Das Filtrat wurde i.V. verdampft und der Rückstand zwischen CCl₄-CHCl₃-Methanol-1-n.HCl (1:1:1:2) verteilt. Die schwere Phase wurde mit Methanol-Wasser (1:2) gewaschen und i.V. zur Trockne verdampft. Der Rückstand wurde zusammen mit dem oben erwähnten, abgenutschten Material mit Essigsäureanhydrid-Pyridin nachacetyliert. Nach dem Verdampfen des Essigsäureanhydrids und des Pyridins i.V. wurde der Rückstand in siedendem Dioxan gelöst und vom ungelösten Dicyclohexylharnstoff abgetrennt (1,57 g; 90%); das Filtrat wurde durch eine Säule von 220 g Aluminiumoxyd (Akt. III) filtriert. Eluiert wurde mit Dioxan, das Lösungsmittel wurde i.V. verdampft. Der Rückstand wurde mit 50 ml heissem Äthanol verrieben und mit gleichviel heissem Wasser versetzt. Die kristalline Fällung wog 5,48 g (74%), Smp. 176–179°. Zur Analyse wurde aus Äthanol-Wasser umkristallisiert, Smp. 180–182°.

Die Mikroanalysen wurden in unseren mikro-analytischen Laboratorien unter der Leitung von Dr. H. Gysel ausgeführt.

SUMMARY

Using p-(p'-methoxy-phenylazo)-benzyloxycarbonyl-(MZ-) and p-nitrobenzyl-(NB-) as blocking groups for the α -amino- and α -carboxylic functions respectively, a completely protected pentapeptide unit, occurring in tyrocidine A, has been prepared: MZ-L-Phe-D-Phe-L-Asp(OCH₃)-L-Glu(OCH₃)-L-Tyr(OAc)·ONB. The p-nitrobenzylester group is very resistant towards HBr in acetic acid, the reagent used for intermediary splitting of the MZ-groups. Peptide bonds were formed by means of either POCl₃+triethylamine or by dicyclohexyl-carbodiimide. All the products containing MZ-groups were obtained in the crystalline state.

Forschungslaboratorien der CIBA AKTIENGESELLSCHAFT, Basel,
Pharmazeutische Abteilung, und
Chemisches Institut der Universität Zürich

105. Die Glykoside der Samen von Nerium oleander L.1)

Glykoside und Aglykone, 200. Mitteilung²)

von Herbert Jäger, O. Schindler und T. Reichstein

Herrn Prof. Dr. P. KARRER zum 70. Geburtstag gewidmet

(14. III. 59)

Nerium oleander L. ist eine besonders im Mittelmeergebiet weit verbreitete Apocynacee³), von der vor allem die Blätter schon lange medizinische Verwendung⁴)⁵) finden. Ihre Wirkung verdanken sie zur Hauptsache ihrem Gehalt an digitaloiden Glykosiden. Bisher wurden aus den Blättern die folgenden vier krist. Glykoside

¹⁾ Diss. Herbert Jäger, Basel 1958.

^{2) 199.} Mitteilung: R. P. Martin & Ch. Tamm, Helv. 42, 696 (1959).

³⁾ Vgl. z.B. die Monographie von R. Cortesi, Bull. Soc. botan. Genève 32 (1939–1940), und weitere Literatur daselbst.

⁴⁾ F. Flury & W. Neumann, Klin. Wschr. 14, 562 (1935).

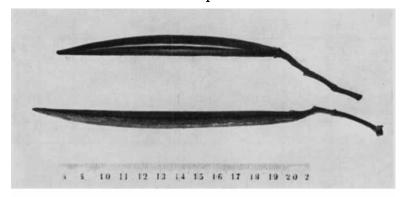
⁵) Vgl. auch die Zusammenstellung von R. Cortesi, Pharmac. Acta Helv. 18, 215 (1943).

isoliert: Oleandrin⁴⁻¹²), Desacetyl-oleandrin¹¹), Adynerin¹¹) ¹³⁻¹⁷) und Neriantin¹⁴) ¹⁷). Die Konstitution der ersten zwei ist aufgeklärt, die der zwei letztgenannten ist teilweise gesichert (vgl. Tab. 1).

	Spalts	Ver-	
Stoff	Genin	Zucker	fung 18)
Oleandrin	Oleandrigenin	L-Oleandrose 19)	α
Desacetyl-oleandrin	Gitoxigenin	,,	α
Adynerin	△7-Adynerigenin 20)	D-Diginose ²¹)	β
Neriantin	Neriantogenin	p-Glucose	В

Tabelle 1. Die vier bisher aus den Blättern von Nerium oleander isolierten digitaloiden Glykoside

Hauptglykosid ist das Oleandrin. Es besitzt ausgesprochene digitalisartige Wirkung, wird klinisch benützt und in technischem Maßstab fabriziert. Das Desacetyloleandrin unterscheidet sich von Oleandrin lediglich durch die fehlende Acetylgruppe am O-Atom an C-16, es ist merklich schwächer wirksam²²). Adynerin und Neriantin besitzen keine digitalisartige Wirkung.


In einigen Pflanzen (z.B. Digitalis) enthalten die Samen merklich andere Glykoside als Blätter oder Zweige. Die Samen von Nerium oleander sind, soweit wir feststellen konnten, bisher nur von Leulier²³) ²⁴) untersucht worden. Er isolierte Kristalle. Die Beschreibung erlaubt kein Urteil über Einheitlichkeit oder Identität. Wir vermuten, dass ein Gemisch vorgelegen hat.

Im Folgenden beschreiben wir eine genaue Analyse der Samen unter Kontrolle durch Papierchromatographie.

- 6) P. J. Lukowski, J. Pharmacie [3] 46, 397 (1861).
- ⁷⁾ O. Schmiedeberg, Arch. exp. Pathol. Pharmacol. 16, 159 (1882); Ber. deutsch. chem. Ges. 16, 253 (1883).
 - 8) W. STRAUB, Arch. exp. Pathol. Pharmacol. 82, 327 (1918).
 - 9) M. G. TANRET, C. r. hebd. Séances Acad. Sci. 194, 914 (1932). Daselbst weitere Literatur.
- ¹⁰) A. WINDAUS & K. WESTPHAL, Nachr. Ges. Wiss. Göttingen, Mathem.-phys. Kl. 1925, 78; vgl. auch K. WESTPHAL, Diss. Göttingen 1928.
 - ¹¹) W. NEUMANN, Ber. deutsch. chem. Ges. **70**, 1547 (1937).
 - 12) R. TSCHESCHE, Ber. deutsch. chem. Ges. 70, 1554 (1937).
 - 13) R. TSCHESCHE & K. BOHLE, Ber. deutsch. chem. Ges. 71, 654 (1938).
 - 14) R. TSCHESCHE, K. BOHLE & W. NEUMANN, Ber. deutsch. chem. Ges. 71, 1927 (1938).
 - 15) H. M. CARDWELL & S. SMITH, J. chem. Soc. 1954, 2012.
 - ¹⁶) R. Tschesche & G. Grimmer, Chem. Ber. 87, 418 (1954).
 - ¹⁷) R. TSCHESCHE & G. SNATZKE, Chem. Ber. 88, 511 (1955).
 - 18) An C-1 des Zuckers, vgl. W. KLYNE, Biochem. J. 47, xli (1950).
- 19) Konstitutionsbeweis durch Synthese vgl. F. BLINDENBACHER & T. REICHSTEIN, Helv. 31, 2061 (1948).
- ²⁰) Im Adynerin soll nach Tschesche¹⁶) die Doppelbindung in 8-Stellung vorliegen und erst bei der Hydrolyse Verschiebung nach C-7 eintreten; dies ist aber nicht bewiesen.
- ²¹) Konstitutionsbeweis durch Synthese vgl. Ch. Tamm & T. Reichstein, Helv. 31, 1630 (1948)
 - ²²) W. NEUMANN & W. LINDNER, Arch. exp. Pathol. Pharmakol. 185, 630 (1937).
 - ²³) A. LEULIER, J. Pharmac. Chim. 74, 157 (1911).
 - ²⁴) A. Leulier, J. Pharmac. Chim. 75, 108 (1912).

Beschaffung des Ausgangsmaterials

Für diese Untersuchung standen uns 3,82 kg ganze, trockene Früchte zur Verfügung ²⁵), die von der rotblühenden Form des wildwachsenden Oleanders stammten. Sie wurden im August 1954 in der Gegend von Athlit (an den Ausläufern des Carmels, Israel) gesammelt und erreichten uns im März 1955 in ausgezeichnetem Zustand. 1,92 kg Früchte (vgl. Fig. 1) wurden verwendet. Sie lieferten 603,7 g Samen (vgl. Fig. 1). Die Samenhaare wurden beim Hauptversuch nicht entfernt.

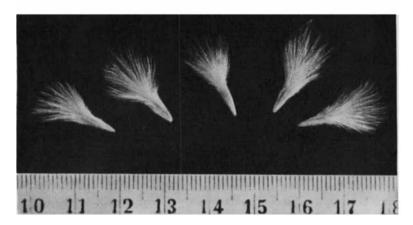


Fig. 1. Photographie von zwei reifen Früchten von Nerium oleander L. sowie einiger reifer Samen, letztere unter Glas (also massgetreu) aufgenommen (Maßstab jeweils in cm). Photo Dr. L. Jenny

Chemische Untersuchung 26)

Vorversuche. Um festzustellen, welche Methode zur Extraktion und Untersuchung am geeignetsten ist, wurden 13,7 g Samen mechanisch von den gröbsten Haaren befreit (10,0 g), im Exsikkator getrocknet (9,8 g) und anschliessend gemahlen und mit

²⁶) Dieses Material wurde uns freundlicherweise von den TEVA MIDDLE EAST PHARMACEUTICAL AND CHEMICAL WORKS LTD., Jerusalem, überlassen, welche die fabrikmässige Herstellung des Oleandrins (Foliandrin) aus den Blättern durchführen. Wir möchten auch hier der Direktion der genannten Firma unseren besten Dank für dieses schöne Material aussprechen.

²⁶) Abkürzungen für Lösungsmittel etc. vgl. Einleitung zum Exp. Teil.

Petroläther bei 30° entfettet. Von dem entfetteten Pulver (7,8 g) wurden je 3,9 g mit und ohne Fermentierung aufgearbeitet ²⁷) ²⁸). Über die erhaltenen Ausbeuten orientiert Tab. 2. Die papierchromatographische Prüfung der Extrakte ist in den Fig. 2–5 wiedergegeben.

Extrakte	tierung (aus tierung (aus tierung (aus Haup		ng (aus tierung (aus 5,85 g Samen)		Mit Fe tier Hauptv aus 590 in g	ung versuch
Pe-Extr. ²⁹)	1000	14,6	1000	14,6	86,6	16,3
Ac-Extr. ger. ³⁰)	14,7	0,22	120,2	1,76	8,45	1,43
Chf-Extr	54,1	0,79	23,6	0,36	4,87	0,83
Chf-Alk-(2:1)-Extr	114,8	1,67	14,8	0,22	1,53	0,26
Chf-Alk-(3:2)-Extr	19,2	0,28	11,0	0,16	0,49	0,08
	202,8	2,96	169,6	2,50	15,34	2,60

Tabelle 2. Ausbeuten an Rohextrakten bei 2 Vorversuchen und beim Hauptversuch

Die zwei Vorversuche zeigten, dass durch die Fermentierung ein weitgehender Abbau von stark polaren Di- oder Triglykosiden zur Monoglykosidstufe stattgefunden hat. Wie die weitere Prüfung zeigte, war dieser Abbau aber nicht vollständig, denn bei der fermentierten Probe zeigten die Chf-Alk-(2:1)- und -(3:2)-Extrakte (welche das stark wasserlösliche Material enthalten) im Papierchromatogramm genau dieselben Flecke wie die entsprechenden Extrakte des nicht fermentierten Materials³¹) (vgl. Fig. 5). Die Menge war aber, wie erwähnt, sehr stark reduziert. Daher wurde der Hauptversuch analog mit Fermentierung durchgeführt.

Hauptversuch. Für diesen wurden 590 g Samen verwendet; sie lieferten nach Fermentierung die in Tab. 2 genannten Ausbeuten. In den vier Extrakten wurden in Papierchromatogrammen, teilweise erst nach präparativer Anreicherung, insgesamt 28 Flecke erhalten, die zunächst mit den Buchstaben α , A, β , B, γ , C, δ , D, E, F, G, H, I, K, L, N, O, P, P₁, π , ϱ , Q, R, S, T, U, V und W bezeichnet wurden. Ihre Verteilung auf die 4 Extrakte ist aus Tab. 3 und den Fig. 3 und 5–7 ersichtlich ³²). Tab. 4 enthält die Rf-Werte in verschiedenen Systemen.

Für den Nachweis der Flecke diente in erster Linie die Kedde-Reaktion 35). Eine gute Differenzierung der Kedde-positiven Flecke wurde mit der SbCl₃-Reaktion 36) und der UV.-Absorption 39) erzielt. Die zwei letztgenannten Reaktionen erlauben bereits wertvolle Rückschlüsse auf die Konstitution 36) 39) (vgl. Tab. 3).

²⁷) W. NAGATA, CH. TAMM & T. REICHSTEIN, Helv. **40**, 41 (1956).

²⁸) S. Rajagopalan, Ch. Tamm & T. Reichstein, Helv. 38, 1809 (1955).

²⁹) Inklusive die Pe-löslichen Anteile des Ae-Extr.

³⁰⁾ Gereinigt durch Verteilung zwischen 80-proz. Me und Pe zur Entfernung von Fettresten.

³¹) Durch Nachbehandlung solcher Extrakte (nur im Hauptversuch ausgeführt) mit geeigneten Glucosidasen (z. B. aus den Samen von *Adenium multiflorum*) liessen sie sich so weit abbauen, dass eine Anzahl dieser Flecke ganz verschwand (siehe weiter unten).

³²) Es zeigte sich im Laufe der Untersuchung, dass die so bezeichneten Flecke, soweit feststellbar, jeweils nur von einem Stoff hervorgerufen wurden. Daher werden hier dieselben Buchstabenbezeichnungen auch für die entsprechenden Stoffe verwendet.

Tabelle 3. Übersicht über die in Papierchromatogrammen nachgewiesenen³³) Stoffe.
Reihenfolge zunehmender Polarität

					Rememoige zunem									
Flecke und Extr., in denen sie gefunden wurden			den wurden Krist.		lie- rung in Identifizierung 34)		SbCl ₃ -UVFl.36)	UVAbs.89)	Keller-Kiliani 41)	Xanthydrol 42)	Isoli Meng in mg		weise lich e	nthal- Menge ¹)
				<u> </u>		<u> </u>	S	<u> </u>	X		m mg	···· /º	III III B	··· /o
 *			α		-	S45)	_	_			_		30	0,005
]]	•		Α	+	~	S45)	_	-	_	_	99,7	0,017	400	0,068
			β	_	_	+		_	Ì		_	_	30	0,005
			В	+	Adigosid ⁴⁶)	+	+	_	+	+	60,6	0,01	400	0,068
ΙÍ			γ	+	Digistrosid 47)	+	_	_	+	+	53,6	0,009	550	0,093
1)	4		С	+	Oleandrin 10)11)12) .	+	+	_	+	+	52,2	0,009	350	0,059
			δ	+	Cryptogrando- sid A ⁴⁸)	+	+	_	+	+	27,8	0,004	400	0,068
ĘĘ	!		D	+	16-Anhydro-des- acetyl-crypto- grandosid A ⁴⁸).	+	+	+	+	+	41,2	0,007	350	0,059
[ra]			E	+	Odorosid A ⁴⁹) ⁵⁰) .	+	_	[_	+	+	1505	0,255	2400	0,407
Ae-Extrakt			F	+	Nerigosid 46)	+	+		+	+	250	0,233	1000	0,170
ا و ا	ļ		Ğ	+	16-Anhydro-des-	-	+		Τ.		250	0,04	1000	0,170
			J	· i	acetyl-nerigosid 46)	+	+	+	+	+	25	0,004	450	0,076
1 1			H	+	Digitoxigenin	+	-	_	-	_	13	0,002	70	0,012
	kt		I	+	Oleandrigenin	+	+	-	-	_	56	0,01	350	0,059
	Chf-Extrakt		K	+	Desacetyl-ole- andrin ¹¹)	+	+	_	+	+	61	0,01	220	0,037
	Chf-1		L	+	Desacetyl-crypto- grandosid A ⁴⁸).	+	+	_	+	+	183	0,03	600	0,101
			N	+	Desacetyl-neri- gosid ⁴⁶)	+	+	_	+	+	114	0,02	450	0,076
	,		0	+	Odorosid H ⁵¹)	+	_	_	_	_	1000	0.17	1900	0,322
1 '			P	+	Neritalosid 46)	+	+	_	_	_	800	0,14	1250	0,212
1	ľ		P_1	-		+	_	_			_	_	20	0,003
			π	+	16-Anhydro- strospesid ⁵²) ⁵⁴) .	+	+	+	_	_	80	0,014	350	0,059
1			Q	+	Gitoxigenin	+	+	_	_	_	120	0,017	200	0,034
		À	Q		Strospesid 52) 53) 54) .	+	+	_		_	297	0,050	650	0,110
1		ţţ.	$\tilde{\mathbf{R}}$	_	- ' ' '	+	'				-	_	_	_
	,	[ra]	s	_	_	+					-	-	_	-
		EX	±AT	_	Marie	+	ĺ				_		_	-
		<u> </u>	E U	-	_	+	1				_		-	-
		(2:1)-Extrakt	3:2)-Extr	_	-	+				!	-		-	-
1		_ \	w∳⊛	-	_	+				1	-	-	-	-
<u></u>				L	l	1	<u>l</u>	<u></u>		<u> </u>	L	<u></u>	<u> </u>	<u></u>

³³) Es wurde einmal ein sehr schwacher Fleck zwischen L und N beobachtet und als M bezeichnet. Er wurde später nicht mehr erhalten.

³⁴) Vgl. Beschreibung bei präparativer Isolierung.

³⁵⁾ D. L. Kedde, Diss. Leyden 1946; J. E. Bush & D. A. H. Taylor, Biochem. J. 52, 643 (1952).

