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Titanium tetrachloride mediated addition of allyltrimethylsilane

to chiral acetals derived fro m (S)-α-amino  aldehydes and (+)-(2S,4S)-

pentane-2,4-diol gave the anti-2-amino alcohol derivatives with con-

siderably high diastereoselectivity. On the other hand, the same re-

action by the use of acetals obtained from (-)-(2R,4R)-pentane-2,4-diol 

gave the products of opposite stereochemistry series as major products.

 A stereoselective synthesis of 2-amino alcohols has been greatly stimulated 

in peptidomimetic chemistry. Chiral 2-amino alcohols such as statine (1: X=OH) 

have been incorporated into peptides to get compounds, as exemplified by pepstatin 

(2), having inhibiting properties toward some class of proteolytic enzymes. 2) Al-

though α-amino  aldehydes derived from  (S)-α-amino  acids have a remarkable ability

to yield chiral 2-amino alcohols by alkylation, the levels of the stereoselectiv-

ity are usually low, 3) and in these reactions, (1S,2S)-2-amino alcohols are formed 

predominantly over (1R,2S)-isomers. A new facile diastereoselective synthesis of 

(1R,2S)-2-amino alcohols is challenge, since they would be potentially useful for 

a preparation of statine analogues (e.g. 1: X=functional groups such as SH, S-

alkyl) possessing the same stereochemistry as statine by conversion of hydroxy 

group to other functional groups by SN2 type substitution reactions. We wish to 

describe an asymmetric synthesis of 2-amino alcohol derivatives through titanium 

tetrachloride mediated addition of allyltrimethylsilane to chiral acetals of (S)-

α-amino  aldehydes by an application of the effect of chiral acetal templates. 4)

 Acetals, used in this study, were prepared as follows. Swern oxidation 5) of 

(S)-2-amino alcohols (3a-c), followed by acetalization of the resulting aldehydes 

(4a-c) (methanol, p-toluenesulfonic acid) gave 5a-c, respectively. Transacetaliza-

tion of 5a-c with 1,3-propanediol in the presence of p-toluenesulfonic acid yield-

ed the acetals (6a-c),6) respectively. The same reaction by the use of (+)-(2S, 

4S)-2,4-pentanediol and (-)-(2R,4R)-2,4-pentanediol afforded the corresponding 

acetals (7a-c, 8a-c), respectively. 

 At the first stage, stereoselectivity in allylation of 4b and acetals (6a-c)
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was examined. Treatment of 4b with allyltrimethylsilane (CH2Cl2, TiCl4,  -78℃ ,1h

then quenched with methanol at  -78℃)  gave a 2:3 mixture7) of 9 and 10 in a favor

of syn-isomer (10). In contrast to this result, the same reaction by the use of 6a 
-c , the ratio of syn/anti-isomer varied in a favor of anti-isomers. Yields and the 

ratio of syn/anti-isomer, as shown in the Table 1, depend critically on the size

of alkyl substituent  at α-position.  The results indicate that the reaction pro-

ceeds predominantly via the SN2 type transition state A over the transition state 

B giving syn-siomer.

Table 1. Yield of 11 and 12 from 6

 Secondly, allylation of 7a-c and 8a-c was examined to explore the variation 

of syn/anti-isomer by addition of chiral auxialiary on acetals. In the cases of 

7a-c, of the two transition states (C and D), C leading to anti-isomer should be 

sterically more favorable than D giving syn-isomers. In addition, it can be ex-

pected that template effect in C works better than in D.9) In fact, in allylation 

of 7a-c, anti-isomers (13a-c) were obtained predominantly over syn-isomers (14a-c) 

as shown in the Table 2. Both isomers (13a-c, 14a-c) were separated by column 

chromatography on silica gel by elution with hexane-ethyl acetate (5:1). Allylation 

of 8a-c yielded syn-isomers (16a-c) as major products (Table 2). Of the two transi-

tion states (E, F), although E seems to be sterically more favorable than F, chiral 

template can be anticipated to work more effectively in F than E. Formation of 16a 
-c as major products can be accounted for mainly by this reason . But, the diaster-
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eoselectivity decreased in order of 16a 16b 16c, which were consistent with the

order of the size of alkyl substituesnt  at α-position.  The chemical behavior seen

in such addition reaction correlates well with the chiral template effect as well 

as steric effect.

Table 2. Yield of 13/14, 15/16 and  [α]D of 13 and 16

 Conversion of 13a-c to 17a-c was achieved by Jones oxidation, followed by 

treatment with base (7.5 M KOH, methanol, THF, 1:2:4), respectively. In a similar 

way, 16a-c were also converted to 18a-c, respectively, by removal of the chiral 

auxiliary. The stereochemistry of 17a-c was assigned as 4,5-cis and 18a-c was as 

4,5-trans based on the chemical shifts for 4-H and 5-H and coupling constants for 

14,5 observed in their 1H NMR (CDC13, 400 MHz) spectra.10) Furthermore, Jones oxi-
dation of 13b, followed by treatment with p-toluenesulfonic acid (1.5 equiv., di-

oxane-H2O (2:1), reflux 36 h) 11) afforded 9 in 68.5% yield (84.5% yield based on

the recovery of 13b), mp 87-91  ℃, [α]20D-16.5° (c, 0.17, methanol). In order to

prove that the chiral centers retained during these reactions, 17b was converted

to 20.3) Protection of 3-nitrogen of 17b with Boc (NaH, THF, Boc2O,  0℃-room

temperature, 12 h), followed by oxidation with  RuCl3・H2O  under Sharpless condi-

tions 12) gave the acid (19) in 64.5% yield from  17b, mp 75-77℃.  Hydrolysis of 19

(LiOH, aqueous methanol, room temperature, 0.5 h) afforded 20, mp 135-136℃

(lit.,3) mp 135-136 ℃),[α]20D-26.7°  (c, 0.27, methanol) (lit.,3)  [α]24D-27.6°(c

0.31, methanol). Thus, the absolute configuration of these products were clearly 

determined and the two asymmetric centers were found to retain during these steps.
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Table 3. Yield,  [α]D, and δ (CDCl3, 400 MHz) of 17, 18
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