Tetrahedron 69 (2013) 3907-3912

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A method for the regioselective synthesis of 1-alkyl-1H-indazoles

ABSTRACT

Han-Jun Liu^a, Shiang-Fu Hung^a, Chuan-Lin Chen^b, Mei-Huey Lin^{a,*}

^a Department of Chemistry, National Changhua University of Education, Changhua 50007, Taiwan ^b Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan

ARTICLE INFO

Article history: Received 2 January 2013 Received in revised form 6 March 2013 Accepted 9 March 2013 Available online 14 March 2013

Keywords: Regioselective Indazoles 2-Halobenzonitriles N-Alkylhydrazines Deamination

1. Introduction

The indazole ring system is recognized to be a highly effective pharmacophore in medicinal chemistry as well as being the core of important nitrogen-containing heterocycles that show a broad range of biological activities, such as nitric oxide synthase¹ and HIV protease² inhibitors, anti-inflammatory,³ antitumor,⁴ and anti-cancer⁵ agents, and serotonin 5-HT3 receptor antagonists.⁶ A variety of methods for the preparation of indazoles have been reported.⁷ The developed approaches include diazotization of 2-alkylaniline derivatives followed by cyclization under basic conditions,⁸ base promoted cyclization of (*o*-alkylaryl)azosulfides derived from 2-alkylaniline derivatives,⁹ [3+2] cycloadditions of arynes with diazo compounds or hydrazones,¹⁰ condensation reactions of *o*-haloaryl carbonyls or salicylaldehydes with hydrazine,¹¹ and cyclization reactions of *o*-aminobenzoximes in the presence of bases.¹² Although methods for regioselective synthesis of indazoles have been described,^{12–20} only a few of these are

applicable to the regioselective synthesis of 1-alkyl-1*H*-indazo-les.^{13,14,15b,16,20} Thus, methods for the regioselective synthesis of 1-alkyl-1*H*-indazoles remain in demand.

2. Results and discussion

A method for the regioselective synthesis of 3-unsubstituted 1-alkyl-1H-indazoles, starting with 2-

halobenzonitriles and N-alkylhydrazines, is described. The two-step reaction pathway proceeds

through the intermediacy of 1-alkyl-3-amino-1H-indazoles followed by reductive deamination.

As a part of a recent research effort, we required 3-unsubstituted 1-alkyl-1*H*-indazoles as synthetic intermediates. The most straightforward route to access these substances involves treatment of 3-unsubstituted 1*H*-indazoles with alkylating agents. However, the regiochemistry of these processes is highly dependent on the nature of alkylating agent and, in general, mixtures of *N*-1 and *N*-2 alkylated products are typically produced (Eq. 1). For example, methylation of 5-nitro-1*H*-indazole using iodomethane (NaH, THF, 0 °C, 2 h) results in formation of a mixture of 5-nitro-1-methyl-1*H*- and 5-nitro-2-methyl-2*H*-indazoles in a 55:45 ratio. Moreover, varying the solvent, temperature and base employed in this reaction failed to improve the selectivity.

A common method for the preparation of 3-substituted 1-alkyl-1*H*-indazoles involves cyclization of an arylhydrazone, derived

ISEVIER

© 2013 Elsevier Ltd. All rights reserved.

^{0040-4020/\$ —} see front matter \odot 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.03.042

from reaction of an arylketone possessing a leaving group in the *ortho*-position with an alkylhydrazine.^{14,16} We envisioned that 3unsubstituted 1-alkyl-1*H*-indazoles could be generated utilizing an analogous process in which an arylketone is replaced by an arylaldehyde. However, treatment of methylhydrazine and a mesylate, derived from reaction of 5-bromo-2-hydroxy-benzaldehyde with mesyl chloride, in refluxing xylene in the presence of NH₄OAc for 3 h gave only the corresponding hydrazone product, and an increase in the time for this reaction to 14 h resulted in the formation of multiple products.