³⁶) Fluoreszenz im UV. nach Spritzen mit SbCl₃-Lösung und leichtem Erwärmen³⁷), vgl. auch Diss. D. Kutter, Lausanne 1958 (Prof. L. FAUCONNET). Die Reaktion ist positiv bei Deri-

Tabelle 4. Relative Laufstrecken in vier S
--

Bezeich- nung der Flecke	Identifizierung	Be/ Fmd	Be-Chf- (7:5)/ Fmd	Chf/ Fmd	Bu-To- (1:1)/ W
α	_	2,10			
A	(Dienon)	1,96			
β	**	1,86			
В	Adigosid	1,74			
γ	Digistrosid	1,57)	
C	Oleandrin	1,40			
δ	Cryptograndosid A	1,22			
D	16-Anhydro-desacetyl-cryptograndosid A .	1,16			·
E	Odorosid A	1,00		1	
F	Nerigosid	0,63		!	
G	16-Anhydro-desacetyl-nerigosid	0,43	1,06	İ	
H	Digitoxigenin	0,35	1,00	1	
I	Oleandrigenin	0,21	0,92	[
K	Desacetyl-oleandrin	0,13	0,82		
L	Desacetyl-cryptograndosid A	0,10	0,68		
N	Desacetyl-nerigosid		0,38		
0	Odorosid H		0,25	1,00	
P	Neritalosid	ļ	0,16	0,78	
P_1	-			0,65	
π	16-Anhydro-strospesid			0,53	
Q .	Gitoxigenin			0,43	
Q	Strospesid	ļ		0,22	4,25
R	-			0,13	3,16
S	-	1		0,04	2,06
. T	-				2,00
U	~		1		1,00
v	~			1	0,60
W	~				0,25

vaten von Gitoxigenin, Oleandrigenin und 16-Anhydrogitoxigenin, entspricht also ungefähr der Reaktion von Pesez³⁸).

37) Vgl. Exp. Teil dieser Arbeit.

Reaktion von Pesez³⁸).

37) Vgl. Exp. Teil dieser Arbeit.

38) A. Petit, M. Pesez, P. Bellet & G. Amiard, Bull. Soc. chim. France [5] 17, 288 (1950).

39) Dunkelviolette Flecke bei Betrachtung im durchfallenden UV.-Licht durch den Fluoreszenzschirm 37)40). Diese Reaktion ist positiv bei \$\Delta^{18}\$-Cardenoliden (siehe Einleitung zum exp. Teil).

⁴⁰) E. v. Arx & R. Neher, Helv. 39, 1664 (1956).

41) Ausführung nach J. v. Euw & T. Reichstein, Helv. 31, 883 (1948).

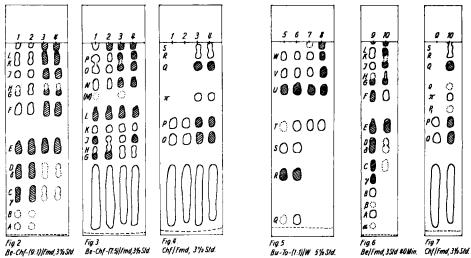
42) M. Pesez, Ann. pharmac. franç. 10, 104 (1952).

48) Wenn die Isolierung nur mit einem Teil der Extrakte durchgeführt wurde, so wurde die Ausbeute so gut wie möglich auf die ganze Samencharge (590 g) umgerechnet.

44) Schätzung auf Grund der präparativen Ausbeuten sowie der Stärke der Flecke im Pchr. Bei dieser Schätzung ist berücksichtigt, dass die betr. Substanz auch noch in anderen Gruppen oder Fraktionen enthalten war.

45) S = schwache Flecke.

46) Neuer Stoff.


47) H. Lichti, Ch. Tamm & T. Reichstein, Helv. 39, 1933 (1956).

48) A. AEBI & T. REICHSTEIN, Helv. 33, 1013 (1950).

49) S. Rangaswami & T. Reichstein, Helv. 32, 939 (1949).

- 50) S. Rangaswami & T. Reichstein, Pharmac. Acta Helv. 24, 159 (1949).
- ⁵¹) A. Rheiner, A. Hunger & T. Reichstein, Helv. 35, 687 (1952).
- ⁵²) A. Hunger & T. Reichstein, Helv. **33**, 1993 (1950).
- ⁵³) A. Hunger & T. Reichstein, Helv. 33, 76 (1950).
- ⁵⁴) W. RITTEL, A. HUNGER & T. REICHSTEIN, Helv. 35, 434 (1952).

Beispiele für die Kontrolle durch Papierchromatographie 28) (Schraffierte Flecke bedeuten starke Flecke)

- Ca. 0,25 mg des gereinigten Ae-Extr. aus dem Vorversuch, Aufarbeitung ohne Fermentierung 33).
- Ca. 0,25 mg des gereinigten Ae-Extr. aus dem Vorversuch, Aufarbeitung mit Fermentierung. Beim Hauptversuch gleiches Bild³³).
- Ca. 0,25 mg des Chf-Extr. aus dem Vorversuch, Aufarbeitung mit Fermentierung. Beim Hauptversuch gleiches Bild³³).
- 4. Ca. 0,25 mg des Chf-Extr. aus dem Vorversuch, Aufarbeitung ohne Fermentierung.
- 5. Ca. 0,40 mg des Chf-Alk-(2:1)-Extr. aus dem Vorversuch, Aufarbeitung ohne Fermentierung.
- Ca. 0,40 mg des Chf-Alk-(2:1)-Extr. aus dem Vorversuch, Aufarbeitung mit Fermentierung. Gleiches Bild beim Hauptversuch.
- 7. Ca. 0,40 mg des Chf-Alk-(3:2)-Extr. aus dem Vorversuch, Aufarbeitung *mit* Fermentierung. Gleiches Bild beim Hauptversuch.
- 8. Ca. 0,40 mg des Chf-Alk-(3:2)-Extr. aus dem Vorversuch, Aufarbeitung ohne Fermentierung.
- 9. Ca. 0,25 mg des gereinigten Ae-Extr. aus dem Hauptversuch. Die Flecke α und β wurden erst nach präparativer Anreicherung gefunden. Die betr. Stellen sind auf dem Chromatogramm mit Punkten markiert.
- 10. Ca. 0,25 mg des Chf-Extr. aus dem Hauptversuch. Die Flecke P_1 und ϱ wurden erst nach präparativer Anreicherung gefunden. Die betr. Stellen sind auf dem Chromatogramm mit Punkten markiert.

Die Chf-Alk-(2:1)- und -(3:2)-Extrakte wurden nur orientierend geprüft (siehe unten). Es wurden keine Versuche unternommen, die darin enthaltenen Stoffe R-W zu isolieren.

Im Folgenden wird die Trennung des Ae-Extr. und des Chf-Extr. beschrieben. Diese zwei Extrakte enthalten vorwiegend α -Q³²).

Trennung des Ae- und Chf-Extrakts. Von diesem Material (zusammen 13,32 g) wurden 13,1 g in 3 Portionen an SiO_2^{55}) chromatographiert ⁵⁶). Dabei wurde bereits ein Teil der Substanzen A, E und Q in reiner krist. Form isoliert. Ausserdem wurden 1,354 g eines Mischkristallisates (vorwiegend O und P, daneben noch N, P_1 , π und ϱ

⁵⁵) Oleandrigenin-Derivate spalten bei Chromatographie an Al₂O₃ leicht Essigsäure ab, vgl. K. Meyer, Helv. 29, 718 (1946).

⁵⁶) Es wurde zunächst je eine Portion Ae-Extr. und Chf-Extr. für sich chromatographiert. Es zeigte sich dabei, dass es vorteilhafter ist, beide Extrakte zu vereinigen und zusammen zu trennen.

enthaltend, vgl. Fig. 8) abgetrennt, das sich durch Chromatographie an SiO₂ nicht weiter trennen liess. Alle amorphen Anteile wurden nach papierchromatographischer Prüfung in vier Hauptgruppen (I–IV) zusammengefasst, entspr. Tab. 5.

Tabelle 5.	Zusammenfassung	der be	Chromatogra	ıphie an	SiO2	erhaltenen	amorphen	Fraktionen
	u-	nd Mu	terlaugen aus	Ae- un	l Chf-	Extr.		

Haupt-	Menge	Vorwiegend ent-	In kleinen Mengen
gruppe	in g	haltene Stoffe	enthaltene Stoffe
I	3,70	α – E	$F-L$ δ , D und P N, P ₁ , π , ϱ sehr unrein
II	3,70	E – O	
III	2,12	O und P	
IV	0,90	Q, R, S	

Hauptgruppe IV wurde nur im Papierchromatogramm untersucht. Im Folgenden wird die Trennung der 3 Hauptgruppen I–III beschrieben.

Trennung der Hauptgruppe I. Dieses Material (3,70 g) wurde durch Verteilungschromatographie ⁵⁷) ⁵⁸) in ca. 250 Fraktionen aufgetrennt. Die meisten dieser Fraktionen enthielten aber noch mehrere Stoffe. Sie wurden nach papierchromatographischer Prüfung entspr. Tab. 6 in 19 Untergruppen I/0–I/18 zusammengefasst.

Tabelle 6. Trennung von 3,70 g Material, Hauptgruppe I, in 19 Untergruppen 59)

Untergruppe Nr.	Menge in mg	Flecke im Pchr.	Weitere Verarbeitung	In reinen Kristallen isoliert
I/O	465,0	KEDDE negativ	nicht weiter untersucht	
I/1	21,3	α, Α	1	
I/2	76,9	α, Α	an SiO ₂ gereinigt	A
I/3	173,2	A		
1/4	110,2	Α, (β), Β	nicht getrennt	
I/5	181,4	A, (β), B, γ	ment getrennt	
1/6	345,2	Β, γ, (C)	an Al ₂ O ₃ , SiO ₂ , Präp. Pchr.	Β, γ
I/7	434,7	Β, γ, C	nicht getrennt	
1/8	328,5	(B), γ, C, δ, (D)	Krist. direkt	С
1/9	198,0	C, δ, D	Krist. direkt, ML an SiO ₂	C, D
I/10	134,7	C, δ, D, E	nicht getrennt	
I/11	347,6	δ, D, E, (F)	Krist. direkt, ML an SiO ₂	D, E
I/12	389,0	(δ), D, E, F	Krist. direkt, ML an SiO ₂ , präp. Pchr.	δ, D, E
I/13	225,8	E, F, G, H	Krist. direkt, ML durch präp. Pchr.	
I/14	37,4	F, G, H, I		
I/15	34,6	F, G, H, I, K, L		E, G, H,
I/16	54,6	F, G, H, I, K, L	Präp. Pchr.	I, K, L
I/17	31,8	K, L	į	
1/18	30,0	L	Krist. direkt, M. L.	
Total	3619,9		durch präp. Pchr.	

⁵⁷) H. HEGEDÜS, CH. TAMM & T. REICHSTEIN, Helv. 36, 357 (1953).

⁵⁸) Es wurden die Systeme Fmd/Cy-Be, reines Be und Be-Chf-Gemische verwendet.

⁵⁹) In Klammern sehr schwache Flecke.

Aus diesen Untergruppen konnten teilweise durch direkte Kristallisation, teilweise nach Chromatographie an SiO_2 oder Al_2O_3 und teilweise erst nach präp. Papier-chromatographie, ausser den nur in Spuren vorhandenen Stoffen α und β sowie Subst. F, alle anderen Komponenten A-L in Form papierchromatographisch reiner Kristalle isoliert werden. Die Subst. F wurde aus Hauptgruppe II isoliert.

Trennung der Hauptgruppe II. Dieses Material (3,70 g) wurde einer Gegenstromverteilung nach CRAIG ⁶⁰) ⁶¹) ⁶³) unterworfen, wobei aber nur teilweise Trennung eintrat. Der Inhalt der 200 Gefässe wurde nach dem Ergebnis der Papierchromatographie in vier Untergruppen II/1-II/4 (Tab. 7) vereinigt.

Unter- gruppen Nr.	Gefäss Nr.	Menge in mg	Flecke im Pchr.	Weitere Verarbeitung	Isoliert rein
II/1	1–60	795	D, E, F, (δ) , (G)	nicht getrennt	
11/2	61-80	1230	E, F, G	nochmals verteilt	F
II/3	81–120	1060	G, H, I, K, L, N, (E), (F)	vereinigt mit I/13-I/18, dann	G, H, I,
11/4	121–200	540	I, K, L, N, O, (G), (H), (P)	präp. Pchr.	K, L, N

Tabelle 7. Trennung von 3,70 g Material der Hauptgruppe II in 4 Untergruppen 50)

Die Untergruppe II/2 wurde nochmals einer gleichen CRAIG-Verteilung, aber mit 600 Stufen, unterworfen. Dabei wurde ca. 560 mg Material erhalten, das nur E und F enthielt. Ein Teil davon (153 mg) wurde durch präparative Papierchromatographie 40) getrennt, wobei reines F in Kristallen 64) isoliert wurde.

Die Untergruppen II/3 und II/4 wurden mit I/13-I/18 vereinigt und davon 1,8 g durch präparative Papierchromatographie 40) zerlegt. Es liessen sich dabei die Stoffe G, H, I, K, L und N in Kristallen isolieren. Die eingedampften Mutterlaugen von N (88 mg) sowie 280 mg langsamer laufende Anteile (enthielten nach Papierchromatogramm vorwiegend N und O) wurden mit 1,325 g rohen O-P-Kristallen vereinigt und an SiO₂ chromatographiert (siehe bei Hauptgruppe III). Ausserdem wurden 350 mg noch langsamer laufendes Material erhalten (nach Papierchromatogramm O, P und kürzer laufendes), die mit Hauptgruppe III vereinigt wurden.

Trennung von Hauptgruppe III. Die 1,325 g rohe O-P-Kristalle wurden mit den oben erwähnten eingedampften N-Mutterlaugen (88 mg) und den 280 mg N-O-haltigem Material vereinigt (1,69 g) und an SiO_2 chromatographiert. Eine brauchbare Trennung wurde nicht erhalten. Es wurden nur 660 mg Kristalle (vorwiegend O + P) abgetrennt (nicht weiter untersucht). Die eingedampften Mutterlaugen (900 mg nach Entfernung

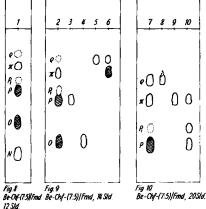
⁶⁰⁾ Vgl. E. Hecker, Verteilungsverfahren im Laboratorium, Weinheim 1955.

⁶¹) Es wurde ein Apparat von F. A. v. Metzsch⁶²) mit 200 Verteilungselementen verwendet, wobei nur die obere Phase wanderte. Es wurde im Kreislaufverfahren gearbeitet. Entnommen wurde zum Schluss der Gesamtinhalt (beide Phasen) jedes Gefässes. System: Me-W-(7,5:2,5)/Chf-CCl₄-(4:6).

⁶²⁾ F. A. v. Metzsch, Chemie-Ing.-Techn. 25, 66 (1953).

⁶³) Wir danken Herrn Prof. M. Brenner für die vorübergehende Überlassung dieser Apparatur.

⁶⁴) Dieser Stoff, ebenso wie Subst. P liessen sich bisher nur aus Dioxan oder Dioxan-Ae kristallisieren.


von etwas Kedde-negativem Material) wurden mit den 2,12 g Hauptgruppe III sowie den oben erwähnten 350 mg Resten aus Papierchromatogrammen von II (Laufstrecke wie O und langsamer) vereinigt und das Ganze (3,37 g) nochmals an SiO₂ chromatographiert. Es konnten noch 1,32 g Kristalle (vorwiegend O, P mit wenig π , ϱ , P₁) isoliert werden, die auch nicht weiter getrennt wurden.

Ein Teil der Kristallmutterlaugen und der amorphen Fraktionen (ca. 200 mg) wurde durch präparative Papierchromatographie getrennt, wobei die Stoffe O, P und ρ isoliert werden konnten (vgl. Fig. 9).

Die Mutterlauge von ϱ sowie weitere 170 mg ähnliches amorphes Material wurden ebenfalls auf Papier getrennt, worauf sich auch Subst. π in Kristallen isolieren liess. Bei dieser Trennung wurde auch noch die Anwesenheit sehr kleiner Mengen eines Stoffes P_1 beobachtet (Laufstrecke zwischen P und π), der nicht in reiner Form isoliert wurde (vgl. Fig. 10).

Orientierende Prüfung des Chf-Alk-(2:1)-Extraktes. Dieser Extrakt zeigte im Papierchromatogramm die Flecke (Q), R, S, T, U, V und W (sowie etwas stationäres Material). Von diesen zeigte U dieselbe Laufstrecke wie Digitalinum verum. Nach Behandlung des Gemisches mit dem Ferment der Samen von Adenium multiflorum ⁵²) verschwanden die Flecke von R, S, T (U und V wurden sehr schwach) (vgl. Fig. 11), dafür erschienen γ , C, H, I, M₁ (ein neuer Fleck, der im Papierchromatogramm an derselben Stelle auftritt wie M ³³)) sowie Q (vgl. Fig. 12 und 13). Dieser Extrakt dürfte somit eine Reihe von Diglykosiden enthalten.

Beispiele für die Kontrolle durch Papierchromatographie²⁶)

- 1. Ca. 0,2 mg Kristallgemisch aus den Fraktionen 57-62 von Tab. 12. P_1 und ϱ wurden in diesem Kristallgemisch erst später gefunden.
- 2. Ca. 0,3 mg Gemisch der Fraktionen 16 und 18-20 aus Tab. 20.
- 3. Ca. 0,05 mg Kristalle aus der P-Zone der präp. Pchr.
- 4. Ca. 0,05 mg Kristalle aus der O-Zone der präp. Pchr.
- 5. Ca. 0,05 mg Kristalle aus den gemeinsam eluierten π und ϱ -Zonen der präp. Pchr.
- 6. Ca. 0,10 mg ML der Kristalle aus der $\pi + \varrho$ -Zone der präp. Pchr.
- 7. Ca. 0,3 mg Gemisch der Fraktionen 11-14 von Tab. 20 und der ML der $\pi + \varrho$ -Zone der präp. Pchr.
- 8. Ca. 0,05 mg Kristalle aus der q-Zone der präp. Pchr.
- 9. Ca. 0,05 mg Kristalle aus der π -Zone der präp. Pchr.
- 10. Ca. 0,10 mg P₁-Zone (amorph) der präp. Pchr.

