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Ammonium Nitrate in the Solid State
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Biology (Ministry of Education), Department of Chemistry,

Tsinghua University, Beijing, China

Abstract: Oxidative coupling reactions of N,N-dialkylanilines with cerium(IV)

ammonium nitrate can be achieved by grinding at room temperature in the absence

of solvents.
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N,N,N0,N0-Tetraalkylbenzidine derivatives have received much attention for

their tunable electric conductivity, which has the potential to be utilized

in industrial fields such as organic light-emitting diodes,[1] organic field-

effect transistors,[2] organic solar cells,[3] and organic photoconductors.[4]

Oxidative coupling of N,N-dialkylanilines provides an efficient access to

such products, but most known methods for such reactions are either low

yielding[5 – 7] or not very regioselective. Some newly reported methods seem

to be more practical, such as TiCl4-mediated oxidative coupling[8] and 1,8-

bis(diphenylmethylium)naphthalenediyl dications,[9] but the former requires

a large excess of substrates and dichloromethane as solvent and the organic

oxidant for the latter is troublesome to get.

With increasing public concern about environmental degradation, one of

the challenges for chemists is to come up with new approaches that are less
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hazardous to human health and the environment.[10] The solvents used in

organic synthesis are high on the list of environmental pollutants, because

they are employed in large amounts and usually are volatile liquids. To be

environmentally friendly, we are interested in seeking new processes

involving solvent-free reactions for organic reactions, although the solvent-

free method has been utilized in a wide range of reactions recently.[11 – 14]

In our previous work, we developed a cerium(IV) ammonium nitrate

(CAN)-mediated oxidative coupling of N,N-dialkylanilines using water as

solvent,[15] which was efficient, economical, and environmentally friendly.

During the course of our study, we found oxidative coupling reactions of

N,N-dialkylanilines with CAN can be achieved by grinding at room tempera-

ture in the absence of solvents.

By milling constantly with a mortar and pestle, this method was found to

be significantly faster than traditional methods based on solvent[12 – 14] and

much easier to carry out. When N,N-dialkylanilines were tried with this

method (Scheme 1), similar conclusions, such as faster proceeding, easier

handling, and higher regioselectivity, were demonstrated by our study.

At the very beginning, experiments were made to test the proper

amount of CAN, and in accordance with the aqueous system we

reported,[15] 2 equiv of CAN seems to be the most proper (Table 1).

When 1 equiv of CAN was added to 1 mmol of substrate and ground con-

stantly with a mortar and pestle for 15 min, most substrate still remained.

When the amount of CAN changed from 2 equiv to 5 equiv, only the

yield mildly differed. When N,N-diethylaniline 1a was used in these

testing reactions, para-position coupling happened and N,N,N0,N0-tetraethyl-

benzidine 2a was the main isolated product in 58% yield with excellent

regioselectivity.

The ratio of 1 : 2 of substrate to CAN for oxidative p,p-coupling was

found to be general for other N,N-dialkylanilines, and some examples are

shown in Table 2. In most cases, the reaction gave high regioselectivity for

p,p-coupling products, with the only exception of 3,5-dimethyl-N,N-diethyla-

niline 1d, which gave o,p-coupled product 2d in 80% yield. 1-Phenylpiperi-

dine 1j showed low yield of 2j in 28% probably because the ring on the N

atom make the proceeding of the reaction harder. Reactions of other substrates

were similar to 1a.

As for the mechanism of this reaction, we hold the radical cation

procedure, which we reported in our previous work,[15] as presented in

Scheme 2. First, the N,N-dialkylaniline 1 is coordinated to CAN to form

Scheme 1.
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complex 3, which undergoes oxidative electron transfer with second CAN to

afford the radical cation 4. Second, the radical cation 4 directly dimerizes to

give diiminium ions intermediate 5, which is converted to dimer 6 after depro-

tonation. Finally, product 2 forms after the workup procedure.

