.8, 131.6, 12928.2, 122.6, 115.9, 114,6, 80.3, 79.9
ppm;MS (ESI): /z) =305.1([IM+H["); Anal. Calcd. for GH;CI,Ns: 51.34; H, 2.32; N, 23.03%.
Found: C, 51.38; H, 2.27; N, 23.13%.

2,6-Diamino-4-(2-chlor o-6-fluorophenyl)pyridine-3,5-dicar bonitrile (60): White solid;
m.p. >300°C; IR (KBr, v, cmi’):3480, 3428, 3356, 3181, 2211, 1666, 1625, 1544511314, 1248,
909, 792;"H NMR (400 MHz, DMSO#d) 6: 7.67-7.51 (m, 3H), 7.47 (m, 4HY)C NMR (500MHz,
DMSO-d), 8 = 161.2 (2C), 160.1, 158.1, 133.4, 132.9, 126229, 115.8, 115.7, 115.5, 80.9 (2C)
ppm;MS (ESI): (m/z) =286.0(|[M-HJ, 100); Anal. Calcd. for GH;CIFNs: C, 54.28; H, 2.45; N,
24.34%. Found: C, 54.34; H, 2.47; N, 24.21%.
Appendix A. Supplementary material

Crystallographic data (excluding structure factdms) the structure in this paper have been

deposited with the Cambridge Crystallographic D@entre as supplementary publication no.
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CCDC 1018482. Copies of the data can be obtairszl df charge on application to CCDC, 12

Union Road, Cambridge CB2 1EZ, UK, (fax: +44 (0)32236033 or e-mail: deposit@ccdc.cam.

ac.uk).

Appendix B. Supplementary dat

Supplementary data related to this article can dend at http://dx.doi.org/10.1016/j.

dyepig.**++rx,
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Table1

Optimization of reaction conditions #

NC  NH,
O CN —
O - 8 oo — O
H CN
NC  NH,
4 6a

1a 2

Entry Solvent Catalyst (equiv) Time Temp Yield
(h) (°0) (%) °

1 MeOH NH; (1.0) 3 25 79

2 MeOH NaOH (1.0) 20 25 35

3 MeOH NaOMe (1.0) 20 25 27

4 MeOH DBU (1.0) 48 25 Trace

5 MeOH CH3NH; (1.0) 20 25 5

6 MeOH (CoHs)sN (1.0) 20 25 15

7 CH,Cl, NH3 (1.0) 10 25 20

8 CH5CN NH3 (1.0) 10 25 23

9 THF NH3 (1.0) 10 25 35

10 EtOH NH3 (1.0) 3 25 72

1 H,O NH; (1.0) 3 25 46

12 Mixturel? NH3 (1.0) 3 25 83

13 Mixture? NH3(1.0) 3 40 85

14 Mixture? NH3(1.0) 2 60 69

15 Mixturel? NH3(1.0) 2 80 42

16 Mixturel? NH3(1.0) 2 100 31

 Reaction conditions: benzaldehyde (10 mmol), malonoitrile (20 mmol), ammonia solution (20 mmol, 26~28
Wt%) b | solated yleldsc VmeoH: Vo= 6:1
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Table2
Three-componet one-pot synthesis of (Multi) donor-acceptor pyridnes derivatives 6

NC NH,
- 7. <CN + NHgH,0 MO0 @—@N
R_;Ar/ " o = ) NC  NH,
1 2 4 6
Entry Ar Time (h) Product Yield (%)°
1 Ph 3 6a 83
2 Pyridine-3-yl 3 6b 79
3 35 6C 84
4 900 8 6d 85
5 4-Cl-Ph 4 6e 82
6 4-F-Ph 6 6f 80
7 4-Me-Ph 45 69 82
8 4-OH-Ph 4 6h 79
9 3-NO,-Ph 3 6i 76
10 2-Cl-Ph 5 6i 81
1 2-Et-Ph 5 6k 81
12 2-OH-Ph 6 6l 75
13 2-CN-Ph 5 6m 76
14 2,4-diCl-Ph 5 6n 77
15 2-F-6-Cl-Ph 2.5 60 78