Der Chf-Alk-(3:2)-Extrakt wurde nur im Papierchromatogramm geprüft, vgl. Tab. 3 und Fig. 5.

8 9 2 40 O 00 ٥ 0 ٥ M, () 0 0 c00 7Õ Õ Q 🞒 () Fig.12 Be/Fmd Fig.13 Fig.14
Be-Chf-(7:5)|fmd Chf/Fmd To-Bu-(1:1)/W 3Std. 20 Min. 4% Std. 3 % Std

Beispiele für die Kontrolle durch Papierchromatographie 26)

- Ca. 0,30 mg Chf-Alk-(2:1)-Extr. aus ursprünglichem Chf-Alk-(2:1)-Extr. nach Behandlung mit Adenium-multiflorum-Enzym.
- 2. Ca. 0,30 mg ursprünglicher Chf-Alk-(2:1)-Extr.
- 3. Ca. 0,10 mg Digitalinum verum.
- Ca. 0,20 mg Chf-Extr. aus ursprünglichem Chf-Alk-(2:1)-Extr. nach Behandlung mit Adeniummultiflorum-Enzym.
- 5. Je ca. 0,04 mg Vergleichssubstanzen³⁷) γ, C, H, I.
- 6. Je ca. 0,04 mg Vergleichssubstanzen³⁷) L, N, P, Q.
- Ca. 0.15 mg des Chf-Extr. aus dem Fermentierversuch von Digitalinum verum mit Adenium-multiflorum-Enzym.
 Ca. 0.05 mg Strospesid 82)54).
 Ca. 0.05 mg Gitoxigenin.

Untersuchung der isolierten Stoffe

Von den 28 in Papierchromatogrammen nachgewiesenen Stoffen wurden 9 nicht isoliert. Es sind dies die Substanzen α, β und P₁, die nur in sehr kleinen Mengen anwesend waren, sowie die stark polaren Substanzen R, S, T, U, V und W, bei denen es sich teilweise um Di- oder Triglykoside handelt. Von den 19 in Kristallen isolierten Substanzen konnten 13 mit bekannten Stoffen (vgl. Tab. 8) identifiziert werden. Drei davon waren Genine, und bei den 10 weiteren handelte es sich um Monoglykoside. Zur Identifizierung dienten die in Tab. 8 genannten Daten, die Mischproben und die in der letzten Kolonne erwähnten Reaktionen. Ausserdem wurden in allen Fällen die Farbreaktionen mit 84-proz. H₂SO₄⁴¹), die Laufstrecken im Papierchromatogramm (vgl. Tab. 4) sowie die Farb- und Fluoreszenzreaktionen mit SbCl₃³⁶) genau verglichen und als gleich befunden. Die Konstitution dieser 13 Stoffe war bekannt (vgl. Tab. 10). Digistrosid (γ) ist bisher allerdings nur in Spuren aus den Samen von Strophanthus vanderijstii STANER⁴⁷) isoliert worden, seine Konstitution war unsicher. Die früher⁴⁷) vorgeschlagene Formel konnte jetzt weitgehend gesichert werden.

Bei den 6 verbleibenden Substanzen handelte es sich um neue Stoffe. Sie zeigten die in Tab. 9 angegebenen Smp. und Drehungen (weitere Eigenschaften siehe Tab. 3).

Von diesen war Subst. A vermutlich kein Cardenolid. Die weiteren fünf Substanzen wurden wie in den Tab. 3 und 9 angegeben benannt. Ihre Konstitution konnte bis auf diejenige von Adigosid (= Subst. B) entsprechend den Formeln XVI bis XIX und der

Tabelle 8. Identifizierung von 13 aus den Samen von Nerium oleander isolierten digitaloiden Lactonen mit bekannten Stoffen

Buchstaben- Bezeichnung	Identifiziert mit	Smp. Gef. Smp. Lit.	$[\alpha]_D$ Gef. $[\alpha]_D$ Lit.	Weitere Identifizierung
γ	Digistrosid	173°/205–208° 173–175°/ 211–212° ⁴⁷)	– 16,6 Me ³⁷) –	UV., Mikro- spaltung, CH- Bestimmung
С	Oleandrin	242–246° 250° ¹¹)	– 48,2 Me – 52,1 Me	
δ	Cryptograndosid A	115-120° 122-124° ⁴⁸)	- 31,2 Me - 32,9 Me	Amorphes O-Ac-Der. Pchr.
D	16-Anhydro-desacetyl- cryptograndosid A	230–232° 230–232° ⁴⁸)	+ 48,0 Me + 53,2 Me	UV., IR., Mi- krospaltung O-Ac-Der.
E	Odorosid A	180–185°/ 200–206° 183°/198–206° ⁵⁰)	- 5,0 Chf - 6,0 Chf	
н	Digitoxigenin	246–253° 250° ⁶⁵)	+13,8 Me +19,1 Me	
1	Oleandrigenin	225–230° 110–115°/223° ¹¹)	- 6,9 Me - 8,5 Me	
К	Desacetyl-oleandrin	235–238° 238–240° ¹¹)	– 22,2 Me – 24,9 Me	Mikrospaltung
L	Desacetyl-crypto- grandosid A	203–206° 198–199° 48)	- 4,6 Me - 3,4 Me	
О	Odorosid H	228-232° 235-238° ⁵¹)	+ 5,9 Me + 6,0 Me	
π	16-Anhydro-strospesid	230-240° 242-246° ⁵²)	+62,2 Me +69,4 Me	UV., IR.
Q	Gitoxigenin	224-230° 232° ⁶⁶)	+ 28,0 Me + 34,6 Me	
Q	Strospesid	246–250° 251–253° ⁶⁷)	+ 17,0 Me + 15,3 Me	

Tabelle 9. Smp. und Drehungen der 6 neuen aus den Samen von Nerium oleander isolierten Substanzen

Bezeichnung	Formel	Kristallform	Smp.	$[\alpha]_D$ in Me
A	_	zugespitzte Prismen aus An-Ae	180°/202°	+51,2
B Adigosid	_	Drusen aus An-Ae	138-142°	- 16,8
F Nerigosid	XVI	unregelmässige Platten aus Di-Ae	155–163°	- 17,0
G 16-Anhydro-desacetyl- nerigosid	XVII	Prismen aus An-Ae	182–186°	+ 55,6
N Desacetyl-nerigosid	XVIII	dünne Blättchen aus An-Ae	211–216°	+ 9,6
P Neritalosid	XIX	Nadeln aus Di-Ae	135–140°	+11,4

⁶⁵⁾ A. Windaus & G. Stein, Ber. deutsch. chem. Ges. 61, 2436 (1928).

⁶⁶⁾ A. Stoll & W. Kreis, Helv. 16, 1049 (1933).

⁶⁷⁾ J. v. Euw & T. Reichstein, Helv. 33, 666 (1950) (als Subst. 763 bezeichnet).

Zusammenstellung in Tab. 10 aufgeklärt werden. Danach stellen die aus den Samen von Nerium oleander nach Fermentierung isolierten 15 Glykoside Kombinationen von 5 Geninen mit 4 verschiedenen Zuckern dar. Von den 20 sich so ergebenden Kombinationen wurden somit 5 nicht aufgefunden 68). – Die Verknüpfung zwischen Zucker und Aglykon ergibt sich aus den molekularen Drehungsbeiträgen des Zuckeranteils (vgl. Tab. 12), sie entspricht durchweg der von Klyne 18) aufgestellten Regel, dass die weitaus überwiegende Zahl der natürlichen digitaloiden Glykoside dieselbe Konfiguration (α-L oder β-D) an C-1 des Zuckeranteils besitzt.

Tabelle 10. Genine und Zucker der 15 aus den Samen von Nerium oleander isolierten Monoglykoside

Zucker	L-Oleandrose XI	D-Diginose XII	D-Sarmentose XIII	D-Digitalose XIV
Verknüpfung	α	β	β	β
△7-Adynerigenin(?) I	_	Adigosid	*	_
Digitoxigenin III	_	Odorosid A	Digistrosid XV	Odorosid H
Gitoxigenin V	Desacetyl- oleandrin	Desacetyl-neri- gosid XVIII	Desacetyl-crypto- grandosid A	Strospesid
Oleandrigenin VI	Oleandrin	Nerigosid XVI	Cryptograndosid A	Neritalosid XIX
16-Anhydrogitoxi- genin VIII	-	16-Anhydro- desacetyl- nerigosid XVII	16-Anhydro-des- acetyl-crypto- grandosid A	16-Anhydro- strospesid

Tabelle 11. Molekulare Drehungsbeiträge der Zuckerreste A[M]D in Me

α -L-Oleandrosido-rest in Oleandrin ¹¹)	$ \begin{array}{c} -263 \pm 25 \\ -93 \pm 19 \\ -150 \pm 19 \\ -39 \pm 19 \end{array} $
L-Oleandrosido-rest in Desacetyl-oleandrin	-228 ± 19
D-Diginosido-rest in Adigosid ⁷⁰), ,, Desacetyl-nerigosid, ,, Nerigosid, ,, 16-Anhydro-desacetyl-nerigosid	-195 ± 19 -58 ± 19 -83 ± 21 -66 ± 19
D-Sarmentosido-rest in Digistrosid	-157 ± 19 -134 ± 19 -150 ± 19 -97 ± 23
D-Digitalosido-rest in Odorosid H	- 40 ± 19 - 48 ± 22 - 16 ± 24

⁶⁸⁾ Auf Anwesenheit von 16-Anhydro-desacetyl-oleandrin wurde speziell geprüft. Es sollte einen im UV. absorbierenden Fleck geben, der zwischen C und δ läuft. Ein solcher Fleck wurde in den Extrakten nicht aufgefunden. Digitoxigenin- α -L-oleandrosid (bisher unbekannt) sollte im Chromatogramm wenig schneller als Digistrosid laufen. Es könnte mit dem Fleck β identisch sein, der nur in wenigen Fraktionen bei der Verteilung beobachtet wurde und sehr schwach war.

⁶⁹⁾ J. v. Euw, F. Reber & T. Reichstein, Helv. 34, 413 (1951).

⁷⁰) Berechnet für ein β -D-Diginosid des Δ ⁷-Adynerigenins, für das Tschesche & Grimmer¹⁶) $[\alpha]_D = +29^{\circ}$ (Me) fanden.

I (R = H) Δ^7 -Adynerigenin⁷¹) F. $238-242^{\circ}$ [$+29^{\circ}$ Me]¹¹)¹⁶) II (R = Ac) F. $163-164^{\circ}$ $[+42,4^{\circ} \text{ Me}]^{16}$

III (R = H) Digitoxigenin F. 250° [19,1° Me] 65) IV (R = Ac) F. 220° [$+19^{\circ}$ Chf 749)65)

V (R = R' = H) Gitoxigenin F. 232° [+34,6° Me] 66) VI (R = H; R' = Ac)Oleandrigenin F. 110°/223° $[-8,5^{\circ} \text{ Me}]^{11})$ VII (R = R' = Ac) Di-O-acetyl-gitoxigenin F. 249° $[-8^{\circ} \text{ Chf}]^{10})^{72})^{73}$

VIII (R = H) 16-Anhydro-gitoxigenin F. $227^{\circ} [+93^{\circ} \text{ Me}]^{73}$) IX (R = Ac) F. $207^{\circ} [+83^{\circ} Chf]^{55}$

X Di-O-acetyl-14-anhydro-gitoxigenin F. $158-160^{\circ}/187-190^{\circ}$ [$+127,4^{\circ}$ Me] 14) 37)

СНО СНО ĊН, OCH₃ CH₂O

XII D-Diginose XIII D-Sarmentose XIV D-Digitalose XI L-Oleandrose F. 62° [+12° W]¹⁹) F. $90-92^{\circ}$ [+55° W]²¹) F. $78-79^{\circ}$ [+15,8° W]⁷⁵) F. 119° [+106° W]⁷⁷)

Im Folgenden werden die neuen Stoffe und Digistrosid kurz besprochen.

Subst. A. Der Stoff war methoxylfrei. An der Luft färbte er sich allmählich gelb. Die Analysen gaben keine brauchbaren Werte. Die zuerst ausgeführte CH-Bestimmung passte ungefähr auf die Formel C22H28-30O3; die später ausgeführte O-Bestim-

⁷¹⁾ Formulierung nach R. TSCHESCHE & G. GRIMMER¹⁶), vgl. auch R. TSCHESCHE & G. SNATZKE17).

⁷²) H. Coletta, Arch. exp. Path. Pharmacol. 117, 261 (1926).

⁷³⁾ A. Hunger & T. Reichstein, Helv. 33, 76 (1950).

⁷⁴) C. W. Shoppee & T. Reichstein, Helv. 25, 1611 (1942).

⁷⁵⁾ W. A. JACOBS & N. M. BIGELOW, J. biol. Chemistry 96, 355 (1932).

⁷⁶) H. Hauenstein & T. Reichstein, Helv. **33**, 446 (1950).

⁷⁷) J. D. LAMB & S. SMITH, J. chem. Soc. **1936**, 442.

mung gab aber einen um ca. 6% zu hohen Wert. UV.- und IR.-Spektren (vgl. Fig. 15 und 17) passten auf ein Dienon 78) 79). Der Stoff wurde nicht weiter untersucht.

Adigosid (Subst. B). Die Analysen passten ungefähr auf die Formel $C_{30}H_{46}O_8$ mit einer Methoxylgruppe. Die Fluoreszenzreaktion mit SbCl₃ war positiv, das UV.-Absorptionsspektrum zeigte aber nur das Maximum des Butenolidringes bei 215 m μ , dessen Intensität (log $\varepsilon=4,09$ für obige Formel berechnet) jedoch auffallend gering war. Im kurzwelligen UV.-Spektrum waren keinerlei Anhaltspunkte für die Anwesen-

⁷⁸) Die 4,6-dien-3-on-Gruppe in Steroiden zeigt nach L. Dorfmann, Chem. Reviews 53, 47 (1953), bes. p. 71, ein Maximum bei 284 m μ (log $\varepsilon = 4,42$) und ein Minimum bei 221 m μ (log $\varepsilon = 3,33$). Vgl. hierzu A. L. WILDER & C. DJERASSI, J. Amer. chem. Soc. 68, 1712 (1946).

 $^{^{79})}$ $\Delta^{4,6}$ -Cholestadien-3-on zeigt in CS₂ nach R. N. Jones & F. Herling, J. org. Chemistry 19, 1252 (1954), Banden bei 1666–1669, 1616–1619, 1587, 1222–1228 und 874–875 cm⁻¹; die ebenfalls als charakteristisch bezeichnete Bande bei 1264–1268 cm⁻¹ kann in CH₂Cl₂ nicht festgestellt werden.

heit einer zusätzlichen isolierten Doppelbindung sichtbar (vgl. Fig. 16^{80a}). Bei der Behandlung mit konc. HCl bei 0° unter Sauerstoffausschluss entstand ein Produkt, das im UV. neben dem Maximum des Butenolidringes noch dasjenige der $\Delta^{14,16}$ -Cardatrienolid-Gruppierung zeigte ($\lambda_{\max} = 335 \text{ m}\mu$) (vgl. Kurve 3 in Fig. 15). Diese Reaktion deutet auf eine Sauerstoffunktion an C_{16} (oder C_{15})⁸¹). Adigosid gab ausserdem mit 84-proz. H_2SO_4 genau gleiche Färbungen wie Nerigosid (vgl. Tab. 21), was auf ein sehr ähnliches Aglykon (bzw. auf Bildung gleicher Carbonium-ionen) deutet.

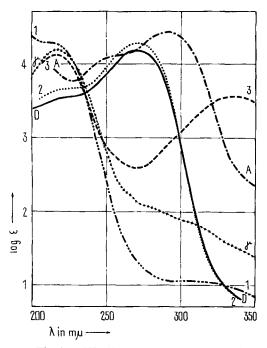


Fig. 15. UV.-Absorptionsspektren in Alk 80)

- Kurve A: Subst. A, Smp. 196–198°, $\lambda_{\text{max}} = 282 \text{ m}\mu \text{ (log } \varepsilon = 4,42, \text{ ber. auf } 342,5).$
 - γ : Subst. γ (= Digistrosid), Smp. 160°/205°, $\lambda_{\text{max}} = 217 \text{ m}\mu$ (log $\varepsilon = 4,20$, ber. auf 518,7).
 - D: Subst. D (= 16-Anhydro-desacetyl-cryptograndosid A), Smp. 215–225°, λ_{max} = 270 m μ (log ε = 4,20, ber. auf 516,7).
 - 1: 14-Anhydro-di-O-acetyl-gitoxigenin, Smp. 160–190°; bei 215 m μ beträgt log $\varepsilon=4,28$ (Überlagerung des Cardenolid-Maximums durch isolierte Doppelbindung).
 - 2: 16-Anhydro-desacetyl-oleandrin, Smp. 228–230°, $\lambda_{\rm max}=271~{\rm m}\mu$ (log $\varepsilon=4,29$ ber. auf 516,7).
 - 3: Reaktionsprodukt der Subst. B mit konz. HCl (amorph), $\lambda_{\rm max}=216~{\rm m}\mu$ (log $\varepsilon=4,12$) und $\lambda_{\rm max}=335~{\rm m}\mu$ (log $\varepsilon=3,56$ ber. auf 354).

⁸⁰⁾ Aufgenommen von Herrn Dr. P. Zoller mit einem Unicam-SP 500-Spektrophotometer. 80a) Die Wirkung einer isolierten Doppelbindung auf solche Spektren ist in den Figuren 16a, 16d und 16f bei W. Schmid, H. P. Uehlinger, Ch. Tamm & T. Reichstein, Helv. 42, 72 (1959), gut sichtbar.

⁸¹⁾ H. HEGEDÜS & T. REICHSTEIN, Helv., 38, 1133 (1955); vgl. auch R. TSCHESCHE & R. PETERSON, Chem. Ber. 86, 574 (1953).