Owing to these observations, our attention turned to the use of other substrates. 3-Aminoindazoles, obtained by using a variety of methods,^{21–23} are known to have valuable biological activities in several therapeutic areas.²⁴ Wheeler et al. described a procedure for the regioselective synthesis of 3-amino-1-methyl-1*H*-indazoles utilizing reactions of 2-fluorobenzonitriles with methylhy-drazine.²⁰ We hypothesized that this process, when coupled with the novel reductive deamination reaction of arylamines that produces aromatic hydrocarbons described by Doyle and Piccionello et al.,^{24,25} would serve as a regioselective two-step method for the preparation of 3-unsubstituted 1-alkyl-1*H*-indazoles. The viability of this proposal was demonstrated in the studies described below.

As the results displayed in Scheme 1 and Table 1 show, reactions of members of a series of 2-halobenzonitriles, containing either electron-donating or -withdrawing groups, with methylhydrazine in ethanol efficiently produce the corresponding 3-amino-1methyl-1*H*-indazoles **2**. Reductive deamination reactions of the 3amino-1-methyl-1*H*-indazole products **2** with *tert*-butyl nitrite in either CHCl₃, DMF or THF generated 3-unsubstituted-1-methyl-1*H*indazoles **3** in high yields. It should be noted that the deamination reaction of 3-amino-1-methyl-5-nitro-1*H*-indazole (**2e**) in THF or CHCl₃ gave a product that was expected to be 1-methyl-5-nitro-1*H*indazole (**3e**). In order to confirm its structure, this substance was subjected to catalytic hydrogenation, which yielded 1-methyl-5amino-1*H*-indazole.

4. Experimental section

4.1. General

All commercially available chemicals were used without further purification. TLC analyses were run on a TLC glass plate (Silica gel 60 F_{254}) and were visualized using UV and a solution of phosphomolybdic acid in ethanol (5 wt %) or *p*-anisaldehyde stain. Flash chromatography was performed using silica gel (70–230 mesh). ¹H and ¹³C NMR spectra were recorded on a 300 MHz spectrometer. Chemical shifts are reported relative to CHCl₃ [$\delta_{\rm H}$ 7.24, $\delta_{\rm C}$ (central line) 77.0]. Mass spectra were recorded under fast atom bombardment (FAB) or electron impact ionization (EI) conditions. Highresolution mass spectra were recorded by electron impact ionization with a magnetic sector analyzer.

4.2. Synthesis

4.2.1. General procedure for synthesis of 3-amino-1-methyl-1H-indazole **2**. A mixture of benzonitrile **1** (10.0 mmol) and methylhydrazine (2.8 mL, 50.0 mmol) in EtOH (10.0 mL) was heated to reflux overnight. The mixture was cooled to rt and then concentrated. H₂O (10.0 mL) and EtOAc (20.0 mL) were added to the residue. The organic layer was washed with H₂O (10.0 mL), brine (10.0 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was subjected to silica-gel chromatography by using EtOAc/hexanes (1:1) as eluent to give the product **2**.

4.2.1.1. 1-Methyl-1H-indazol-3-ylamine (**2a**). As described in the general procedure, reaction of 2-fluorobenzonitrile **1a** (1.21 g, 10.0 mmol) and methylhydrazine (2.8 mL, 50.0 mmol) in EtOH (10.0 mL) afforded the title compound (1.35 g, 92%). Solid (EtOAc/hexanes=3:1), mp 94–95 °C; TLC (EtOAc/hexanes (1:1)) R_{f} =0.2; ¹H NMR (300 MHz, CDCl₃) δ 3.79 (s, 3H), 4.13 (br s, 2H), 6.96 (dd, *J*=8.6, 7.2 Hz, 1H), 7.15 (d, *J*=8.6 Hz, 1H), 7.30 (dd, *J*=8.0, 7.2 Hz, 1H), 7.47 (d, *J*=8.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 34.6 (CH₃), 108.5 (CH),

Scheme 1. Regioselective synthesis of 1-methyl-1H-indazoles via 1-methyl-3-amino-1H-indazoles.