# Reaction conditions: aldehyde compounds (10 mmol), malonoitrile (20 mmol), ammonia solution (20 mmol,
26~28 Wt%), MeOH (60 ml), H,O (10 ml). ° Isolated yields
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Table3
Photophysical properties of synthesized pyridine derivatives in different solvent

Compd Amax, 3DS*(NM) Amax, €M° (NM) PL
H,0¢ DMSO¢ THF® H,0¢ DMSO¢ THF® Color®

6a 336(0.20)  341(0.24) 335(037)  466(141) NF NF B

6C 333(0.10)  337(0.16) 332(0.17) 376(118) 415 (146) 400(86) B

6d 386(0.13) 391 (0.08) 388(0.10) NF 417 (115) NF B

6e 335(0.19)  339(0.13) 333(0.12) NF 417 (107) NF B

6f 334(0.22)  338(0.15) 334(0.12) NF NF NF NF
69 333(0.15)  339(0.18) 334(0.18) NF 436(108) NF B

6h 334(0.38)  338(0.23) 334(0.14) NF 442(80) NF B

6i 336(0.09)  339(0.07) 336(0.17) NF NF NF NF
6i 335(0.27)  338(0.33) 336(035 NF NF NF NF
6k 333(0.26)  337(0.26) 332(026) NF NF NF NF
6l 371(0.17)  374(0.17) 368(0.18) 477 (67) 487 (99) 490(84) G
6m 481(0.26) 493 (0.40) 489(0.24) NF 570 (92) 570(92) ORG
6n 326(0.08)  332(0.18) 329(0.24) NF 390 (96) NF B

60 338(0.37)  343(0.26) 338(0.24) NF NF NF NF

¥ Longest wavelength absorption maximum. ® Fluorescence emission maximum. ¢ Color of the emitted light: B
(blue), G (green), ORG (orange), NF (no fluorescence). ¢ concentration [6] = 20 uM
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Table 4

Captions for the Figures and Schemes

Entry
Fig. 1.

Fig. 2.

Fig. 3.
Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Scheme 1.

Scheme 2.
Scheme 3.

Description of theillustration

Caystal structure of compound 6¢ with THF solvent. Thermal ellipsoids are drawn
at 30% level.

TG and DSC plots of 6a and 6¢ under N, atmosphere.

Packing diagram of compound 6c.

Photographs of the fluorescence emission of 6a in solvent and non-solvent solution
taken under UV light (365 nm, insert figure) and their fluorescence spectrums
emission (Aex = 336 nm); [6a] = 30 uM.

(a) Photographs taken under 365 nm UV lamb and (b) emission spectra of 6a in
THF-water mixtures with different water fractions (fw), [6a] = 50 uM; (c)
fluorescence spectrums emission against the 6a concentration in the range of 2-100
uM in aqueous solution (Aex = 336 nm).

UV-vis absorption spectra (a) and fluorescence emission excited at 336 nm (b) of
compound 6a, 6l, 6m in THF solution at room temperature with the same
concentration of 30 uM.

Various metal ions (100 uM) response for 6a (10 uM) in the absence and presence
of 100 uM of Au®" in aqueous solution (A\ex/em = 336/466 nm).

Fluorescence spectra of 6a (10 uM) upon the addition of Au** (0.3-100 uM) in
aqueous solution (Aex = 336 nm) and fluorescence intensity at 466nm plots against
[Au*] according to fluorescence titration spectra.

Methods for the synthesis of compound 6.

The synthetic design of 4-aryl-2,6-diamino-3,5-dicyanopyridine.

The proposed mechanism for the formation of 6a.
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Highlights

® A new series of pyridine derivative dyes were synthesized by domino reaction.
® The dyes exhibit the high aggregation-induced emission features.
® The dyes can be applied as fluorescent probe for detection the Au®".