Da im Geninteil von Adigosid eine freie HO-Gruppe wegen der grossen Wanderungsgeschwindigkeit im Papierchromatogramm unwahrscheinlich ist, und sich eine Acetoxygruppe im IR.-Spektrum nicht nachweisen lässt (vgl. Fig. 18), bleibt die Natur dieser Sauerstoffunktion noch offen. Die milde saure Hydrolyse im Mikromaßstab lieferte einen Zucker mit einer Laufstrecke wie D-Diginose (Nr. 2 in Fig. 22 und 23) sowie ein Genin, das im Papierchromatogramm dieselbe Laufstrecke zeigte wie Δ^7 -Adynerigenin Δ^{16} (Smp. 238–242°; α [α] (Smp. 238–242°; α) in Me). Dieser Stoff entsteht nach R. Tsche-

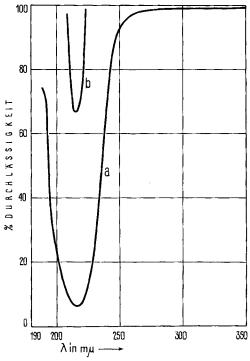


Fig. 16. UV.-Absorptionsspektrum von Adigosid (Subst. B), Smp. $138-142^{\circ}$, in Alkohol (c = 0,00096 Mol pro l, d = 0,101 cm) im kurzwelligen Gebiet

Kurve a = Normalkurve, Kurve b stellt das untere Zehntel einer Kurve mit 10fach gedehnten Ordinaten dar, zur genauen Ablesung der Werte bei geringer Durchlässigkeit 82a). Maximum bei 215 m μ , log ε = 4,09, ber. auf C₃₀H₄₆O₈ = 534,6; log ε für 280 m μ ist 1,76 und für 300 m μ ergibt sich 1.65

SCHE & G. GRIMMER¹⁶) bei der Hydrolyse von Adynerin (das von diesen Autoren als Δ^8 -Verbindung formuliert wird) unter Verschiebung der Doppelbindung. Die molekulare Drehung von Adigosid passt aber nicht gut zur Annahme, dass es aus Δ^7 -Adynerigenin und D-Diginose zusammengesetzt ist (vgl. Tab. 11). Die grossen Unterschiede in Smp. und Drehung schliessen eine Identität von Adigosid mit Adynerin aus.

⁸²) Wir danken Herrn Prof. R. TSCHESCHE auch hier bestens für die Überlassung einer kleinen Probe seines Originalpräparates. Dieser Stoff zeigte allerdings im Papierchromatogramm eine viel grössere Laufgeschwindigkeit als Digitoxigenin, was kaum mit der Anwesenheit von mehr als einer HO-Gruppe vereinbar ist.

⁸²a) Methodik vgl. K. Stich, G. Rotzler & T. Reichstein, spätere Mitteilung.

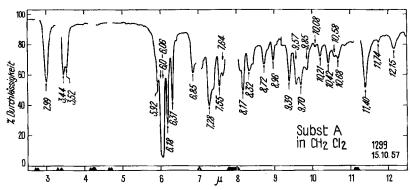


Fig. 17. IR.-Absorptionsspektrum von Subst. A (Smp. 180–193°) in CH_2Cl_2 , $d = 0.221 \text{ mm}^{83}$)

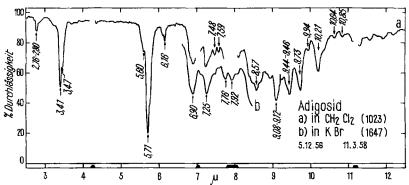


Fig. 18. IR.-Absorptionsspektrum von Adigosid (= Subst. B) (Smp. 138-142°) in CH₂Cl₂, d = 0,2 mm⁸³)

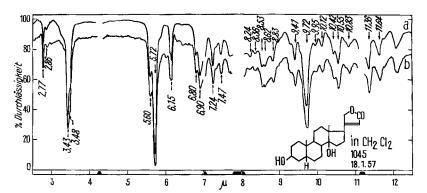


Fig. 19. IR.-Absorptionsspektren in CH_2Cl_2 , d=0.2 mm⁸⁸) Kurve a: authentisches Digitoxigenin (Smp. 246-250°) Kurve b: Genin von Digistrosid (Subst. γ) (Smp. \sim 250°)

⁸³) Aufgenommen von Herrn Dr. P. Zoller mit einem Perkin-Elmer double beam IR.-Spektrophotometer, Modell 21, mit NaCl-Prisma.

Digistrosid (Subst. γ). Die Analyse passte auf die Formel C₃₀H₄₆O₇. Das UV.-Absorptionsspektrum (Kurve γ in Fig. 15) zeigte nur das Maximum des Butenolidringes bei 217 m μ . Der Smp. stimmte gut überein mit dem aus Strophanthus vanderijstii⁴⁷) isolierten Präparat. Die milde saure Hydrolyse im Mikromaßstab lieferte einen Zucker mit einer Laufstrecke wie D-Sarmentose (Nr. 3 in Fig. 22 und 23) sowie ein krist. Genin, das nach Smp., Papierchromatogramm, Farbreaktionen und IR.-Spektrum (vgl. Fig. 19) mit Digitoxigenin identisch war. Nach Tab. 11 passt die molekulare Drehung gut zur Annahme, dass ein β -Derivat der D-Sarmentose vorliegt.

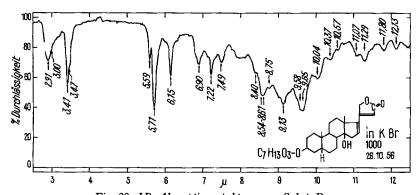


Fig. 20. IR.-Absorptionsspektrum von Subst. D (Smp. 215-225°) fest in KBr⁸⁸) (1,1 mg in 310 mg KBr)

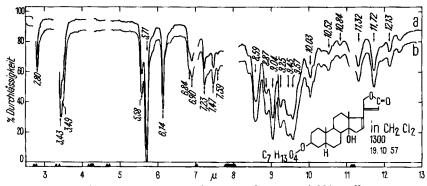
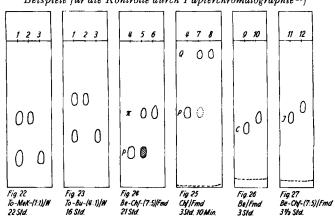



Fig. 21. IR.-Absorptionsspektren in CH_2Cl_2 , d=0.221 mm ⁸⁸) Kurve a: authentisches 16-Anhydro-strospesid (Smp. 247-249°) Kurve b: Subst. π (Smp. 230-240°)

Nerigosid (Subst. F). Dieser Stoff kristallisierte bisher nur aus Dioxan oder Dioxan-Äther. Nach Trocknung bei 90° passte die Analyse auf die Formel $C_{32}H_{48}O_9 + C_4H_8O_2$. Das UV.-Absorptionsspektrum (Kurve F in Fig. 28) zeigte nur das Maximum des Butenolidringes bei 216 m μ . Die milde saure Hydrolyse im Mikromaßstab lieferte einen Zucker mit einer Laufstrecke wie D-Diginose und ein Genin, das im Papier-chromatogramm dieselbe Laufstrecke zeigte wie Oleandrigenin. Die molekulare Drehung (Tab. 11) passt gut zur Annahme, dass ein β -D-Diginosid des Oleandrigenins vorliegt. Dazu passt auch die positive Fluoreszenzreaktion.

16-Anhydro-desacetyl-nerigosid (Subst. G). Die Analyse passte gut auf die Formel C₃₀H₄₄O₇ + H₂O. Das UV.-Absorptionsspektrum (Kurve G in Fig. 28) zeigte das für Cardadien-(16, 20:22)-olide typische Maximum bei 270 mµ. Ein Stoff mit gleicher Laufstrecke im Papierchromatogramm und mit demselben Maximum im UV. entstand beim Kontakt von Nerigosid mit aktivem Al₂O₃ (vgl. Kurve 1 in Fig. 28). Die milde saure Hydrolyse lieferte einen Zucker, der wieder eine Laufstrecke wie D-Diginose zeigte, und ein krist. Genin, das nach Smp., Mischprobe, Farbreaktionen und Papierchromatogramm mit 16-Anhydro-gitoxigenin identisch war. Die molekulare Drehung (Tab. 11) passt zur Annahme, dass ein β-D-Diginosid des 16-Anhydro-gitoxigenins vorlag.

Desacetyl-nerigosid (Subst. N). Die Analyse passte gut auf die Formel $C_{30}H_{46}O_8$. Ein Stoff mit gleicher Laufstrecke entstand bei der Verseifung von Nerigosid mit KHCO₃ in wässerigem Methanol. Die milde saure Hydrolyse im Mikromaßstab lieferte einen Zucker mit gleicher Laufstrecke wie D-Diginose und ein krist. Genin, das nach Smp., Mischprobe, Farbreaktionen und Papierchromatogramm mit Gitoxigenin identisch war.

Beispiele für die Kontrolle durch Papierchromatographie 26)

- 1. Je ca. 0,05 mg p-Sarmentose (unterer Fleck) und p-Diginose (oberer Fleck)
- 2. Ca. 0,10 mg Zucker aus der milden sauren Hydrolyse der Subst. B
- 3. Ca. 0,10 mg Zucker aus der milden sauren Hydrolyse der Subst. y
- 4. Ca. 0,075 mg Subst. P aus präp. Pchr.
- Ca. 0,02 mg amorphes Gemisch aus Subst. P nach 40stündigem Kontakt mit Al₂O₃
- 6. Ca. 0,05 mg Subst. π
- 7. Ca. 0,20 mg Reaktionsprodukt der Subst. P mit wässerig-methanolischem KHCO₃
- 8. Ca. 0,05 mg Subst. Q
- 9. Ca. 0,05 mg Oleandrin
- 10. Ca. 0,10 mg krist. 16-Anhydro-desacetyl-oleandrin aus Oleandrin nach 60stündigem Kontakt mit Al₂O₂
- 11. Ca. 0,05 mg Oleandrigenin
- 12. Ca. 0,05 mg 16-Anhydro-gitoxigenin, hergestellt durch milde saure Hydrolyse von 16-Anhydro-desacetyl-oleandrin

Neritalosid (Subst. P). Auch dieser Stoff kristallisierte bisher nur aus Dioxan oder Dioxan-Äther. Die Analyse passte nach Trocknung bei 90° auf die Formel $\rm C_{32}H_{48}O_{10}+$ C₄H₈O₂. Das UV.-Absorptionsspektrum zeigte nur das Maximum des Butenolidringes bei 217 mμ (Kurve P in Fig. 29). Im Kontakt mit Al₂O₃ lieferte Neritalosid einen Stoff,

Fig. 28. UV.-Absorptionsspektren in Alk 78)

Kurve F = Nerigosid (Subst. F), Smp. 154–165°, $\lambda_{\max} = 216 \text{ m}\mu$ (log $\varepsilon = 4,22 \text{ ber. auf } 664,7$) Kurve G = 16-Anhydro-desacetyl-nerigosid (Subst. G), Smp. 173–185°, $\lambda_{\max} = 270 \text{ m}\mu$ (log $\varepsilon = 4,30 \text{ ber. auf } 534,7$)

Kurve 1 = Gemisch aus amorphem (reinem) Nerigosid nach Kontakt mit Al_2O_3 , λ_{max} bei 216 m μ (log $\varepsilon=4,11$ ber. auf 576,7), λ_{max} bei 272 m μ (log $\varepsilon=3,52$ ber. auf 516,7)

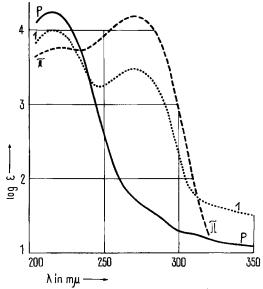


Fig. 29. UV.-Absorptionsspektren in Alk 78)

Kurve P = Neritalosid (Subst. P), Smp. 135–140°, $\lambda_{\max} = 217 \text{ m}\mu$ (log $\varepsilon = 4,23 \text{ ber. auf } 663$) Kurve $\pi = 16$ -Anhydro-strospesid (Subst. π), Smp. 230–240°, $\lambda_{\max} = 270 \text{ m}\mu$ (log $\varepsilon = 4,19 \text{ ber. auf } 532$) Kurve 1 = Gemisch aus amorpher (reiner) Subst. P nach Kontakt mit Al₂O₃, $\lambda_{\max} = 217 \text{ m}\mu$ (log $\varepsilon = 4,00 \text{ ber. auf } 592$), $\lambda_{\max} = 270 \text{ m}\mu$ (log $\varepsilon = 3,37 \text{ ber. auf } 532$) der im UV. ein Maximum bei 270 m μ aufwies (Kurve 1 in Fig. 29) und im Papier-chromatogramm (Nr. 5 in Fig. 24) dieselbe Laufstrecke besass wie 16-Anhydrostrospesid (Subst. π). Verseifung von Neritalosid mit KHCO₃ in wässerigem Methanol lieferte einen Stoff, der im Papierchromatogramm (Nr. 7 in Fig. 25) dieselbe Laufstrecke zeigte wie Strospesid. Es liegt daher ein β -D-Digitalosid des Oleandrogenirs vor.

Im Handbuch über Sterine, Gallensäuren und verwandte Naturstoffe von Lettre-Inhoffen-Tschesche, 2. Aufl. (Stuttgart 1954), wird auf S. 313 Oleandrigenin-β-D-digitalosid beschrieben. Dies beruht, wie uns Herr Prof. R. Tschesche freundlicherweise mitteilte, auf einem Irrtum. Die Beschreibung betrifft in Wirklichkeit das im Digitalose-Anteil acetylierte Präparat, dem zuerst⁵³) fälschlicherweise⁵⁴) die Konstitution XIX zugeschrieben wurde.

Die Ausführung dieser Arbeit wurde durch einen Beitrag aus dem Eli Lilly *Research Grant* Grant sehr erleichtert, wofür auch hier bestens gedankt sei.

Experimenteller Teil

Alle Smp. sind auf dem Kofler-Block bestimmt und korrigiert. Fehlergrenze in benützter Ausführungsform bis 200° ca. \pm 2°, darüber ca. \pm 3°. Substanzproben zur Bestimmung der opt. Drehung und zur Aufnahme der UV.- und IR.-Spektren wurden 45 Min. bei 60–70° und 0,02 Torr getrocknet, zur Analyse, wo nicht anderes erwähnt, 5 Std. bei 0,01 Torr und 90° über P_2O_5 . Übliche Aufarbeitung bedeutet: Eindampfen im Vakuum, Aufnehmen in Chf-Ae-(1:4), Waschen mit 2-n. HCl (zweimal), 2-n. Na $_2$ CO $_3$ (zweimal), W (zweimal), Trocknen über Na $_2$ SO $_4$ und Eindampfen im Vakuum. Die Adsorptionschromatographie wurde nach dem Durchlaufverfahren 84 9 an alkalifreiem $Al_2O_3^{85}$ 9 oder Silicagel (Korngrösse 0,15–0,3 mm), die Verteilungschromatographie nach früher beschriebener Methode 57 9 durchgeführt. Ausführung der Papierchromatogramme von Steroiden 57 86) 87 9 und Desoxyzuckern 88 9, der Keller-Kiliani-Reaktion 41 9, der Xanthydrol-Reaktion 42 9, der Farbreaktionen mit 84-proz. H_2 SO $_4^{41}$ 9, der Kedde-Reaktion 35 9 nach früheren Angaben.

Für Lösungsmittel wurden folgende Abkürzungen verwendet: $(Ac)_2O = Acetanhydrid$, AcOH = Eisessig, Ae = Diäthyläther, Alk = 96-proz. Äthanol, An = Aceton, Be = Benzol, Bu = n-Butanol, Chf = Chloroform, Cy = Cyclohexan, Di = Dioxan, Fmd = Formamid, Me = Methanol, MeK = Methyläthylketon, Pe = Petroläther, Pgl = Propylenglykol, Py = Pyridin, Po = Toluol, Po = Popylenglykol, Po = Pop

Ausführung der Prüfung auf Gitoxigeninderivate durch Fluoreszenzreaktion mit SbCl₃ auf Papier (in Kombination mit normaler SbCl₃-Farbreaktion)⁸⁹). Das vom Fmd durch Einhängen in den Trockenschrank bei ca. 90° weitgehend befreite Papier wurde mit einer kaltgesätt. Lösung von SbCl₃ in Chf gespritzt. Das so imprägnierte Papier wurde über einer elektrischen Heizplatte solange erwärmt, bis sich eben deutlich HCl-Nebel bildeten. Dann wurde das Papier im ungefilterten UV.-Licht⁹⁰) betrachtet. Alle Gitoxigenin-, Oleandrigenin- und 16-Anhydro-gitoxigenin-Derivate zeigten intensiv blaue Fluoreszenz. Beim Einhalten dieser Versuchsbedingungen ist es leicht möglich, Digitoxigeninderivate von den oben erwähnten Gitoxigeninderivaten auf Papier zu unterscheiden. Anschliessend wurden die Papiere über der Kochplatte vorsichtig weiter erhitzt, bis die bei Tageslicht beobachtbaren Farbreaktionen deutlich wurden. Die 16-Anhydro-cardenolide waren ausserdem im durchfallenden UV.-Licht (Hauptstrahlung bei 253,7 m μ) bei Betrachtung durch einen Fluoreszenzschirm μ 0 als dunkle Flecke sichtbar. Bei genügend hoher Konzentration, wie sie z. B. bei der präparativen Papierchromatographie angewendet wird, war es möglich, auch Cardenolid-Derivate ohne Doppelbindung an C-16 auf diese Weise im Fluoreszenzelicht zu erkennen.

⁸⁴⁾ T. REICHSTEIN & C. W. SHOPPEE, Disc. Trans. Farad. Soc. 1949, 305.

⁸⁵⁾ J. v. Euw, A. Lardon & T. Reichstein, Helv. 27, 1292, Fussnote 2 (1944).

⁸⁶⁾ O. Schindler & T. Reichstein, Helv. 34, 108 (1951).

⁸⁷⁾ E. Schenker, A. Hunger & T. Reichstein, Helv. 37, 680 (1954).

⁸⁸⁾ O. Renkonen & O. Schindler, Helv. 39, 1490 (1956).