In order to determine if this methodology is suitable for the preparation of other 1-alkyl-1*H*-indazoles, reactions of ethyl hydrazine and benzyl hydrazine with the respective benzonitriles **1b** and **1e** were examined. As the results displayed in Scheme 2 show, application of the two-step procedure gave the corresponding 1-ethyl- (**3j**) and 1-benzyl- (**3i**) 1*H*-indazoles in high yields. Other hydrazines, such as phenylhydrazine (Ph–NH–NH₂) and isopropylhydrazine (Me₂CH–NH–NH₂) were examined and both reactions gave a mixture of multiple products. Based on the results, a plausible mechanism is proposed and shown in Scheme 3.

3. Conclusion

In summary, the study described above has resulted in the development of an alternative, two-step method for the regioselective synthesis of 3-unsubstituted 1-alkyl-1*H*-indazoles starting with *N*-alkylhydrazines and 2-halobenzonitriles.

114.3 (C), 118.2 (CH), 119.4 (CH), 126.7 (CH), 141.3 (C), 146.9 (C); MS m/z (rel intensity) 148 (M⁺+H, 100), 133 (5). These data are in agreement with those reported in the literature.²⁶

4.2.1.2. 4-Fluoro-1-methyl-1H-indazol-3-amine (**2b**). As described in the general procedure, reaction of 2,6-difluorobenzonitrile **1b** (1.39 g, 10.0 mmol) and methylhydrazine (2.8 mL, 50.0 mmol) in EtOH (10.0 mL) afforded the title compound (1.42 g, 86%). Solid (EtOAc/hexanes=1:1), mp 125–126 °C; TLC (EtOAc/hexanes (1:1)) R_{f} =0.2; IR (neat) 3438, 3308, 3206, 1634 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.77 (s, 3H), 4.12 (br s, 2H), 6.54 (dd, *J*=9.0, 6.0 Hz, 1H), 6.88 (d, *J*=6.0 Hz, 1H), 7.18 (m, 1H); ¹³C NMR (75 MHz, CD₃OD) δ 35.0 (CH₃), 102.7 (CH), 104.6 (CH), 128.2 (CH), 144.0 (C), 145.5 (C), 155.1 (C), 158.4 (C); MS *m/z* (rel intensity) 165 (M⁺, 100), 122 (28); HRMS [M]⁺ for C₈H₈N₃: 165.0702, found 165.0708.

4.2.1.3. 5-Fluoro-1-methyl-1H-indazol-3-amine (**2c**). As described in the general procedure, reaction of 2,5-difluorobenzonitrile

Table 1

Regioselective synthesis of 1-methyl-3-amino-1H-indazoles and 1-methyl-1H-indazoles

^a Isolated yield.

1c (1.39 g, 10.0 mmol) and methylhydrazine (2.8 mL, 50.0 mmol) in EtOH (10.0 mL) afforded the title compound (1.32 g, 80%). Solid (EtOAc), mp 76–77 °C; TLC (EtOAc/hexanes (1:2)) R_{f} =0.13; IR (neat) 3363, 3187, 1532, 1228 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.79 (s, 3H), 3.85 (br s, 2H), 7.06–7.13 (m, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 34.9 (CH₃), 103.5 (CH), 109.5 (CH), 113.7 (C), 116.1 (CH), 138.5 (C), 146.6 (C), 154.8 (C), 158.0 (C); MS *m*/*z* (rel intensity) 165 (M⁺, 100), 147 (16); HRMS [M]⁺ for C₈H₈FN₃: 165.0702, found 165.0696.