In conclusion, we have found a highly regioselective, fast, and environ-

mentally friendly oxidative coupling reaction of N,N-dialkylanilines with

cerium(IV) ammonium nitrate (CAN) in the absence of solvent.

EXPERIMENTAL

Representative Procedure

N,N-Diethylaniline 1a (1 mmol, 159mL) and CAN (2 eq, 1.096 g) were mixed

together in a mortar, and the mixture was constantly milled with a pestle. Ten

to fifteen minutes later, the reaction mixture was quenched with an aqueous

solution of K2CO3, followed by extraction of the organic phase with ethyl

acetate. Then the solvent was evaporated under reduced pressure, and the

residue was purified by chromatography on neutral Al2O3 column using

1:100 EtOAc/petroleum mixture as eluent.

Structures of the final products were comfirmed by 1H NMR (300 MHz)

and 13C NMR (300 MHz) in deuterated chloroform. Chemical shifts (d) are

reported in parts per million (ppm) relative to tetramethylsilane. Proton and

carbon spectra were typically obtained at room temperature. ESI-MS data

were used to strengthen our results.

Table 1. Effect of amount of CAN on the oxidative coupling

reaction of N,N-dialkylaniline

Entry CAN (eq) Time (min) Yield (%)a

1 1 5 Trace

2 1 15 Trace

3 2 5 Trace

4 2 10 35

5 2 15 58

6 2 20 58

7 3 15 46

8 4 15 42

9 5 15 44

aIsolated yield based on the amount of N,N-dialkylaniline.
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Data

N,N,N0,N0-Tetraethylbiphenyl-4,40-diamine (2a):[8] yellow solid (58%).
1H NMR (CDCl3) d 7.40 (d, J ¼ 8.6 Hz, 4H), 6.72 (d, J ¼ 8.6 Hz, 4H), 3.35

Table 2. Oxidative coupling of N,N-dialkylanilines with CAN in solid state

Entry Substrate Product

Yield

(%)a

1 1a 2a 58

2 1b 2b 78

3 1c 2c 48

4 1d 2d 80

5 1e 2e 77

6 1f 2f 54

7 1g 2g 43

8 1h 2h 49

9 1i 2i 46

10 1j 2j 28b

aIsolated yield based on substrate.
bSubstrate 1j remained.
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(q, J ¼ 6.9 Hz, 8H), 1.17 (t, J ¼ 6.9 Hz, 12H); 13C NMR (CDCl3) d 146.4,

128.9, 127.2, 112.3, 44.5, 12.8. ESI-MS: 297 (MþHþ).

N,N,N0,N0-Tetraethyl-2,20-dimethylbiphenyl-4,40-diamine (2b): light yellow

liquid (78%). 1H NMR (CDCl3) d 6.87 (d, J ¼ 8.3 Hz, 2H), 6.46 (m, 4H),

3.26 (q, J ¼ 7.2 Hz, 8H), 1.98 (s, 6H), 1.09 (t, J ¼ 7.2 Hz, 12H); 13C NMR

(CDCl3) d 146.8, 137.4, 131.2, 129.5, 112.9, 109.2, 44.4, 20.9, 12.9. ESI-

MS: 325 (MþHþ). HRMS: calcd. for C22H32N2 324.2565; found 324.2568.

N,N,N0,N0-Tetraethyl-3,30-dimethylbiphenyl-4,40-diamine (2c): light yellow

liquid (48%). 1H NMR (CDCl3) d 7.40 (m, 4H), 7.08 (d, J ¼ 8.3 Hz,

2H), 3.02 (q, J ¼ 7.2 Hz, 8H), 2.35 (s, 6H), 1.00 (t, J ¼ 7.2 Hz, 12H); 13C

NMR (CDCl3) d 148.8, 135.9, 135.4, 129.4, 124.5, 122.4, 47.7, 18.7, 12.7.

ESI-MS: 325 (MþHþ). HRMS: calcd. for C22H32N2 324.2565; found

324.2563.