⁸⁹⁾ D. LAWDAY, Nature 170, 415 (1952).

⁹⁰⁾ Gewöhnliche Quecksilber-Quarz-Lampe.

Ausführung der präparativen Papierchromatographie. Auf den wie üblich getrockneten Papierchromatogrammen wurden im durchfallenden UV.-Licht wie oben beschrieben die Substanzzonen angezeichnet. Zur zusätzlichen Kontrolle wurden an beiden Seiten schmale Streifen abgeschnitten und mit Kedde-Reagens oder SbCl₃-Reagens entwickelt. Die Lokalisierung mit Hilfe des Fluoreszenzschirmes erlaubt es, auch solche Zonen quantitativ zu erfassen, die nicht genau parallel zum oberen Rand des Papiers verlaufen. Die in ca. ½ cm² grosse Stücke zerteilten Papiere wurden mit soviel W angerührt, bis ein Papierbrei erhalten wurde. Dann wurde dasselbe Volumen Me zugesetzt, kurz (ca. 5 Min.) auf 50° erwärmt und das Lösungsmittel auf der Nutsche abgesaugt. Das Papierpulver wurde in derselben Art noch viermal mit Me extrahiert. Die vereinigten Eluate wurden im Vakuum soweit konzentriert, bis eine wässerige Lösung zurückblieb. Diese wurde viermal mit Chf ausgeschüttelt und die Chf-Extrakte mit W, 10-proz. KHCO₃-Lösung und W gewaschen, über Na₂SO₄ getrocknet und im Vakuum eingedampft.

Ausführung der Hydrolyse mit 0,05-n. H₂SO₄ im Mihromaβstab. 2 mg Substanz wurden in 1 ml Me gelöst, mit 1 ml 0,1-n. H₂SO₄ versetzt und 30 Min. unter Rückfluss gekocht. Dann wurde mit 1 ml W verdünnt und das Me im Vakuum abdestilliert. Die verbleibende wässerige Lösung wurde 30 Min. auf 65° erwärmt, abgekühlt und viermal mit Chf. oder Chf-Ae-(1:4) ausgeschüttelt. Die organischen Auszüge wurden mit W, 10-proz. KHCO₃-Lösung und W gewaschen, über Na₂SO₄ getrocknet und im Vakuum eingedampft (Geninteil). Die wässerige Lösung sowie das erste Waschwasser wurden vereinigt, im Vakuum von Chf-Resten befreit und mit frisch bereitetem, neutral gewaschenem BaCO₃ neutralisiert. Die neutrale, klarfiltrierte Lösung wurde im Vakuum eingedampft; der Rückstand (Zuckerteil) diente für die papierchromatographische Untersuchung ⁸⁸).

Extraktion der Samen und Vortrennung der Extrakte

Vorversuche. 13,7 g frisch entnommene Samen wurden mechanisch weitmöglichst von Haaren befreit (10,0 g), in einer Kaffeemühle fein gemahlen und 24 Std. bei 12 Torr über $CaCl_2$ getrocknet. Das Pulver (9,8 g) wurde elfmal mit je 40 ml Pe bei 30–35° entfettet. Die vereinigten Pe-Extrakte gaben 1,98 g (= 14,6%) Pe-Extr. (fettes Öl, verworfen).

- a) Vom trockenen Samenpulver (7,8 g) wurde die Hälfte nach früherer Vorschrift⁹¹) fermentiert und weiter behandelt; sie lieferte die in Tab. 2 genannten Ausbeuten. Der rohe Ae-Extr. (140,3 mg) wurde zwischen Pe und 80-proz. Me verteilt⁹²) und lieferte 20 mg Pe-Extr. (fettes Öl, verworfen) sowie 120,2 mg gereinigten Ae-Extr.
- b) Die zweite Hälfte (3,9 g) entfettetes Samenpulver wurde sofort mit 50 ml 50-proz. Alk 30 Min. auf 70° erwärmt und anschliessend wie üblich²⁸) weiter extrahiert. Es lieferte die in Tab. 2 genannten Ausbeuten. Die papierchromatographische Prüfung der 4 Extrakte jeder Probe ist in den Fig. 2 bis 5 wiedergegeben.

Hauptversuch. 590 g Samen (nicht enthaart) wurden in einer elektrischen Mühle fein gemahlen und 48 Std. bei 12 Torr über CaCl₂ getrocknet. Das Pulver (575 g) wurde wie oben entfettet und wie bei a) weiter behandelt und lieferte die in Tab. 2 genannten Ausbeuten. Emulsionen, die beim Ausschütteln mit Chf und Chf-Alk-(2:1)-Gemischen entstanden, wurden durch Zentrifugieren getrennt.

Prüfung auf Beständigkeit gegen SiO₂. 50 mg Ae-Extr. wurden in wenig Be-Chf-(1:1) gelöst, an 2 g SiO₂ in einer kleinen Säule adsorbiert und 16 Std. bei 20° stehengelassen. Dann wurde mit Chf und Chf-Me-(9:1) eluiert. Das vereinigte Eluat (50 mg) zeigte im Pchr. genau dieselben Flecke wie das ursprüngliche Material.

Trennung des Ae- und Chf-Extraktes. - a) 1,5 g Ae-Extr. wurden an 90 g Silicagel chromatographiert. Zum Eluieren jeder Fraktion dienten je 100 ml der in Tab. 12 genannten Lösungsmittel.

Die Fr. 19-23 gaben aus Ae 14,7 mg rohe Subst. A. Die amorphen Anteile (261,1 mg) der Fr. 17-36 wurden zusammen mit 491,1 mg analogem Material aus Chromatogr. Tab. 14 nochmals chromatographiert (siehe unten). Die Fr. 38-40 gaben aus An-Ae 186 mg rohe Subst. E und die Fr. 41 lieferte analog noch 23 mg rohe Subst. E, die noch wenig F und G enthielt. Alle amorphen Anteile von Fr. 37-41 wurden vereinigt (338,5 mg) zu Hauptgr. I, ebenso alle amorphen Anteile von Fr. 42-56 (294,7 mg) zu Hauptgr. II.

⁹¹) J. v. Euw, H. Hess, P. Speiser & T. Reichstein, Helv. **34**, 1821 (1951).

⁹²⁾ O. Schindler & T. Reichstein, Helv. 36, 1007 (1953).

			Ei		Amorphe		
Fr	T #		Roh		Kristal	le	Anteile
Nr.	Lösungsmittel	Menge in mg	Pchr. bzw. Kedde-R.	Menge in mg	Smp.	Pchr. bzw. Kedde-R.	vereinigt zu Hauptgr.
1-12	Be-Chf-(1:2)	30,5	negativ	amorph	_	nicht	
13–16	,, ,, -(1:4)	0,5	,,	,,		untersucht	17-36 ge-
17	,, ,, - ,,	0,4	Α, (α)	,,	-		meinsam mit Fr. 3–9 von
18	,, ,, -(1:9)	0,7	,, ,,	,,	_		Tab. 14 an
19–23		29,9		14,7	182–191°	A	SiO ₂ chrom.
24	Chf	7,4	Α, (β)	amorph		i	und 22 mg
25-30	, ,	7,4	A, B, (β)	,,	-		Subst. A abgetrennt.
31–36	Chf-Me-(99,5:0,5)	230,0	A-G	,,			ML zu I
37	,, ,, ,, ,,	85,9	B-H	,,	_	,	37-41
38-40	,, ,, ,, ,,	352,7	į	186	190-200°	E	37-41 I
41	,, ,, ,,	108,3	1	23	175–195°	E, (F), (G)] 1
42-45	,, ,, ,, ,,	145,0	E-K	amorph			42-56
46-51	,, ,, -(99:1)	32,7	F-L	,,			} 42-30 II
52-56	,, ,, -(97,5:2,5)	117,5	G-P	,,		{	[
57-61	,, ,, ,, ,,	270,4		144	220-230°	$O,P,(N),(\pi)$	h
62	,, ,, -(95:5)	14,8	1	1177	215-227°		5766
1						(P ₁)	III
63-66	1 " " "	39,0		amorph			J
67–68	,, ,, -(9:1)	78,4	negativ	1	1	nicht	
[i	ſ		į.		untersucht	i

Tabelle 12. Trennung von 1,5 g Ae-Extr. durch Chromatographie an SiO₂98)⁵⁹)

Die Fr. 57-62 gaben aus Me-Ae insgesamt 144 mg Mischkristallisat, vorwiegend O und P mit wenig N, π , ϱ und P_1^{93}) (vgl. Fig. 8). Sie wurden zusammen mit weiteren analogen Kristallen sowie amorphen Anteilen aus Hauptgr. II, die vorwiegend N, O und P enthielten, an SiO_2 chromatographiert (vgl. Tab. 19). Verarbeitung der Mutterlaugen sowie Fr. 63-66 (zusammen 180 mg) gemeinsam mit Hauptgr. III.

b) 1,5 g Chf-Extrakt wurden analog an 90 g Silicagel chromatographiert. Zum Eluieren jeder Fraktion dienten hier je 150 ml der in Tab. 13 genannten Lösungsmittel.

Die Fr. 11-13 gaben aus An-Ae 30,2 mg rohe Subst. E. Die Fr. 42-45 gaben aus Me-Ae 280 mg Kristallgemisch O, P (Verarbeitung wie oben). Die Fr. 54-57 gaben aus Me-Ae 63 mg rohe Subst.Q. Die amorphen Anteile wurden wie in der Tab. vermerkt zu den Hauptgruppen I-IV vereinigt.

6,95 g Ae-Extr. und 3,37 g Chf-Extr. wurden vereinigt und das Ganze (10,32 g) an 450 g Silicagel chromatographiert. Zum Eluieren jeder Fraktion diente je 1 l der in Tab. 14 genannten Lösungsmittel.

Die Fr. 4 gab aus Ae 27,4 mg rohe Subst. A, Smp. 177–186°. Die amorphen Anteile (491,1 mg) von Fr. 3-9 wurden mit den 261,1 mg analogem Material von Tab. 12 vereinigt und zusammen (752,2 mg) nochmals an 100 g Silicagel chromatographiert, wobei aber nur noch 22 mg krist. Subst. A (Smp. 184–194°) abgetrennt werden konnten. Die ML ging zu Hauptgruppe I.

Die Fr. 12–15 gaben aus An-Ae zusammen 760 mg rohe Subst. E. Die Fr. 22–23 gaben aus Me-Ae 930 mg rohes Mischkristallisat O-P (N, π, ϱ, P_1) und die Fr. 29–31 gaben aus Me-Ae 234 mg krist. Subst. Q. Die amorphen Anteile wurden wie in Tab. 14 angegeben zu den Hauptgruppen I-IV vereinigt.

Trennung der Hauptgruppe I. Das gesamte amorphe Material (3,70 g, enthaltend hauptsächlich die Stoffe α -E), in 25 ml gereinigtem Fmd gelöst, wurde mit 50 g gereinigtem Kieselgur (Hyflo Super Cel) vermischt auf eine wie folgt bereitete Säule gegeben:

⁹³⁾ Die Flecke ϱ und P_1 wurden erst später in diesem Material entdeckt.

Tabelle 13. Trennung von 1,5 g Chf-Extr. an 90 g Si O_2^{93})

				Eind	ampfrückst	and	1.41.4	
Fr	T Sammaamittal		Roh		Kristalle		Amorphe Anteile	
Nr.	Lösungsmittel	Menge in mg	Pchr. bzw. Kedde-R.	Menge in mg	Smp.	Pchr.	vereinigt zu Hauptgruppen	
1-5	Chf	45,4	negativ	amorph			nicht untersucht	
6–10 11–13	,,	68, 1 91,5	A-E	30,2	165–195°	E,(F),(G)	6–14	
14	,,	15,6	E-H	amorph			1	
15–22 23–37	,, Chf-Me-(99:1)	56,0 25,8	E-I E-N	,,			15-41	
38-41	,, ,, -(98:2)	30,0	E-O	,,] II	
42–45	,, ,, ,,	440,3		280	185–225°	O,P,(N), $(\pi),(\varrho),(P_1)$	260 mg	
46-49	,, ,, ,,	62,1	Ο-φ	amorph		(00), (2), (-1)		
50–53 54–57	,, ,, -(96:4) ,, ,, ,,	81,5 182,1	N-Q	,, 63	225–241°	Q])	
58-61	,, ,, ,,	25,8	Q-S	amorph		~	չ 58–70	
62–70	,, ,, -(8:2)	245	Q-S	,,) IV	

Tabelle 14. Chromatographie von 10,3 g Ae- und Chf-Extr. an SiO₂

				tand			
Fr	T W :44-1		Roh		Kristall	e	
Nr.	Lösungsmittel	Menge in mg	Pchr. bzw. Kedde-R.	Menge in mg	Smp.	Pchr.	Vereinigt zu Hauptgr.
1–2	Chf-Be-(90:10)	63	negativ	amorph			nicht untersucht
3 4 5–6 7–9 10–11	., ., ., ., ., ., Chf	50 151 124 185 1793	A, (α) A, B, (β) A-E C-G	,, 27,4 amorph ,,	177–186°	A	3-9 nochmals an SiO ₂ chromat. gaben noch 22 mg A; ML zusammen mit amorphen Teilen von 10-12 zu I
12	,,	801		105	170–198°	E	h
13–15	Chf-Me-(99:1)	2622		655	168–194°	E, (F), (G)	13–21
16–19	,, ,, ,,	989	E-N	amorph			l II
20–21	,, ,, -(98:2)	414	I-P	,,			
22–23	,, ,, ,,	1881		930	180-220°	O,P,(N), $(\pi),(\varrho),$ (P_1)	ML von 22–28
24-26	., ,, ,,	524	L-e	amorph			1,6 g III
27-28	,, ,, -(96:4)	171	N-Q	,,) '''
29–31	,, ,, ,,	478	•	234	220–245°	Q	
32–36	,, ,, -(80:20)	630	Q, R, S	amorph			IV

750 g gereinigtes Fmd wurden mit 500 g gereinigtem Kieselgur gut durchgeknetet, dann mit 1000 g weiterem Kieselgur gut vermischt, zweimal gesiebt, in Be-Cy-(1:9) aufgeschwemmt, wie beschrieben in eine Säule Nr. 3 gefüllt und wie üblich ⁵⁷) gestopft. Das auf Kieselgur-Fmd verteilte Material wurde auf die mit Be-Cy-(1:9) überschichtete Säule gegeben und gut angedrückt. Dann wurde direkt mit der Verteilungschromatographie begonnen. Laufgeschwindigkeit ca. 35 ml/Std. Es wurden Fraktionen von 250 ml abgetrennt. Jede fünfte Fr. wurde im Pchr. untersucht, im Zweifelsfalle auch dazwischenliegende Fr. Fraktionen derselben Zusammensetzung wurden vereinigt und im Vakuum bei 45° auf 10–20 ml eingeengt. Diese Konzentrate wurden in 50 ml Chf aufgenommen und zur Entfernung von Fmd etc. mit 50 ml W, 20 ml W, 20 ml gesättigte KHCO₃-Lösung und noch zweimal mit je 20 ml W gewaschen. Die wässerigen Phasen wurden noch viermal mit je 50 ml Chf ausgeschüttelt. Die Chf-Auszüge wurden über Na₂SO₄ getrocknet und eingedampft. Über das Resultat orientiert Tab. 15.

	1			Einda	ıdampfrückstand				
FrNr.	Unter-	Unter- Bewegliche		Roh	Kristalle				
11141.	gruppe	Phase	Menge in mg	Pchr. bzw. Kedde-R.	Menge in mg	Smp.	Pchr.		
1-41	1/0	Be-Cy-(1:9), -(1:4), -(1:2)	465	negativ	amorph				
42-47	I/1	Be-Cy-(1:1)	21,3	α, Α	,,				
48 - 55	I/2	,, ,, ,,	76,9	α, Α	**				
56-65	I/3	11 11 11	173,2	A	,,				
66–71	1/4	,, ,, ,,	110,2	Α, (β), Β	,,				
72-79	1/5	,, ,, ,,	181,4	Α, (β), Β, γ	.,				
80-90	I/6	,, ,, ,,	345,2	B, (C)	,,				
91 - 103	I/7	,, ,, ,,	434,7	Β, γ, C	,,				
104–119	I/8	,, ,, -(3:2)	328,5	γ, C, δ, (B), (D)	1	230-243°	С		
120-130	I/9	., ., -(3:1)	198,0	C, δ, D	40,2	232-246°	C		
131-134	I/10	,, ,, ,,	134,7	C, δ, D, E	amorph				
135-146	I/11	., ,, ,,	347,6	δ, D, E, (F)	1	182–198°	\mathbf{E}		
147 - 158	I/12	Ве	389,0	(δ) , D, E, F	506	190-200°	E		
159-172	I/13	.,,	225,8	E-H	j J	178–195°	E, (F		
173-180	I/14	,,	37,4	F-I	amorph				
181-192	I/15		34,6	F-L	,,				
193-214	I/16	Be-Chf-(9:1)	54,6	F-L	,,				
215-231	I/17	., ., -(3:1)	31,8	K, L	,,				
232-250	1/18	,, ,, -(1:1)	30,0	L	1	180–195°	L		

Tabelle 15. Verteilungschromatographie von 3,70 g Hauptgruppe I

Die Gr. I/0 (Kedde-negativ) wurde nicht untersucht. Die Gr. I/1 bis I/3 (Fr. 42-65) wurden vereinigt (271 mg grünes Öl) und an 9 g Silicagel chromatographiert, worauf sich 35,6 mg krist. Subst. A, Smp. 170-180°, abtrennen liessen. Die ML und amorphen Anteile (ca. 235 mg; enthielten die Subst. α) wurden nicht untersucht.

Die Gr. I/4 (Fr. 66–71) und I/5 (Fr. 72–79) wurden nicht untersucht. Die Gr. I/6 (Fr. 80–90, 345,2 mg) wurde in 2 Portionen (a und b) an Al_2O_3 chromatographiert. Chromatographie von Teil a (100 mg) vgl. Tab. 16.