4.2.1.4. 5-Iodo-1-methyl-1H-indazol-3-amine (**2d**). As described in the general procedure, reaction of 2-fluoro-5-iodobenzonitrile **1d** (2.47 g, 10.0 mmol) and methylhydrazine (2.8 mL, 50.0 mmol) in EtOH (10.0 mL) afforded the title compound (2.52 g, 92%). Solid (EtOAc), mp 151–152 °C; TLC (EtOAc/hexanes (1:1)) R_f =0.2; IR (neat) 3418, 3280, 3178, 1648 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 3.74 (s, 3H), 5.58 (s, 2H), 7.21 (d, *J*=8.7 Hz, 1H), 7.49 (dd, *J*=8.7, 1.5 Hz, 1H), 8.16 (s, 1H); ¹³C NMR (75 MHz, CD₃OD) δ 35.5 (CH₃), 80.4 (C), 112.0 (CH), 117.7 (C), 130.1 (CH), 134.8 (CH), 140.8 (C), 148.4 (C); MS *m/z* (rel intensity) 273 (M⁺, 100), 258 (3); HRMS [M]⁺ for C₈H₈IN₃: 272.9763, found 272.9760.

4.2.1.5. 1-Methyl-5-nitro-1H-indazol-3-ylamine (**2e**). As described in the general procedure, reaction of 2-fluoro-5-nitrobenzonitrile **1e** (1.66 g, 10.0 mmol) and methylhydrazine (2.8 mL, 50.0 mmol) in EtOH (10.0 mL) afforded the title compound (1.81 g, 94%). Solid (EtOH), mp 226–227 °C; TLC (EtOAc/hexanes (1:1)) R_{f} =0.2; IR (neat) 3336, 3194, 1616, 1329 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 3.83 (s, 3H), 6.14 (br s, 2H), 7.47 (d, J=9.4 Hz, 1H), 8.11 (dd, J=9.4, 2.1 Hz, 1H), 8.90 (d, J=2.1 Hz, 1H); ¹³C NMR (75 MHz, DMSO- d_6) δ 35.9 (CH₃), 110.0 (CH), 114.5 (C), 120.7 (CH), 122.3 (CH), 139.6 (C), 143.0 (C), 152.4 (C); MS m/z (rel intensity) 193 (M⁺+1, 100), 163 (60). These data are in agreement with those reported in the literature.²¹ⁱ

4.2.1.6. 4-Methoxy-1-methyl-1H-indazol-3-ylamine (**2f**). As described in the general procedure, reaction of 2-fluoro-6-methoxybenzonitrile **1f** (1.51 g, 10.0 mmol) and methylhydrazine (2.8 mL, 50.0 mmol) in EtOH (10.0 mL) afforded the title compound (1.61 g, 91%). Solid (EtOAc), mp 139–140 °C; TLC (EtOAc/hexanes (1:1)) R_f =0.2; IR (neat) 3428, 3298, 3178, 1615 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.75 (s, 3H), 3.90 (s, 3H), 4.38 (br s, 2H), 6.25 (d, *J*=7.5 Hz, 1H), 6.71 (d, *J*=8.4 Hz, 1H), 7.17 (dd, *J*=8.4, 7.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 34.8 (CH₃), 55.2 (CH₃), 97.3 (CH), 101.5 (CH), 105.2 (C), 128.4 (CH), 143.4 (C), 147.4 (C), 155.1 (C); MS *m/z* (rel intensity) 177 (M⁺, 100), 162 (20); HRMS [M]⁺ for C₉H₁₁N₃O: 177.0902, found 177.0896.

4.2.1.7. 1,5-Dimethyl-1H-indazol-3-ylamine (**2g**). As described in the general procedure, reaction of 2-fluoro-5-methylbenzonitrile **1g** (1.35 g, 10.0 mmol) and methylhydrazine (2.8 mL, 50.0 mmol) in EtOH (10.0 mL) afforded the title compound (1.45 g, 90%). Solid (EtOAc), mp 149–150 °C; TLC (EtOAc/hexanes (1:1)) R_f =0.2; IR

Scheme 2. Regioselective synthesis of 1-alkyl-1H-indazoles via 1-alkyl-3-amino-1H-indazoles.

Scheme 3. Plausible mechanism.