® The probe can be applied in agueous solution with high selectivity and sensitivity.
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1. The'H NMR titration spectra of 6a in D,O-[Dg] THF mixtures
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Fig. S1 The'H NMR titration spectra oba in D,O-[Dg]THF mixtures with different BO fractions (v/v, 0%, 10%,

40%, 50%, 90%, 100%). Proton signals correspotidegphenyl ring{) and amino groups).
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2. ESI-MS spectra of the complex
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Fig. S2 ESI-MS spectra of the complex
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3. The detection limit of 6a toward Ad”* ions
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Fig. S3 The change of PL intensity of 6a aquealistis(10 uM) versus All concentration in a wide range of 0.3

uM to 100 uM.
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4. Copies ofH NMR and **C NMR spectra

'H NMR spectrum oBa

13C NMR spectrum o8a
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'H NMR spectrum oBa
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'H NMR spectrum obb
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'H NMR spectrum obd
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'H NMR spectrum off
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'H NMR spectrum oBg
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'H NMR spectrum oBh
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'H NMR spectrum obi
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'H NMR spectrum of;j
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'H NMR spectrum oBk
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'H NMR spectrum ofl
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'H NMR spectrum oBm
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5. Crystal data and structure refinement for 6¢

The crystal structure dic was assigned to THF. A summary of the crystal dagiven in TableS1
with the structure depicted in the main text, whellppsoids have been drawn at the 50% probability
level. Single crystals dc were mounted with glue on glass fiber and crystdh dvere collected on the
Rigaku AFC10 Saturn724 + (2 x 2 bin mode) diffracéter equipped with graphite-monochromated
MoKa radiation § = 0.710747 A). Empirical absorption correction waplied using the SADABS
program?® The structures were solved by direct metfRéaisd refined by full-matrix least squares on
F? using the SHELXL-97 prograr?. All non-hydrogen atoms were refined anisotropigaind the
hydrogen atoms were generated geometrically amadetldby a mixture of independent and constrained
refinement.

Crystallographic data (excluding structure factdi®) the structure in this paper have been
deposited with the Cambridge Crystallographic D&eantre as supplementary publication
no.CCDC 1018482. Copies of the data can be obtaified of charge, on application to
CCDC,12 Union Road, Cambridge CB2 1EZ, UK, (fax4€@)1223 336033 or e-mail:

deposit@ccdc.cam.ac.uk).

Table 1

Crystallographic Data and Structure Refinementtmnpoundsc
6

Empirical Formula CiHuNs:
C4HgO

Fw 357.41

Temp(K) 153(2)

Wavelength 0.71073 A

Cryst syst Monoclinic

Space group P2(1)/n

a(A) 6.8023(15)

b (A) 11.459(3)

c (A) 23.775(5)

0 (deg) 90

7 (deg) 97.832(2)

[ (deg) 90

V (A3 1835.9(7)

z 4

pe(Mg/m?) 1.293

Absorption coefficient 0.084 /mm

F(000) 752

O range (deg) 3.151t0 28.99
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Crystal size

0.50x0.19x0.17 mm

-9<=h<=9
Limiting indices -15<=k<=15
-32<=1<=32
No. of reflns collected 19467
No. of indep reflnsRyny 4867(0.0336)

Completeness to theta = 28.99.7%

Absorption correction None

Refinement method

Full-matrix least-square$on

data/restraints/params 4867 /0 /260

GOFF?

R12 WR2"(1 >25(1))
R1% wR2"(all data )
Largest diff. peak and hole

1.000
0.0589, 0.1275
0.0651, 0.1320

0.511 and -0.393 e.A"-3

Table 2
Selected Bond Lengths (A) and Bond Angles (°)

Bond Dist. Bond Dist.

N(1)-C(5) 1.344(18  C(2)C(3) 1.396(18

N(1)-C(1) 1.345(18)  C(2)-C(6) 1.427(19)

N(2)-C(1) 1.339(18)  C(3)-C(4) 1.394(19)

N(3)-C(5) 1.339(19) C(3)-C(8) 1.491(18)

N(4)-C(6) 1.149(19)  C(4)-C(5) 1.428(19)

N(5)-C(7) 1.150(2) C(4)-C(7) 1.429(19)

C(1)-C(2) 1.429(19)