Bei der papierchromatographischen Prüfung der erhaltenen Fraktionen wurden zwei schwache Flecke gefunden, die vorher nicht im Gemisch enthalten waren. Der eine, C₁, hatte dieselbe Laufstrecke wie Desacetyl-oleandrin (Subst. K), der andere, C₂, hatte denselben Rf-Wert wie 16-Anhydro-desacetyl-oleandrin (vgl. Fig. 30).

			Eind	ampfrückst	and		
FrNr.	Lösungsmittel		Roh		Kristalle		
11141.	je 15 ml Menge in mg		Pchr. bzw. Kedde-R.	Menge in mg	Smp.	Pchr.	
1- 7	Be-Chf-(1:1)	8,9	negativ	amorph			
8–12	,, ,, -(1:3)	1,1	,,	,,			
13-21	,, ,, ,,	8,2	γ, (C)	,,			
22	,, ,, -(1:9)	3,3	-	1,2	244–248°	С	
23	,, ,, ,,	23,4	γ , (B), (C), (C ₂)	amorph			
24	,, ,, ,,	13,0	_	ca. 2	130-200°	Β, (γ)	
25-26	,, ,, ,,	18,9	_	4,3	138-142°	В	
27-28	,, ,, ,,	8,4	_	ca. 2	133–192°	В, С ₁	
29		2,8	B, C ₁	amorph			
30	,, ,, ,,	2,3		0,1	162-223°	C ₁ , B	
31–37	Chf-Me-(98:2)	4,4	С ₁ , В	amorph			

Tabelle 16. Chromatographie von 100 mg (Teil a) der Fr. 80-90 von Tabelle 15 an 10 g Al₂O₃

Die Fr. 1-12 wurden nicht untersucht. Die Fr. 13-21, die ML von Fr. 22, sowie die Fr. 23 und 24 (Kristalle und ML), zusammen 46,7 mg, wurden mit 122 mg analogem Material aus Chromatographie des Teils b) vereinigt und dienten zur Chromatographie an SiO₂ (Tab. 17).

Die Fr. 22 gab aus Ae 1,2 mg reine Subst. C.

Die Fr. 25-26 gaben aus Ae 4,3 mg reine Subst. B. Die ML von Fr. 25-26 sowie alle weiteren Fr. 27-37 (Kristalle und ML) wurden vereinigt (32,5 mg) und zusammen mit 55,1 mg analogem Material aus Chromatographie von Teil b) durch präp. Pchr. getrennt.

Die Chromatographie von 245 mg Teil b) an 22,5 g ${\rm Al_2O_3}$ lieferte noch 6 mg Subst. C und 10,3 mg Subst. B, Smp. 132–150°. Die ML aller Fraktionen, die reines B geliefert hatten, wurden vereinigt und nochmals an ${\rm SiO_2}$ chromatographiert, worauf sich noch 8,7 mg reine Subst. B vom Smp. 135–145° isolieren liessen. Totale Ausbeute: 23,3 mg B und 7,2 mg C.

· ·		Gemischen von Tabelle 16 $(a+b)$, an 5 g Silicagel
		Eindampfrückstand
	D 1	Kristalle

		Eindampfrückstand						
FrNr.	T "	Roh	Kristalle					
FINI.	Lösungsmittel	Menge in mg	Menge in mg	Smp.	Pchr.			
1- 4	Be-Chf-(1:3)	3,1	amorph					
5	,, ,, -(1:9)	4,6	,,					
6	,, ,, ,,	8,7	Spur	155–170°	Β, γ			
7	,, ,, ,,	15,1	ca. 2	160-174°	Β, γ			
8	1, ,, ,,	32,3		168180°/	γ			
				202-205°				
9	,, ,, ,,	36,9]] [172–175°/	γ			
		i	1 1	205-208°				
10-11	,, ,, ,,	31,3	3,6	240-246°	С			
12-13	Chf	8,2	Spur	150-250°	γ, C, C ₂			
14-16	Chf-Me-(98:2)	3,6	amorph					

Die Fr. 1–4 wurden nicht untersucht. Die Fr. 8 und 9 gaben aus An-Ae 13,6 mg reine Subst. γ . Die ML wurden mit den Fr. 5–7 und 10–16 vereinigt (127 mg) und dienten zusammen mit den 87,6 mg oben erwähnten Fraktionen von Tab. 16 (a+b) zur präp. Pchr.

Trennung der amorphen Teile von Tab. 16 und 17 durch präparative Papierchromatographie. Von den insgesamt 214,6 mg Gemisch wurden 160 mg auf 40 Papierbogen (Whatman Nr. 3) im System Be-Cy-(1:1)/Pgl getrennt (Laufzeit 9 Std., Front abgetropft), es wurden nur die Zonen B (65 mg roher Extrakt) und γ (63 mg roher Extrakt) ausgeschnitten. Zone B gab aus An-Ae 37,3 mg krist. Subst. B, Smp. 133-140°, und Zone γ gab aus An-Ae 40 mg Subst. γ vom Doppel-Smp. 170°/205-212° (vgl. Fig. 31).

Die Gr. I/7 (Fr. 91-103) sowie die ML von Gr. I/8 (Fr. 104-119) von Tab. 15 wurden nicht getrennt.

Die ML von Gr. I/9 (Fr. 120-130) wurde an SiO₂ chromatographiert und lieferte ca. 1 mg reine Subst. D, das verbleibende Material wurde nicht untersucht.

Die Gr. I/10 (Fr. 131-134 von Tab. 15) wurde nicht untersucht.

Die Gr. I/11 (Fr. 135–146 von Tab. 15) wurde zweimal an SiO₂ chromatographiert und lieferte 15,2 mg krist. Subst. D, das verbleibende Material wurde nicht untersucht.

Die ML der Gr. I/12 (Fr. 147–158 von Tab. 15) (140 mg) wurden ebenfalls zweimal an SiO₂ chromatographiert und gaben 9,1 mg krist. Subst. D. – Die ML (120 mg) wurden durch präp. Pchr. an 30 Papierbogen (Whatman Nr. 1) im System Be-Cy-(1:1)/Fmd getrennt (Laufzeit 21 Std., Front abgetropft). Es wurde nur die Zone H ausgeschnitten, sowie diejenige Zone, die δ und D enthielt, die sich im benützten System schlecht voneinander, aber gut von E und C trennen (vgl. Fig. 32). Zone H gab 4,6 mg Extrakt und aus An-Ae 2,2 mg reine Subst. H. Die Zone δ + D gab 71,4 mg Extrakt und aus An-Ae 15,9 mg reine Subst. D, Smp. 230–232°. Die ML lieferte aus An-W 27,8 mg fast reine Subst. δ , Smp. 115–118°, die nach Pchr. noch eine Spur D enthielt (vgl. Fig. 33).

Die ML der Gr. I/13 (Fr. 159-172 von Tab. 15), die Gr. I/14-I/17 (Fr. 173-231) und die ML von Gr. I/18 (Fr. 232-250) wurden vereinigt (ca. 0,3 g) und zusammen mit den Untergruppen II/3 und II/4 der Craig-Verteilung (insgesamt 1,81 g) durch präp. Pchr. getrennt (siehe unten).

Trennung der Hauptgruppe II durch Gegenstromverteilung nach CRAIG⁶¹). Für die beiden folgenden Verteilungen diente eine Glasapparatur⁶²) mit 200 Elementen, die das Arbeiten im Kreislaufverfahren⁶⁰) erlaubte. Jedes Element fasste 25 ml ruhende Phase, während man die Menge der beweglichen Oberphase zwischen 0 und 30 ml variieren konnte.

Bei der ersten Verteilung wurde das Material über 400 Stufen verteilt. Die Apparatur wurde dabei so eingestellt, dass die Oberphase 15 ml betrug und dass nach 33 Schüttelbewegungen von dem Phasentransport eine Wartezeit von 90 Sec. eintrat. Dies genügte zur völligen Trennung der Phasen. Zur Untersuchung wurde jeweils der ganze Inhalt (beide Phasen) eines Elementes entnommen. Es wurde das System von Me-W-Chf-CCl₄-(7,5:2,5:4:6) verwendet. Dieses Gemisch wurde geschüttelt und nach Trennung wurden die leichte und die schwere Phase benützt. Zur Trennung gelangten 3,70 g Hauptgruppe II (bestehend aus Fr. 42–56 von Tab. 12, 14–41 von Tab. 13 und 13–21 von Tab. 14); das Material enthielt hauptsächlich die Stoffe E-O und wenig δ, D und P.

Nach Durchführung von 200 Verteilungsschritten befand sich im Element 100 noch kein Kedde-positives Material, während Element 90 eine Spur davon enthielt. Es wurden deshalb im Kreislaufverfahren nochmals 200 Verteilungsschritte durchgeführt. Dann wurde der Inhalt jedes 10. Elements im Vakuum eingedampft und der Rückstand im Pchr. geprüft. Nach dem Ergebnis wurde der Inhalt aller Elemente in die 4 Untergruppen II/1-II/4 vereinigt (vgl. Tab. 7).

Untergruppe II/1 (795 mg) wurde nicht weiter getrennt.

Die Untergruppe II/2 (1,23 g, vorwiegend enthaltend E, F und G) wurde einer zweiten genau gleichen Verteilung über 600 Stufen unterworfen, worauf gerade die raschest laufenden (polaren) Anteile bis in die letzten Elemente gelangt waren. Der Inhalt jedes 10. Elements wurde im Pehr. geprüft und, da nur eine schwache Trennung erreicht war, wurde der Inhalt von je 10 Elementen entsprechend Tab. 18 zusammengefasst. Keine der Fraktionen kristallisierte.

Der Inhalt der Elemente 1-100 sowie 111-200 wurde nicht weiter getrennt.

Der Inhalt der Elemente 101–110 (153 mg) wurde auf 30 Papieren (Whatman Nr. 1) im System Be/Fmd präparativ getrennt (Laufdauer 5 Std., Front abgetropft und Subst. E teilweise ebenfalls). Die Zone F lieferte 78,6 mg Extrakt (von Fmd befreit). Dieser wurde an Silicagel gereinigt. Das so erhaltene farblose Glas (64,6 mg) gab aus Di-Ae 40,5 mg krist. Subst. F, Smp. 155–163°.

	Eindampfrückstand						
Element Nr.	Menge in mg	Resultat der Pchr.		Habitı	ıs		
1- 80	10,3	Kedde-negativ	gelb	es Öl			
81- 90	12,2	E, F, (D) (δ)	,,	,,			
91–100	33,2	E, F, (D)	hell	gelber Scl	naum		
101-110	153,3	E, F	fast	farbloser	Schaum		
111-120	406,9	E, F	,,	,,	,,		
121-130	307,8	E, F, (G)	,,	11	,,		
131-140	127,9	E, F, G	,,	,,	,,		
141-150	57,0	(E), F, G	,,	,,	,,		
151–180	86,1	G, (F) (I) (L)	,,	**	,,		
181–200	14,4	G-L	,,	,,	**		

Tabelle 18. Zweite CRAIG-Verteilung von 1,23 g Gemisch der Untergruppe II/2 (Subst. E, F und G)

Trennung der Untergruppen II/3 und II/4. Dieses Material wurde vereinigt (1,6 g), dazu kamen noch die ML der Untergr. I/13 sowie die Untergr. I/14-I/18 (188,4 mg). Von diesem Material (ca. 1,9 g) wurden 1,81 g auf insgesamt 180 Papierbogen (Whatman Nr. 1) im System Be-Chf-(9:1)/Fmd präparativ getrennt (Laufzeit 6¹/₂ Std., Front abgetropft, ebenso Subst. E und teilweise Subst. F).

Bei der Verarbeitung der ersten 60 Blätter wurden folgende Rohextrakte (von Fmd befreit) und Kristallisate erhalten.

Zone G (45 mg) lieferte aus An-Ae 12,0 mg Kristalle, Smp. 182–186°; diese enthielten nach Pchr. vorwiegend G und wenig H. Die ML wurde an 1,5 g SiO₂ gereinigt und gab noch 8,2 mg gleiche Kristalle, Smp. 184–187°. Kristalle und ML wurden später vereinigt und zusammen mit amorphem H (aus diesen 60 sowie den 120 weiteren Papierblättern) nochmals durch präp. Pchr. getrennt (siehe unten).

Zone H (14,1 mg), gelbes Harz, gab auch nach Reinigung an SiO₂ keine Kristalle; es wurde zusammen mit dem oben erwähnten Material nochmals durch präp. Pchr. gereinigt (siehe unten).

Zone I (39,9 mg) gab aus An-Ae 12,1 mg krist. Subst. I, Smp. 225-230°.

Zone K (56,1 mg) gab aus An 28,0 mg krist. Subst. K, Smp. 228-233°.

Zone L (141 mg) gab aus An-Ae 53,4 mg krist. Subst. L, Smp. 202-205°.

Zone M (20,4 mg) gab aus An-Ae 2,1 mg rohe Subst. N, Smp. 205-215°. Nochmalige Kontrolle der ML durch Pchr. zeigte, dass eine Subst. M gar nicht mehr nachweisbar war³³). Es wurden nur noch die Flecke von N und L erhalten.

Zone N (93,5 mg) gab aus An-Ae 38,1 mg krist. Subst. N, Smp. 213-220°.

Die Zone O-P (115 mg) und analoges Material (235 mg) aus den weiteren 120 Papierblättern sowie alle amorphen Anteile von Tab. 19 wurden mit Hauptgr. III vereinigt. Das Ganze (3,31 g) diente zur Chromatographie an SiO₂ (siehe unter Hauptgruppe III, Tab. 20).

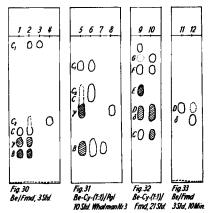
Bei der Verarbeitung der weiteren 120 Papierblätter wurden die G-Zonen so ausgeschnitten, dass sie möglichst frei von H waren, wobei ein Teil von G in die H-Zone gelangte. Eine M-Zone wurde nicht ausgeschnitten. Bei einem Teil der Papiere war die Trennung zwischen N- und O-Zone nicht gut. Beide Zonen wurden deshalb zusammen ausgeschnitten. Erhalten wurden:

G-Zone (70 mg) aus An-Ae 14,6 mg Subst. G, Smp. 170-185°, nach Pchr. rein.

H-Zone (86,1 mg) amorph, enthielt noch G und I und wurde wie oben erwähnt verwendet.

I-Zone (70,2 mg) aus An-Ae 44,2 mg Subst. I, Smp. 225-230°.

K-Zone (89,7 mg) aus An 32,9 mg Subst. K, Smp. 228-235°.


L-Zone (292,4 mg) aus Me-Ae 130 mg Subst. L, Smp. 200-203°.

N-Zone (30,1 mg) aus Me-Ae 14,6 mg Subst. N, Smp. 210-215°.

N+O-Zone (278 mg) wurde zusammen mit den rohen O-P-Kristallen (1,325 g) an ${\rm SiO_2}$ chromatographiert (siehe unten).

O-P-Zone (235 mg) wurde wie oben erwähnt mit Hauptgr. III getrennt.

Beispiele für Kontrolle durch Papierchromatographie 26)

- 1. Ca. 0,2 mg Untergruppe I/6.
- 2. Ca. 0,2 mg Untergruppe I/6 nach Chromatographie an Al₂O₃ (Tab. 16).
- 3. Ca. 0,05 mg Desacetyl-oleandrin (= Subst. K)³⁷).
- 4. Ca. 0,05 mg 16-Anhydro-desacetyl-oleandrin³⁷).
- Ca. 0,2 mg Untergruppe I/6 nach Chromatographie an Al₂O₃ (Tab. 16). Besprüht mit KEDDE-Reagens.
- Ca. 0,2 mg Untergruppe I/6 nach Chromatographie an Al₂O₃ (Tab. 16). Besprüht mit SbCl₃-Reagens.
- 7. Ca. 0,05 mg Kristalle aus der B-Zone der präp. Pchr.
- 8. Ca. 0,05 mg Kristalle aus der y Zone der präp. Pchr.
- 9. Ca. 0,2 mg Untergruppe I/12, besprüht mit KEDDE-Reagens.
- 10. Ca. 0,2 mg Untergruppe I/12, besprüht mit SbCl3-Reagens.
- 11. Ca. 0,05 mg Kristalle des δ -D-Eluats, aus An-Ae.
- 12. Ca. 0,05 mg Kristalle des δ -D-Eluats, aus An-W.

Isolierung von H. Hierzu diente folgendes Material:

- 45 mg G-Zone der ersten 60 Papierblätter
- 14,1 mg H-Zone der ersten 60 Papierblätter
- 86,1 mg H-Zone der zweiten 120 Papierblätter

145,2 mg Material wurden auf 30 Papierblättern (Nr. 63 von Machary & Nagel, Düren, Deutschland)⁹⁴) im System Be/Fmd präparativ getrennt (Laufzeit 16 Std., Front abgetropft).

Die eng ausgeschnittenen H-Zonen gaben nach Reinigung 24,4 mg Extrakt. Aus An-Ae 13,0 mg krist. Subst. H, Smp. 246-253°.

Untersuchung der Hauptgruppe III

Vortrennung der O-P-Kristalle. Die 1,325 g O-P-Kristalle von Tab. 12, 13 und 14 wurden vereinigt mit 88 mg N-ML der obigen präp. Pchr. sowie mit 280 mg N-O-Zone der letzten 120 Blätter der obigen präp. Pchr. Dieses Material (1,69 g) wurde an 40 g Silicagel chromatographiert. Zum Eluieren jeder Fraktion dienten je 125 ml der in Tab. 19 genannten Lösungsmittel.

Die 660 mg Kristallgemisch wurden nicht getrennt. Die ML (ca. 900 mg) wurden mit dem anderen oben erwähnten Material und mit folgendem, die Hauptgruppe III bildenden Material vereinigt:

180	mg	amorphe	Anteile	von	Fr.	57-66	von	Tab.	12
300	mg	,,	,,	,,	,,	42-53	,,	.,	13
1640	mg	,,	,,	,,	,,	22-28	,,	,,	14

Das Ganze (3,37 g) wurde an 125 g SiO₂ chromatographiert. Zum Eluieren jeder Fraktion dienten je 300 ml der in Tab. 20 genannten Lösungsmittel.

⁹⁴) Es handelt sich um sehr dichtes Papier, das eine langsame Wanderung der Front ergibt.