(neat) 3448, 3289, 3180, 2364 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.39 (s, 3H), 3.72 (s, 2H), 3.78 (s, 3H), 7.07 (d, *J*=8.4 Hz, 1H), 7.14 (d, *J*=8.4 Hz, 1H), 7.26 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.08 (CH₃), 34.8 (CH₃), 108.3 (CH), 114.6 (C), 118.5 (CH), 172.7 (C), 128.9 (CH), 140.33 (C), 146.3 (C); MS *m*/*z* (rel intensity) 161 (M⁺, 100), 160 (48); HRMS [M]⁺ for C₉H₁₁N₃: 161.0953, found 161.0961.

4.2.1.8. 4-*Chloro-1-methyl-1H-indazol-3-amine* (**2h**). As described in the general procedure, reaction of 2-chloro-6-fluorobenzonitrile **1h** (1.55 g, 10.0 mmol) and methylhydrazine (2.8 mL, 50.0 mmol) in EtOH (10.0 mL) afforded the title compound (1.70 g, 94%). Solid (EtOAc/hexanes=1:2), mp 131–132 °C; TLC (EtOAc/hexanes (1:2)) R_{f} =0.2; IR (neat) 3438, 3299, 1616, 1542 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.76 (s, 3H), 4.49 (br s, 2H), 6.85 (d, *J*=8.4 Hz, 1H), 7.00 (d, *J*=8.4 Hz, 1H), 7.13 (t, *J*=8.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 34.8 (CH₃), 107.3 (CH), 111.5 (C), 118.3 (CH), 126.6 (C), 127.4 (CH), 142.4 (C), 146.8 (C); MS *m/z* (rel intensity) 181 (M⁺, 100), 138 (25); HRMS [M]⁺ for C₈H₈ClN₃: 181.0407, found 181.0400.

4.2.1.9. 1-Benzyl-5-nitro-1H-indazol-3-amine (**2i**). As described in the general procedure, reaction of 2-chloro-5-nitrobenzonitrile **1e** (0.91 g, 5.0 mmol), Et₃N (5.06 g, 50.0 mmol) and benzyl hydrazine HCl (2.93 g, 15.0 mmol) in EtOH (20.0 mL) afforded the title compound (1.07 g, 80%). Solid (EtOAc), mp 253–254 °C; TLC (EtOAc/ hexanes (1:2)) R_{f} =0.18; IR (neat) 3428, 1597, 1468, 1329 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 5.44 (s, 2H), 6.19 (s, 2H), 6.66 (d, J=9.3 Hz, 1H), 7.24–7.37 (m, 5H), 8.14 (dd, J=9.3, 2.1 Hz, 1H), 8.94 (d, J=2.1 Hz, 1H); ¹³C NMR (75 MHz, DMSO- d_6) δ 52.3 (CH₂), 110.1 (CH), 114.9 (C), 120.7 (CH), 122.5 (CH), 128.3 (CH), 128.4 (CH×2), 129.4 (CH×2), 138.3 (C), 139.9 (C), 142.9 (C), 152.6 (C); MS m/z (rel intensity) 268 (M⁺, 56), 91 (100); HRMS [M]⁺ for C₁₄H₁₂N₄O₂: 268.0960, found 268.0968.

4.2.1.10. 1-Ethyl-4-fluoro-1H-indazol-3-amine (**2j**). As described in the general procedure, reaction of 2,6-difluorobenzonitrile **1b** (0.70 g, 5.0 mmol), Et₃N (5.06 g, 50.0 mmol) and ethyl hydrazine oxalate (2.25 g, 15.0 mmol) in EtOH (20.0 mL) afforded the title compound (0.75 g, 84%). Solid (EtOAc), mp 64–65 °C; TLC (EtOAc/ hexanes (1:2)) R_{f} =0.45; IR (neat) 3428, 3280, 3201, 1616 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.36 (t, J=7.2 Hz, 3H), 4.11 (q, J=7.2 Hz, 2H), 4.31 (br s, 2H), 6.52 (dd, J=10.5, 7.8 Hz, 1H), 6.88 (d, J=8.4 Hz, 1H), 7.10–7.17 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 14.6 (CH₃), 43.1 (CH₂), 102.3 (CH), 104.5 (CH), 127.7 (CH), 143.1 (C), 145.5 (C), 155.2 (C), 158.5 (C); MS m/z (rel intensity) 179 (M⁺, 88), 164 (100); HRMS [M]⁺ for C₉H₁₀FN₃: 179.0859, found 179.0852.