Angle °) Angle °)
C(5)-N(1)-C(1)  119.4(12 C(2)}-C(3}-C(8) 1215(12)
N(2)-C(1)-N(1)  117.3(13) C(3)-C(4)-C(5)  119.0(12)
N(2)-C(1)-C(2)  121.0(13) C(3)-C(4)-C(7)  121.9 (12)
N(1)-C(1)-C(2)  121.7(12) C(5)-C(4)-C(7)  119.0(12)
C(3)-C(2)-C(6)  120.1(12) N(3)-C(5)-N(1)  117.6(13)
C(3)-C(2)-C(1)  119.2(12) N(3)-C(5)-C(4)  120.4(13)
C(6)-C(2)-C(1)  120.7(12) N(1)-C(5)-C(4)  122.0(13)
C(4)-C(3)-C(2)  118.6(12) N(4)-C(6)-C(2)  178.8(16)
C(4)-C(3)-C(8)  119.9(12) N(5)-C(7)-C(4)  176.0(16)
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check CIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE
FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED
CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. |

Datablock: bo2810

CIF dictionary [ Interpreting this feport

Bond precision: C-C =0.0023 A Wavelength=0.71073
Cell: a=6.8023(15) b=11.459(3) c=23.775(5)
alpha=90 beta=97.832(2) gamma=90
Temperature: 153 K
Calculated Reported
Volume 1835.9(7) 1835.9(7)
Space group P 21/n P2(1)/n
Hall group -P 2yn ?
Moiety formula C17 H11 N5, C4 H8 O ?
Sum formula C21H19N50 C21H19N50O
Mr 357.41 357.41
Dx,g cm-3 1.293 1.293
Z 4 4
Mu (mm-1) 0.084 0.084
FO00 752.0 752.0
FO00’ 752.26
h,k,Imax 9,15,32 9,15,32
Nref 4880 4867
Tmin, Tmax 0.981,0.986
Tmin’ 0.959

Correction method= Not given
Data completeness= 0.997
R(reflections)= 0.0589( 4473)

S =1.000

Theta(max)= 28.990

wR2(reflections)= 0.1320( 4867)

Npar= 260

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT alert-type_alert-Ilevel.
Click on the hyperlinks for more details of the test.



http://www.iucr.org/iucr-top/cif/cif_core/definitions/index.html
http://journals.iucr.org/services/cif/checking/checkcifreport.html

“ Alert level G

No _iucr_refine_instructions_details in the CIF  Please Do !

Hirshfeld Test Difffor C4 - C7 . 5.3 su

[PCAT7I0_ALERT 4 { Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 21 Do!
C3 -C2 -C6 -N4 130.00 7.00 1.555 1.555 1.555 1.555

[PCAT7I0_ALERT 4 { Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 22 Do!
Cl -C2 -C6 -N4 -48.00 7.00 1.555 1.555 1.555 1.555

[PCAT7I0_ALERT 4 Q Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 23 Do !
C3 -C4 -C7 -N5 18.00 0.00 1.555 1.555 1.555 1.555

[PCAT7I0_ALERT 4 Q Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 24 Do !
C5 -C4 -C7 -N5 2.00 3.00 1.555 1.555 1.555 1.555

[PCAT899 ALERT 4 Q SHELXL97 is Deprecated and Succeeded by SHELXL 2014 Note

ALERT | evel A= Most likely a serious problem - resolve or explain

ALERT | evel B = A potentially serious problem, consider carefully

ALERT | evel C=Check. Ensure itis not caused by an omission or oversight
ALERT | evel G= General information/check it is not something unexpected

~NO oo

0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low

5 ALERT type 4 Improvement, methodology, query or suggestion

1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the
minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement
strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more
serious problems it may be necessary to carry out additional measurements or structure
refinements. However, the purpose of your study may justify the reported deviations and the more
serious of these should normally be commented upon in the discussion or experimental section of a
paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify
outliers and unusual parameters, but every test has its limitations and alerts that are not important
in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no
aspects of the results needing attention. It is up to the individual to critically assess their own
results and, if necessary, seek expert advice.

Publication of your CIF in [UCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs
submitted for publication in IUCr journalégta Crystallographica, Journal of Applied

Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit fxta
Crystallographica Section C or E, you should make sure that full publication checks are run on the
final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to thidotes for Authors of the relevant journal for any special instructions relating to
CIF submission.

PLATON version of 20/08/2014; check.def file version of 18/08/2014
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