			Eiı	ndampfrücksta	and
FrNr.	Lösungsmittel	Roh		Krist	alle
	Bosungsmitter	Menge in mg	Menge in mg	Smp.	Pchr. ⁹⁵) bzw. Kedde-R.
1	Chf	4,8	-	_	negativ
2	,,	12,6	-	-	,,
3	Chf-Me-(98,5:1,5)	18,8	-	-	±
4	21 22 11 21	35,6	[]	120-135°	N, O. P
5	,, ,, ,, ,,	112,9	ł I	122–133°	N, O, P
6	,, ,, ,, ,,	535,2	660	125-135°	O, P, (N) (π)
7	,, ,, ,, ,,	440,7	1	125-133°	Ο, Ρ, (π) (ρ)
8	. ,, ,, ,, ,,	176,8		124-132°	O, P, (π) (ϱ) (P_1)
9	11 11 11 11	151,7		125-135°	O, P, (π) (ϱ) (P_1)
10–13	,, ,, -(95:5)	86,3	amorph	_	O- <i>Q</i>

Tabelle 19. Chromatographie von 1,69 g O-P-Gemisch an SiO2

Tabelle 20. Chromatographie von 3,31 g Hauptgr. III an SiO,

		Eindampfrückstand					
FrNr.	Lösungsmittel		Roh	Kristalle			
		Menge in mg	Pchr. bzw. Kedde-R.	Habitus	Pchr.		
1- 8	Chf; Chf-Me-(99:1)	143,3	±	amorph	_		
9–10	Chf-Me-(98,5:1,5)	157,5	positiv	,,	-		
11	11 11 11 11	61,5	,,	krist.	N, π, (O,P)		
12	,, ,, ,, ,,	434,1	, ,,	,,	Ο, Ρ, π, Ν		
13	11 ,, ,, ,,	1157,0	O, P, π, (N)	,,	O, π, (P), (N)		
14	,, ,, ,, ,,	661,7	positiv	, ,	Ο, π, (P)		
15	,, ,, ,, ,,	362,2	Ο, Ρ, π	,,	Ο, Ρ, π		
16	,, ,, ,, ,,	94,2	-	krist.	O, (P) (π)		
17	,, ,, ,, ,,	49,2	Ο, Ρ, π	amorph	-		
18	,, ,, ,, ,,	32,2	-	,,	_		
19	,, ,, -(97,5:2,5)	28,0	Ο, Ρ, π	,,	_		
20	,, ,, ,, ,,	45,0		,,	-		
21-23	,, ,, ,, ,,	102,9		,,	-		
24-26	,, ,, -(96:4)	51,4		,,	_		
27-28	,, ,, -(92:8)	114		,,	-		
29-30	,, ,, -(85:15)	32,5	±	,,_			

Die Fr. 11-16 gaben aus An-Ae 1,32 g krist. Gemisch (N, π , O, P), nicht weiter getrennt. Auch die Fr. 1-10, die Fr. 17, sowie die Fr. 21-30 wurden nicht weiter getrennt.

Die ML von Fr. 15 wurde präparativ auf Papier getrennt, gab aber kein brauchbares Resultat. Die ML von Fr. 16 wurde mit den Fr. 18-20 vereinigt und das Ganze (ca. 200 mg) auf 30 Papierbogen (Whatman Nr. 1) im System Be-Chf-(7:4)/Fmd getrennt (Laufzeit 20 Std., Front abgetropft, auch N abgetropft). Ausgeschnitten wurden die Zonen O, P und $\pi + \varrho^{96}$); sie lieferten die folgenden Mengen an Extrakten (von Fmd befreit) (vgl. Fig. 9):

Die O-Zonen (70,6 mg) gaben aus Me-Ae 54 mg krist. O, Smp. 228-232°.

Die P-Zonen (79,0 mg) wurden an 2 g SiO₂ gereinigt. Die Eluate gaben aus Di-Ae 41 mg krist. P, Smp. 135-140°.

⁹⁶) Die Anwesenheit von ϱ wurde erst nachträglich entdeckt.

 $^{^{95})}$ π und ϱ waren immer sehr schwach. P_1 wurde erst später nach präparativer Anreicherung differenziert.

Die $\pi+\varrho$ -Zonen (44,0 mg) gaben aus An-Ae 11,2 mg krist. ϱ , Smp. 226–230°. Die ML (ca. 30 mg) wurden zusammen mit 170 mg ML von Fr. 11–14 von Tab. 20 auf 30 Papierbogen (Whatman Nr. 1) im System Be-Chf-(7:5)/Fmd präparativ getrennt (Laufzeit 20 Std., Front abgetropft, ebenso Subst. O). Ausgeschnitten wurden nur die π , ϱ und $P_1^{\varrho 7}$)-Zonen. Nach Reinigung und Entfernung des Fmd wurden erhalten:

Die π -Zonen (17,2 mg) wurden an SiO₂ gereinigt (11,8 mg) und gaben aus An-Ae 7,8 mg Subst. π , Smp. 230–240°.

Die q-Zonen (12,8 mg) gaben aus An-Ae 6,8 mg Subst. q, Smp. 224-230°.

Die P_1 -Zonen (4,2 mg) kristallisierten bisher nicht. Nach Pchr. enthielt das Eluat noch ein Gemisch von P, π und wenig P_1 (vgl. Fig. 10).

Orientierende Prüfung des Chf-Alk-(2:1)-Extrakts. 15 mg des rohen Extrakts wurden in 5 ml W, das ca. 3% Me enthielt, gelöst und mit einer leicht trüben Lösung von 35 mg Adenium-multiflorum-Enzym 52) in 1,5 ml W versetzt. Nach Zusatz von 0,05 ml To wurde die Lösung während
10 Tagen bei 34-36° gehalten. Hierauf wurde mit der 5fachen Menge 96-proz. Alk versetzt,
kurz auf 50° erwärmt und durch eine dünne Schicht Kieselgur (Hyflo-Super-Cel) filtriert.
Das klare Filtrat wurde im Vakuum vom Alk befreit und die wässerige Lösung (ca. 3 ml) nacheinander je viermal mit 10 ml Chf, 10 ml Chf-Alk-(4:1) und Chf-Alk-(2:1) ausgeschüttelt. Die
organischen Phasen wurden mit W, 2-n. Sodalösung und W gewaschen, über Na₂SO₄ getrocknet
und im Vakuum eingedampft. Es resultierten 4,2 mg Chf-Extrakt, 8,0 mg Chf-Alk-(4:1)-Extrakt
und 2,1 mg Chf-Alk-(2:1)-Extrakt. Die Extrakte wurden nur in Pchr. untersucht (vgl. Fig. 11-13).

Um die Wirksamkeit des Ferments zu prüfen, wurden 15 mg Digitalinum verum den genau gleichen Bedingungen unterworfen. Dieser Versuch lieferte 5,2 mg Chf-Extrakt und 5,6 mg Chf-Alk-(2:1)-Extrakt. Pchr. der Extrakte vgl. Fig. 14. Das Fermentpräparat war somit wirksam.

Beschreibung und Identifizierung der isolierten Substanzen

Farbreaktionen werden hier nur soweit angegeben, als sie nicht in den Tab. 3 und 21 verzeichnet sind. Formulierung der bekannten Stoffe vgl. Tab. 10.

Stoff	1′	5′	10′	20′
Substanz A	farblos	farblos	farblos	farblos
Adigosid	gelbocker	braungelb	braunocker	ocker, grüner Rand
Nerigosid	gelbocker	braungelb	braunocker	ocker, grüner Rand
16-Anhydro-des- acetyl-nerigosid	gelbocker	braunorange	braun, roter Rand	rotbraun, grüner Rand
Desacetyl- nerigosid	grünlichgelb	orange	ocker	ocker, grüner Rand
Neritalosid	gelborange	gelb, rotstichig	gelb, rotstichig	hell rotorange
Stoff	45′	90′	180′	24 Std.
Substanz A	farblos	sehr schwach bräunlich	sehr schwach bräunlich	fast farblos
Adigosid	braunoliv	olivgrün	graugrün	gelbbraun
Nerigosid	braunoliv	olivgrün	graugrün	gelbbraun
16-Anhydro-des- acetyl-nerigosid	olivgrün	olivgrün	graugrün	gelbbraun
Desacetyl- nerigosid	orange, grüner Rand	braunoliv	graugrün	gelbbraun
Neritalosid	hell lachsrot	schwach gelbbraun	schwach bräunlich	gelbbraun

Tabelle 21. Farbreaktionen mit 84-proz. H₂SO₄41)47)

⁹⁷⁾ Die Anwesenheit von Spuren einer Subst. P₁ wurde erst hier entdeckt.

Subst. A. Aus Ae, dann aus An-Ae farblose, zugespitzte Prismen, die sich beim längeren Stehen an der Luft gelblich färben. Smp. $180^{\circ}/202^{\circ}$ (dabei langsame Umwandlung in Nadeln). $[\alpha]_D^{24} = +51.2^{\circ} \pm 4^{\circ}$ (c = 0,66 in Me). Zur Analyse wurde 5 Std. bei 100° und 0,01 Torr über P_2O_5 getrocknet. Gewichtsverlust 10%.

 $\rm C_{22}H_{30}O_3$ (342,46) Ber. C 77,16 H 8,82% Gef. C 77,20 H 8,56% kein OCH $_3$ O-Bestimmung (ausgeführt nach längerem Lagern in Kontakt mit Luft)

Wir vermuten, dass beim Lagern Autoxydation stattgefunden hat. Das UV.-Absorptionsspektrum in Alk zeigte ein Maximum bei 282 m μ (log $\varepsilon=4,42$, ber. auf M = 342,5), eine Schulter zwischen 235 und 255 m μ und ein Minimum bei 219 m μ (vgl. Kurve A in Fig. 15). Das IR.-Spektrum in CH₂Cl₂ (vgl. Fig. 17) zeigt alle für eine Dienon-Gruppierung charakteristischen Absorptionsstellen 79) und ausserdem eine starke Bande bei 2,99 μ .

Die Subst. A gab mit Tetranitromethan keine Färbung; auch 84-proz. $\rm H_2SO_4$ erzeugte keine Färbungen. Die Substanz sublimierte bei 0,01 Torr zwischen 160 und 170° unter teilweiser Zersetzung.

Subst. B=Adigosid. Aus Ae-An farblose Kristalldrusen, Smp. 138-142°. [α] $_{2}^{23}=-16.8\pm2^{\circ}$ (c = 0.88 in Me). Zur Analyse wurde 6 Std. bei 0.01 Torr und 90° über $P_{2}O_{5}$ getrocknet, Gewichtsverlust 2.2%. Einwaage im Schweinchen.

$$C_{30}H_{46}O_8$$
 (534,67) Ber. C 67,49 H 8,67% Gef. C 67,86 H 9,00%

Das UV.-Absorptionsspektrum in Alk zeigte ein Maximum bei 215 m μ (log $\varepsilon=4,09$) und eine schwache Schulter zwischen 260 und 290 m μ (Fig. 16). Das IR.-Absorptionsspektrum wurde in CH₂Cl₂ (vgl. Fig. 18) und in KBr aufgenommen. Bei 8,1 μ (Acetoxygruppe) ist keine Bande feststellbar. Die Färbungen mit 84-proz. H₂SO₄ sind mit denjenigen von Nerigosid (XVI) identisch.

Einwirkung von konz. HCl auf Subst. B. 2,5 mg Adigosid (Smp. 128-140°) wurden bei 0° in N_2 -Atmosphäre in 0,03 ml konz. HCl gelöst und 2 Std. bei 0° stehengelassen. Die übliche Aufarbeitung bei 0° lieferte 1,40 mg schwach gelbes Öl, von dem sofort ein UV.-Absorptionsspektrum in Alk aufgenommen wurde (vgl. Nr. 3 in Fig. 15).

Milde saure Hydrolyse *8) von Subst. B. Das Genin (1,2 mg, amorph) hatte im Pchr. (System: Be/Fmd) denselben Rf-Wert wie das Δ^{7} -Adynerigenin vom Smp. 238-242°, $[\alpha]_{D}=+29^{\circ}$ (Me) von Tschesche ¹⁸) 16). Der Zucker (0,5 mg gelblicher Sirup) lief im Pchr. 88) gleich wie Diginose (vgl. Nr. 2 in Fig. 22 und 23).

Subst. $\gamma = Digistrosid$. Aus An-Ae Gallerte, die beim Anreiben kristallin wurde (unregelmässige, farblose Platten). Doppel-Smp. 172°/205–208° (Umwandlung in Nadeln). [α] $_{\rm D}^{33} = -16.6 \pm 2$ ° (c = 1,23 in Me).

```
C<sub>30</sub>H<sub>46</sub>O<sub>7</sub> (518,7) Ber. C 69,46 H 8,94% Gef. C 69,29 H 8,99%
```

Das UV.-Spektrum in Alk weist nur ein Maximum bei 217 m μ (log $\varepsilon=4,20$) auf (vgl. Kurve γ in Fig. 15).

Milde saure Hydrolyse von Subst. γ . 1,4 mg roher Geninteil 98) gaben aus An-Ae 1,2 mg farblose Prismen, Smp. 240–250°. Farbreaktion mit 84-proz. H_2SO_4 und Laufstrecke im Pchr. (System: Be-Chf-(7:5)/Fmd) gleich wie bei Digitoxigenin. Das IR.-Spektrum in CH_2Cl_2 war mit demjenigen von Digitoxigenin identisch (vgl. Fig. 19).

Der Zucker (0,5 mg farbloser Sirup) wurde im Pchr. 88) mit Sarmentose identifiziert (vgl. Nr. 3 in Fig. 22 und 23).

Subst. C = Oleandrin. Aus An-Ae farblose Prismen, Smp. 242–246°, $[\alpha]_D^{25} = -48.2 \pm 2^\circ$ (c = 1,23 in Me). Misch-Smp. mit authentischem Oleandrin («Folinerin», Smp. 248–251°, aus Oleanderblättern) ohne Depression. Auch die Farbreaktionen mit 84-proz. H_2SO_4 und SbCl₃-Reagens waren identisch. Vgl. auch Tab. 3. Der Vergleich im Pchr. erfolgte im System von Fig. 6.

Subst. $\delta = Cryptograndosid A$. Aus An-W farblose Nadeln, Smp. 115-120°; $[\alpha]_2^{24} = -31.2 \pm 2^\circ$ (c = 1,49 in Me). Misch-Smp. mit einer authentischen Probe von Cryptograndosid A (Smp.

⁹⁸⁾ Siehe Einleitung zum experimentellen Teil.

112–120°) aus Cryptostegia grandiflora 48) ohne Depression. Die Farbreaktionen mit 84-proz. H_2SO_4 und mit $SbCl_3$ -Lösung waren gleich, ebenso die Laufstrecken im Pchr. (System von Fig. 6). Unser Präparat zeigte ebenso wie das authentische Material noch einen schwachen, etwas kürzer laufenden Fleck, welcher von der entsprechenden 16-Anhydro-desacetyl-Verbindung (= Subst. D) herrührte.

Acetylierung von Subst. δ . 12 mg Subst. δ (Smp. 115–120°) wurden in 0,12 ml Py und 0,10 ml (Ac)₂O gelöst und 48 Std. bei 20° stehengelassen. Die übliche Aufarbeitung gab 12,6 mg neutrales Rohprodukt, das amorph blieb. Es wurde mit ebenfalls amorphem, entsprechendem Material aus Cryptostegia grandiflora⁴⁸) im Pchr. (System: Be-Cy-(1:1)/Fmd) verglichen. Beide Stoffe hatten denselben Rf-Wert.

Subst. D=16-Anhydro-desacetyl-cryptograndosid A. Aus An-Ae farblose Körner, Smp. 230–232°, $[\alpha]_D^{25}=+48.0\pm2^\circ$ (c = 1,24 in Me). Authentisches 16-Anhydro-desacetyl-cryptograndosid A aus Cryptostegia grandiflora 48) sowie die Mischprobe schmolzen gleich. Auch die Farbreaktionen mit 84-proz. H_2SO_4 und mit $SbCl_3$ -Reagens sowie die Laufstrecken im Pchr. (System von Fig. 6) waren gleich.

Das UV.-Spektrum in Alk zeigte ein Maximum bei 270 m μ (log $\varepsilon = 4,20$) und eine schwache Schulter zwischen 215 und 230 m μ (vgl. Kurve D in Fig. 15). IR.-Spektrum in KBr vgl. Fig. 20.

Acetylierung von Subst. D. 10 mg Subst. D (Smp. 230–232°) wurden in 0,1 ml Py und 0,07 ml (Ac)₂O gelöst und 48 Std. bei 20° stehengelassen. Die übliche Aufarbeitung gab 11,2 mg Neutralprodukt. Aus Ae-Pentan 7,4 mg farblose Blättchen, Smp. 225–230°, $[\alpha]_D^{26} = +41,2 \pm 4$ ° (c = 0,65 in Chf). Misch-Smp. mit authentischem Acetylderivat (Smp. 223–228°) aus Cryptostegia grandi-flora 48) ohne Depression; auch die Laufstrecken beider Präparate im Pchr. waren gleich (System: Be-Cy-(1:1)/Fmd).

Subst. $E = Odorosid\ A$. Aus An-Ae farblose Nadelbüschel, Doppel-Smp. 180–185°/200–206°, $[\alpha]_D^{22} = -5.9 \pm 2^\circ$ (c = 1.02 in Chf), $[\alpha]_D^{25} = -4.3 \pm 2^\circ$ (c = 1.16 in Me). Misch-Smp. mit authentischem Odorosid A (Smp. 182–196°) aus Nerium odorum Sol⁴⁹) ohne Depression. Farbreaktionen mit 84-proz. H_2SO_4 und mit SbCl₃-Reagens bei beiden Präparaten gleich, ebenso die Laufstrecken im Pchr. (System: Be/Fmd, 4 Std.).