4.2.2. General procedure for synthesis of indazole **3**. A mixture of 3amino-1-methyl-1*H*-indazole **2** (3.0 mmol) and *tert*-butyl nitrite (1.0 mL, 8.1 mmol, 2.7 equiv) in THF (12.0 mL) was heated to reflux for 1 h. The mixture was cooled to rt and then concentrated. H₂O (10.0 mL) and EtOAc (20.0 mL) were added to the residue. The organic layer was washed with H₂O (10.0 mL), brine (10.0 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was subjected to silica-gel chromatography by using Et₂O/hexanes (1:4) as eluent to give the product **3**.

4.2.2.1. 1-Methyl-1H-indazole (**3a**). As described in the general procedure, reaction of 1-methyl-1H-indazol-3-amine **2a** (0.44 g, 3.0 mmol) and *tert*-butyl nitrite (1.0 mL, 8.1 mmol, 2.7 equiv) in THF (12.0 mL) afforded the title compound (0.34 g, 86%). Solid (EtOAc/hexanes (1:3)), mp 49–50 °C; TLC (EtOAc/hexane (1:4)) R_{f} =0.2; IR (neat) 2947, 1597, 1218, 746 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.05 (s, 3H), 7.11–7.15 (m, 1H), 7.37 (br d, *J*=4.1 Hz, 2H), 7.71 (dd, *J*=8.0, 1.0 Hz, 1H), 7.97 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 35.5 (CH₃), 108.9 (CH), 120.3 (CH), 121.0 (CH), 123.9 (C), 126.1 (CH), 132.6 (CH), 139.7 (C). These data are in agreement with those reported in the literature.²⁰

4.2.2.2. 4-Fluoro-1-methyl-1H-indazole (**3b**). As described in the general procedure, reaction of 4-fluoro-1-methyl-1H-indazol-3-amine **2b** (0.50 g, 3.0 mmol) and *tert*-butyl nitrite (1.0 mL, 8.1 mmol, 2.7 equiv) in THF (12.0 mL) afforded the title compound (0.41 g, 91%). Solid (EtOAc), mp 36–37 °C; TLC (EtOAc/hexanes (1:1)) R_f =0.2; IR (neat) 2919, 1634, 1584, 1506 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.04 (s, 3H), 6.74 (dd, J=10.2, 7.8 Hz, 1H), 7.13 (d, J=8.4, 1.2 Hz, 1H), 7.26–7.30 (m, 1H), 8.02 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 35.8 (CH₃), 104.8 (CH), 114.1 (C), 127.1 (CH), 129.1 (CH), 142.3 (C), 154.1 (C), 157.4 (C); MS m/z (rel intensity) 150 (M⁺, 100), 122 (15); HRMS [M]⁺ for C₈H₇FN₂: 150.0593, found 150.0602.

4.2.2.3. 5-Fluoro-1-methyl-1H-indazole (**3c**). As described in the general procedure, reaction of 5-fluoro-1-methyl-1H-indazol-3-amine **2c** (0.50 g, 3.0 mmol) and *tert*-butyl nitrite (1.0 mL, 8.1 mmol, 2.7 equiv) in THF (12.0 mL) afforded the title compound (0.38 g, 84%). Oil; TLC (EtOAc/hexanes (1:2)) R_f =0.5; IR (neat) 2947, 1505, 1209, 839 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.04 (s, 3H), 7.10–7.17 (m, 1H), 7.28–7.33 (m, 2H), 7.90 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 35.7 (CH₃), 104.7 (CH), 109.9 (CH), 115.6 (CH), 123.7 (CH), 132.6 (C), 136.9 (C), 156.1 (C); MS *m/z* (rel intensity) 150 (M⁺, 100), 122 (21); HRMS [M]⁺ for C₈H₇FN₂: 150.0593, found 150.0599.