N,N,N0,N0-Tetraethyl-20,4,6,60-tetramethylbiphenyl-2,40-diamine (2d):

colorless liquid (80%). 1H NMR (CDCl3) d 6.46 (s, H), 6.31 (s, 3H), 3.31

(m, 8H), 2.26 (s, 9H), 1.89 (s, 3H), 1.15 (m, 12H); 13C NMR (CDCl3) d

148.0, 146.5, 138.7, 137.1, 128.4, 117.5, 111.1, 109.8, 44.3, 44.2, 21.9,

20.8, 12.9, 12.7. ESI-MS: 353 (MþHþ). HRMS: calcd. for C24H36N2

352.2878; found 352.2875.

N,N0-Diethyl-N,N0-diisopropylbiphenyl-4,40-diamine (2e): colorless liquid

(77%). 1H NMR (CDCl3) d 7.20 (m, 4H), 6.72 (m, 4H), 4.02 (m, 2H), 3.22

(m, 4H), 1.15 (m, 18H); 13C NMR (CDCl3) d 148.6, 129.2, 115.8, 112.9,

Scheme 2.
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48.2, 38.0, 20.1, 15.1. ESI-MS: 325 (MþHþ). HRMS: calcd. for C22H32N2

324.2565; found 324.2566.

N,N0-Dibutyl-N,N0-diisopropylbiphenyl-4,40-diamine (2f):[16] yellow solid

(54%). 1H NMR (CDCl3) d 7.34 (d, J ¼ 8.9 Hz, 4H), 6.68 (d, J ¼ 8.9 Hz,

4H), 3.98 (m, 2H), 3.04 (m, 4H), 1.49 (m, 4H), 1.32 (m, 4H), 1.27

(m, 12H), 0.88 (m, 6H); 13C NMR (CDCl3) d 146.6, 128.5, 126.3, 112.8,

18.0, 43.2, 31.0, 19.9, 19.5, 13.4. ESI-MS: 381 (MþHþ).

N,N,N0,N0-Tetramethylbiphenyl-4,40-diamine (2 g):[8] yellow solid (43%).
1H NMR (CDCl3): d 7.45 (d, J ¼ 8.4 Hz, 4H), 6.80 (d, J ¼ 8.4 Hz, 4H),

2.97 (s, 12H); 13C NMR (CDCl3): d 149.4, 130.0, 127.0, 113.2, 40.8. ESI-

MS: 241 (MþHþ).

N,N0-Dibutyl-N,N0-dimethylbiphenyl-4,40-diamine (2 h):[16] yellow solid

(49%). 1H NMR (CDCl3): d 7.42 (d, J ¼ 8.9 Hz, 4 H), 6.72 (d, J ¼ 8.9 Hz,

4 H), 3.30 (br, 4 H), 2.93 (s, 6 H), 1.52–1.58 (m, 4 H), 1.29–1.38 (m, 4 H),

0.94 (t, J ¼ 7.2 Hz, 6 H). 13C NMR (CDCl3): d 147.8, 129.1, 126.9, 112.4,

52.6, 38.4, 28.9, 20.4, 14.0. ESI-MS: 325 (MþHþ).

N,N0-Diethyl-N,N0-dimethylbiphenyl-4,40-diamine (2i):[8] yellow solid

(46%). 1H NMR (CDCl3): d 7.61 (m, 4H), 6.92 (m, 4H), 3.58

(q, J ¼ 7.2 Hz, 4H), 3.06 (s, 6H), 1.27 (t, J ¼ 7.2 Hz, 6H); 13C NMR

(CDCl3): d 147.8, 129.49, 127.1, 112.9, 47.0, 37.6, 11.4. ESI-MS: 269

(MþHþ).

4,40-Di(piperidin-1-yl)biphenyl (2j):[8] yellow solid (28%). 1H NMR

(CDCl3): d 7.51 (m, 4H), 7.13 (m, 4H), 3.24 (s, 8H), 1.70 (m, 12H); 13C

NMR (CDCl3): d 150.8, 132.0, 127.0, 116.8, 50.8, 25.9, 24.4. ESI-MS: 321

(MþHþ).
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