Subst. F = Nerigosid. Aus Di-Ae farblose, unregelmässige Platten, Smp. 155–163°, $[\alpha]_D^{23} = -17.0 \pm 1.5^\circ$ (c = 1.59 in Me).

$$C_{32}H_{48}O_9 + C_4H_8O_2$$
 (664,7) Ber. C 65,03 H 8,48% Gef. C 64,96 H 8,66%

Das UV.-Absorptionsspektrum in Alk zeigte nur ein Maximum bei 216 m μ (log ε = 4,22, ber. auf M = 664,7) (vgl. Kurve F in Fig. 28). Farbreaktion mit 84-proz. H₂SO₄ vgl. Tab. 21.

Milde saure Hydrolyse von Subst. F. 2 mg Subst. F (Smp. 155–163°) wurden wie üblich mit 0,05-n. H₂SO₄ hydrolysiert. Das Genin (1,5 mg, roh) zeigte im System Be-Chf-(7:5)/Fmd, 5 Std., dieselbe Laufstrecke wie Oleandrigenin. Der Zucker (0,6 mg fast farbloser Sirup) wurde im Pchr. 88) mit Diginose identifiziert (Systeme von Fig. 22 und 23).

Abspallung von AcOH aus Subst. F auf Al_2O_3 . 2,0 mg farbloser Kristallmutterlaugenrückstand der Subst. F (zeigte im Papier nur einen Fleck, der im UV.-Licht nicht sichtbar war) wurden in wenig Be-Chf-(1:1) gelöst und in eine aus 200 mg alkalifreiem Al_2O_3 bereitete Säule eingeschwemmt. Nach 48 Std. wurde mit Chf erschöpfend eluiert und der erhaltene farblose Schaum (1,2 mg, amorph) im Pchr. (System von Fig. 6, 6 Std.) geprüft. Das Chromatogramm zeigte neben dem F-Fleck einen neuen, wenig kürzer laufenden Fleck, der UV.-Licht stark absorbierte und denselben Rf-Wert hatte wie die Subst. G. Das UV.-Absorptionsspektrum des Rohproduktes zeigte ein Maximum bei 216 m μ (log $\varepsilon=4$,11 ber. auf 576) und ein zweites bei 272 m μ (log $\varepsilon=3$,52 ber. auf 516). Dies entspricht ca. 78% Subst. F und 19% Subst. G (vgl. Kurve 1 in Fig. 28).

Verseifung von Subst. F mit KHCO₃. 2 mg farbloser Kristallmutterlaugenrückstand der Subst. F wurden in 0,5 ml Mc gelöst, mit 0,05 ml einer Lösung von 50 mg KHCO₃ in 1 ml W vermischt und 10 Tage bei 20° stehengelassen. Dann wurde im Vakuum zur Trockne eingedampft, der Rückstand mit 0,1 ml Chf versetzt, zentrifugiert und 0,01 ml der überstehenden Lösung papierchromatographisch geprüft (System: Be-Chf-(7:5)/Fmd). Subst. F war nur noch in Spuren nachweisbar. Dafür trat ein neuer, viel langsamer laufender Fleck auf, der im UV.-Licht nicht sichtbar war und dieselbe Laufstrecke besass wie Subst. N.

Subst. G=16-Anhydro-desacetyl-nerigosid. Aus An-Ae farblose Prismen, Smp. 182–186°. $[\alpha]_D^{25}=+55.6\pm3^\circ$ (c = 0.8 in Me).

 $C_{30}H_{46}O_8$ (534,67) Ber. C 67,39 H 8,67% Gef. C 67,55 H 8,60%

Das UV.-Spektrum in Alk zeigt das für Δ^{18} -Cardadienolide typische Maximum bei 270 m μ (log $\varepsilon=4,30$, ber. auf M = 534,7) (vgl. Kurve G in Fig. 28). Farbreaktionen mit 84-proz. H₂SO₄ vgl. Tab. 21.

Milde saure Hydrolyse von Subst. G. 2 mg Subst. G (Smp. 180–184°) gaben 1,1 mg krist. Genin, Smp. 220–225°. Misch-Smp. mit 16-Anhydro-gitoxigenin (Smp. 218–222°) (Herstellung vgl. weiter unten) ohne Depression; beide Präparate hatten im System von Fig. 3 denselben Rf-Wert. Der Zucker (0,5 mg Sirup) konnte im Pchr. in 2 Systemen mit Diginose identifiziert werden. Systeme: To-Bu-(4:1)/W und To-MeK-(1:1)/W, je 20 Std. Laufzeit.

Subst. H=Digitoxigenin. Aus An-Ae farblose, gut ausgebildete Prismen, Smp. 246–253°, $[\alpha]_D^{26}=+13.8\pm2^\circ$ (c = 1,01 in Me). Authentisches Digitoxigenin und die Mischprobe schmolzen bei 246–250°. Auch die Farbfolge mit 84-proz. H_2SO_4 und $SbCl_3$ -Lösung waren identisch. Beide Präparate besassen im System Be-Chf-(7:5)/Fmd denselben Rf-Wert.

Subst. I= Oleandrigenin. Aus Me-Ae farblose Körner, Smp. 225–230°, $[\alpha]_D^{24}=-6.9\pm3^\circ$ (c = 0.89 in Me). Die Mischprobe mit authentischem Oleandrigenin (Smp. 223–228°) schmolz ohne Depression. Farbreaktionen mit 84-proz. H_2SO_4 und mit SbCl₃-Reagens und die Laufstrecke im Pchr. (System von Fig. 3) bei beiden Präparaten gleich.

Subst. K = Desacetyl-oleandrin. Aus An farblose Blättchen, Smp. 235–238°, $[\alpha]_D^{26} = -22,2 \pm 2^\circ$ (c = 1,00 in Me).

Milde saure Hydrolyse von Subst. K. 2 mg Subst. K (Smp. 232–236°) gaben 1,1 mg krist. Genin, Smp. 220–230°, Misch-Smp. mit Gitoxigenin (Smp. 220–224°) ohne Depression. Beide Proben hatten identische Farbfolgen mit 84-proz. H₂SO₄ und SbCl₃-Reagens; auch die Laufstrecken im Pchr. waren gleich (System: Chf/Fmd). 0,6 mg Zucker (Sirup) wurde im Pchr. mit Oleandrose identifiziert (Systeme der Fig. 22 und 23).

Subst. L=Desacetyl-cryptograndosid A. Aus Me-Ae farblose Kristalldrusen, Smp. 203–206°, $[\alpha]_D^{24}=-4.6\pm1,5^\circ$ (c = 1,71 in Me). Misch-Smp. mit authentischem Material aus Cryptostegia grandiflora 48) ohne Depression. Auch die Farbreaktionen mit 84-proz. H_2SO_4 sowie die Färbungen mit SbCl₃-Reagens waren gleich. Der Vergleich der Rf-Werte erfolgte im System Be-Chf-(7:5)/Fmd (Laufzeit $4^1/_2$ Std.).

Subst. N= Desacetyl-nerigosid. Aus An-Ae farblose, dünne Blättchen, Smp. 211–216°, $[\alpha]_D^{34}=+9.6\pm1.5^\circ$ (c = 1.54 in Me). Farbreaktionen mit 84-proz. H_2SO_4 vgl. Tab. 21.

 $C_{30}H_{46}O_8$ (534,67) Ber. C 67,39 H 8,67% Gef. C 67,12 H 8,77%

Milde saure Hydrolyse von Subst. N. 2 mg Subst. N (Smp. 211-216°) gaben 1,3 mg krist. Genin, Smp. 215-220°. Misch-Smp. mit Gitoxigenin (Smp. 220-224°) ohne Depression. Farbreaktionen mit 84-proz. H₂SO₄ und SbCl₃-Reagens sowie die Laufstrecke im Pchr. (System Chf/Fmd, 4 Std.) gleich wie bei Gitoxigenin. Der Zucker erwies sich im Pchr. als Diginose. Systeme der Figuren 22 und 23.

Subst. $O=Odorosid\ H$. Aus Me-Ae farblose, zu Rosetten vereinigte Stäbchen. Smp. 228–232°, $[\alpha]_D^{24}=+5.9\pm2^\circ$ (c = 1,32 in Me). Misch-Smp. mit einer authentischen Probe aus Nerium odorum Sol. (Smp. 230–235°) ohne Depression. Farbreaktionen mit 84-proz. H_2SO_4 und $SbCl_3$ -Reagens bei beiden Präparaten gleich; auch die Laufstrecken im Pchr., System Be-Chf-(7:5)/Fmd, Laufzeit 10 Std., waren identisch.

Subst. P = Neritalosid. Aus Di-Ae farblose Nadeln, Smp. 135-140°, $[\alpha]_D^{26} = -11.4 \pm 2^\circ$ (c = 1.05 in Me).

 $C_{32}H_{48}O_{10} + C_4H_8O_2$ (680,6) Ber. C 63,51 H 8,29% Gef. C 63,49 H 8,46%

Das UV.-Spektrum in Alk zeigt nur ein Maximum bei 217 m μ (log $\varepsilon = 4,23$, ber. auf M = 680,6) (vgl. Kurve P in Fig. 29). Farbreaktionen mit 84-proz. H₂SO₄ vgl. Tab. 21.

Abspaltung von AcOH aus Subst. P auf Al_2O_3 . 15 mg amorphe 99) Subst. P (gab im Pchr. nur einen Fleck) wurden mit Chf in eine mit 0,5 g alkalifreiem Al_2O_3 bereitete Säule eingeschwemmt und 40 Std. bei 20° stehengelassen. Dann wurde mit Chf-Me-(96:4) erschöpfend eluiert. Keine der drei getrennt aufgefangenen Fraktionen kristallisierte. Bei der papierchromatographischen Untersuchung der wieder vereinigten Fraktionen zeigte es sich, dass neben dem P-Fleck ein neuer, im UV.-Licht stark absorbierender Fleck entstanden war, dessen Laufstrecke mit derjenigen von Subst. π übereinstimmte (vgl. Fig. 24). Das UV.-Absorptionsspektrum des Eluats zeigte ein Maximum bei 217 m μ (log $\varepsilon=4,00$, ber. auf M = 592) und ein zweites bei 270 m μ (log $\varepsilon=3,37$, ber. auf M = 532) (vgl. Kurve 1 in Fig. 29). Dies entspricht einem Gemisch von ca. 75% Subst. P und 25% Subst. π .

Verseifung von Subst. P mit KHCO₃. 2 mg Subst. P (Smp. 135–140°) wurden, wie bei Beschreibung der Subst. I angegeben, mit wässerig-methanolischem KHCO₃ verseift. Bei der papier-chromatographischen Untersuchung des Reaktionsprodukts konnte neben wenig Ausgangsmaterial ein Stoff nachgewiesen werden, dessen Laufstrecke gleich war wie diejenige von Strospesid (Subst. Q) (vgl. Fig. 25).

Subst. $\pi=16$ -Anhydro-strospesid. Aus Me-Ae farblose Platten, Smp. 230–240°, $[\alpha]_{\rm D}^{25}=+62.2\pm4^\circ$ (c = 0,69 in Me). Misch-Smp. mit authentischen Proben aus Strophanthus boivinii Baill. ¹⁰⁰) und Adenium multiflorum ⁵²) (Smp. 238–242°) ohne Depression. Die Farbreaktionen mit 84-proz. H₂SO₄ und SbCl₃-Lösung sowie die Laufstrecken im Pchr. (System Chf/Fmd, 4 Std.) waren bei beiden Präparaten identisch. Das UV.-Spektrum in Alk zeigte nur ein Maximum bei 270 m μ (log $\varepsilon=4,19$, berechnet auf M=532,7) (vgl. Fig. 29). Das IR.-Spektrum von Subst. π stimmte mit demjenigen von 16-Anhydro-strospesid überein (vgl. Fig. 21).

Subst. $\varrho=Gitoxigenin$. Aus Mc-Ae farblose Blättchen, Smp. 224–230°, $[\alpha]_D^{26}=+28.0\pm2^\circ$ (c = 0,92 in Me). Misch-Smp. mit authentischem Gitoxigenin (Smp. 225–230°) ohne Depression. Die Farbreaktionen mit 84-proz. H_2SO_4 und mit SbCl $_3$ -Lösung sowie die Laufstrecken im Pchr. (System Chf/Fmd, 4 Std.) waren identisch.

Subst. Q=Strospesid. Aus Mc-Ac farblose Stäbchen, Smp. $246-250^{\circ}$, $[\alpha]_D^{24}=+17.0^{\circ}\pm2^{\circ}$ (c = 1,18 in Me). Smp. und Misch-Smp. mit authentischem Material aus Nerium odorum Sol. ¹⁰¹) und Adenium multiflorum ⁵²)⁵⁴) waren gleich, ebenso die Farbreaktionen mit 84-proz. H_2SO_4 und SbCl₃-Reagens und die Laufstrecken im Pchr. (System: Chf/Fmd, 12 Std.).

Zu Vergleichszwecken wurden noch die folgenden Substanzen hergestellt:

16-Anhydro-desacetyl-oleandrin 48) 102). Oleandrin wurde nach bekannter Vorschrift 48) durch Kontakt mit Al $_2$ O $_3$ in 16-Anhydro-desacetyl-oleandrin übergeführt. Das Produkt kristallisierte in farblosen Nadeln, Smp. 228–232°, $[\alpha]_2^{24} = +20.8 \pm 3^\circ$ (c = 0,7 in Me). Im Pchr. lief es nur schr wenig langsamer als Oleandrin, konnte aber im UV.-Licht eindeutig als Δ^{16} -Butenolid erkannt werden (vgl. Fig. 26). Das UV.-Absorptionsspektrum in Alk zeigte nur ein Maximum bei 271 m μ (log $\varepsilon = 4.29$, berechnet auf M = 516,7) (vgl. Kurve 2 in Fig. 15).

 $16\text{-}Anhydro\text{-}gitozigenin^{73})^{102})$ (VIII). 4 mg 16-Anhydro-desacetyl-oleandrin (Smp. 228–232°) wurden wie üblich mit 0,05-n. H_2SO_4 hydrolysiert und gaben aus An-Ae 2,1 mg Prismen, Smp. 218–222°. Die Laufstrecke dieser Substanz im Pchr. lag zwischen denjenigen von Oleandrigenin und Desacetyl-oleandrin (vgl. Fig. 27).

14-Anhydro-di-O-acetyl-gitoxigenin ¹⁴) (X). 50 mg Di-O-acetyl-gitoxigenin (Smp. 240-244°) (VII) wurden in 0,6 ml Py gelöst, auf -15° abgekühlt, mit 0,06 ml vorgekühltem, destilliertem Thionylchlorid versetzt und in eine 2 ml fassende Ampulle eingeschmolzen. Nach 25 Min. bei -15° wurde die gelbe Lösung, in der sich wenig farblose Nadeln abgeschieden hatten, mit wenig Eis versetzt, in Chf-Ac aufgenommen und wie üblich aufgearbeitet. Es resultierten 46,3 mg weisser Schaum, welcher aus Ae 27,9 mg Sternchen gab. Beim Erwärmen setzte bei 80° Zer-

 $^{^{99})}$ Bei Durchführung dieses Versuches war es uns noch nicht gelungen, die Subst. Pzu kristallisieren.

¹⁰⁰⁾ O. Schindler & T. Reichstein, Helv. 35, 643 (1952).

¹⁰¹⁾ W. RITTEL, A. HUNGER & T. REICHSTEIN, Helv. 36, 434 (1953).

¹⁰²) G. Hesse, Chem. Ber. **70**, 2264 (1937).

platzen der Kristalle ein. Die Substanz besitzt einen Doppel-Smp. 158–160°/187–190°, $[\alpha]_D^{24}$ = +127,4 \pm 2° (c = 1,03 in Me). Sie war papierchromatographisch einheitlich. Zur Analyse wurde 6 Std. bei 100° und 0,01 Torr über P_2O_5 getrocknet (Gewichtsverlust 7,3%).

 $C_{27}H_{36}O_6$ (456,5) Ber. C 71,02 H 7,95% Gef. C 70,97 H 8,25%

Das UV.-Absorptionsspektrum in Alk steht mit dem Vorliegen einer isolierten Doppelbindung neben dem Cardenolidring in Einklang (vgl. Kurve 1 in Fig. 15). Das Präparat enthält höchstens Spuren von 14,16-Dianhydro-O-acetyl-gitoxigenin.

Die Mikroanalysen wurden im Mikroanalytischen Laboratorium (Leitung Herr E. THOMMEN) unseres Instituts ausgeführt.

SUMMARY

By the use of absorption, partition and paper chromatography as well as counter-current distribution 18 pure crystalline cardenolides $(B, \gamma, C, \delta, D, E, F, G, H, I, K, L, N, O, P, \pi, \varrho$ and Q) and a further crystalline Kedde-positive compound (A) were isolated after fermentation of the seeds of Nerium oleander L. The compounds H, I and ϱ were identified with known genins; namely Digitoxigenin (H), Oleandrigenin (I) and Gitoxigenin (ϱ) . Of the remaining 15 compounds, 14 were found to be glycosides composed of the 4 genins H, I, ϱ and 16-Anhydro-gitoxigenin with the following sugars: L-Oleandrose, D-Diginose, D-Sarmentose and D-Digitalose. 10 of these glycosides have previously been isolated in pure form. They are: Digistroside (γ) , Oleandrin (C), Cryptograndoside A (δ) , 16-Anhydro-desacetyl-cryptograndoside A (D), Odoroside A (E), Desacetyl-oleandrin (K), Desacetyl-cryptograndoside A (L), Odoroside H (O), 16-Anhydro-strospeside (π) and Strospeside (Q). The other 4 are new compounds whose structures were elucidated and which were named as follows: Nerigoside (F), 16-Anhydro-desacetyl-nerigoside (G), Desacetyl-nerigoside (N) and Neritaloside (P).

The structure of substance B has not yet been fully determined. It was named Adigoside. It is possibly closely related to Adynerin in structure.

Substance A is most probably a conjugated dienone.

Nine other Kedde-positive compounds were detected by paper chromatography, three of which (α, β, P_1) were present in very small concentrations. The other 6 compounds (R, S, T, U, V and W) were not examined individually. They are probably diglycosides composed of some of the mentioned 18 cardenolides with one molecule of D-glucose. The corresponding spots in the paper chromatograms disappeared or diminished greatly after fermentation with the crude glucosidases from the seeds of Adenium multiflorum.

Organisch-chemische Anstalt der Universität Basel