4.2.2.4. 5-Iodo-1-methyl-1H-indazole (**3d**). As described in the general procedure, reaction of 5-iodo-1-methyl-1H-indazol-3-amine **2d** (0.82 g, 3.0 mmol) and *tert*-butyl nitrite (1.0 mL, 8.1 mmol, 2.7 equiv) in THF (12.0 mL) afforded the title compound (0.66 g, 85%). Solid (EtOAc), mp 172–173 °C; TLC (EtOAc/hexanes (1:2)) $R_{\rm F}$ =0.4; IR

(neat) 2928, 1666, 1477, 802 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.02 (s, 3H), 7.14 (dd, *J*=8.7 Hz, 1H), 7.56 (dd, *J*=8.7, 1.2 Hz, 1H), 7.86 (s, 1H), 8.04 (d, *J*=1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 35.6 (CH₃), 83.7 (C), 110.7 (CH), 126.3 (C), 129.9 (CH), 131.6 (CH), 134.4 (CH), 138.8 (C); MS *m*/*z* (rel intensity) 258 (M⁺, 100), 131 (26); HRMS [M]⁺ for C₈H₇IN₂: 257.9654, found 257.9658.

4.2.2.5. 1-Methyl-5-nitro-1H-indazole (**3e**). As described in the general procedure, reaction of 1-methyl-5-nitro-1H-indazol-3-amine **2e** (0.58 g, 3.0 mmol) and *tert*-butyl nitrite (1.0 mL, 8.1 mmol, 2.7 equiv) in THF (12.0 mL) afforded the title compound (0.44 g, 83%). Solid (MeOH), mp 161–162 °C; TLC (EtOAc/hexanes (1:4)) R_f =0.2; IR (neat) 3030, 1634, 1496, 1329 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.11 (s, 3H), 7.42 (d, *J*=9.2 Hz, 1H), 8.16 (s, 1H), 8.24 (dd, *J*=9.2, 2.1 Hz, 1H), 8.68 (d, *J*=2.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 36.0 (CH₃), 109.2 (CH), 118.9 (CH), 121.4 (CH), 123.0 (C), 135.6 (CH), 141.5 (C), 142.3 (C). These data are in agreement with those reported in the literature.²⁷

4.2.2.6. 4-Methoxy-1-methyl-1H-indazole (**3f**). As described in the general procedure, reaction of 4-methoxy-1-methyl-1H-indazol-3-amine **2f** (0.53 g, 3.0 mmol) and *tert*-butyl nitrite (1.0 mL, 8.1 mmol, 2.7 equiv) in THF (12.0 mL) afforded the title compound (0.43 g, 88%). An oil; TLC (EtOAc/hexanes (1:4)) R_f =0.2; IR (neat) 2938, 1588, 1496, 1274 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.93 (s, 3H), 4.00 (s, 3H), 6.42 (d, J=7.5 Hz, 1H), 6.92 (d, J=8.4 Hz, 1H), 7.26 (t, J=8.1 Hz, 1H), 8.02 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 35.5 (CH₃), 55.3 (CH₃), 99.2 (CH), 101.6 (CH), 115.8 (C), 127.4 (CH), 130.5 (CH), 141.6 (C), 153.7 (C); MS m/z (rel intensity) 162 (M⁺, 100), 147 (30); HRMS [M]⁺ for C₉H₁₀N₂O: 162.0793, found 162.0789.

4.2.2.7. 1,5-Dimethyl-1H-indazole (**3g**). As described in the general procedure, reaction of 1,5-dimethyl-1H-indazol-3-amine **2g** (0.48 g, 3.0 mmol) and *tert*-butyl nitrite (1.0 mL, 8.1 mmol, 2.7 equiv) in THF (12.0 mL) afforded the title compound (0.36 g, 82%). Solid (EtOAc), mp 60–61 °C; TLC (EtOAc/hexanes (1:4)) R_{f} =0.2; IR (neat) 2920, 2374, 1565, 1218 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.44 (s, 3H), 4.03 (s, 3H), 7.18–7.28 (m, 2H), 7.47 (s, 1H), 7.86 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 21.2 (CH₃), 35.5 (CH₃), 108.5 (CH), 120.0 (CH), 124.4 (C), 128.3 (CH), 129.8 (C), 132.0 (CH), 138.6 (C); MS m/z (rel intensity) 146 (M⁺, 100), 131 (17); HRMS [M]⁺ for C₉H₁₀N₂: 146.0844, found 146.0840.

4.2.2.8. 4-Chloro-1-methyl-1H-indazole (**3h**). As described in the general procedure, reaction of 4-chloro-1-methyl-1H-indazol-3-amine **2h** (0.54 g, 3.0 mmol) and *tert*-butyl nitrite (1.0 mL, 8.1 mmol, 2.7 equiv) in THF (12.0 mL) afforded the title compound (0.42 g, 85%). oil; TLC (EtOAc/hexanes (1:2)) R_{f} =0.5; IR (neat) 3086, 2928, 1616, 1487 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.02 (s, 3H), 7.06 (dd, *J*=8.1, 3.0 Hz, 1H), 7.22–7.23 (m, 2H), 8.01 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 35.7 (CH₃), 107.4 (CH), 119.9 (C), 123.1 (C), 126.4 (C), 126.6 (CH), 131.2 (CH), 140.6 (C). These data are in agreement with those reported in the literature.^{11c}

4.2.2.9. 1-Benzyl-5-nitro-1H-indazole (**3i**). As described in the general procedure, reaction of 1-benzyl-5-nitro-1H-indazol-3-amine **2h** (0.48 g, 3.0 mmol) and *tert*-butyl nitrite (0.84 g, 1.0 mL, 8.1 mmol, 2.7 equiv) in THF (12.0 mL) afforded the title compound (0.68 g, 90%). White solid (EtOAc), mp 125–126 °C; TLC (EtOAc/hexanes (1:2)) R_{f} =0.45; IR (neat) 3122, 2956, 1514, 1329 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.62 (s, 2H), 7.18–7.39 (m, 6H), 8.16–8.22 (m, 2H), 8.70 (d, *J*=2.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 5.36 (CH₂), 109.6 (CH), 118.9 (CH), 121.5 (CH), 123.5 (C), 127.2 (CH×2), 128.3 (CH), 128.9 (CH×2), 135.6 (C), 136.0 (CH), 141.2 (C), 142.4 (C); MS *m/z* (rel intensity) 253 (M⁺, 61), 252 (25); HRMS [M]⁺ for C₁₄H₁₁N₃O₂: 253.0851, found 253.0849.

4.2.2.10. 1-Ethyl-4-fluoro-1*H*-indazole (**3***j*). As described in the general procedure, reaction of 1-ethyl-4-fluoro-1*H*-indazol-3-amine **2i** (0.54 g, 3.0 mmol) and *tert*-butyl nitrite (0.84 g, 1.0 mL, 8.1 mmol, 2.7 equiv) in THF (12.0 mL) afforded the title compound (0.40 g, 81%). Oil; TLC (EtOAc/hexanes (1:4)) R_f =0.55; IR (neat) 2984, 2928, 1588, 1218 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.49 (t, *J*=7.2 Hz, 3H), 4.39 (q, *J*=7.2 Hz, 2H), 6.73 (dd, *J*=9.9, 7.5 Hz, 1H), 7.14 (d, *J*=8.4 Hz, 1H), 7.22–7.29 (m, 1H), 8.03 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 14.8 (CH₃), 44.0 (CH₂), 104.4 (CH), 104.7 (CH), 126.9 (CH), 129.1 (CH), 141.6 (C), 154.2 (C), 157.6 (C); MS *m/z* (rel intensity) 164 (M⁺, 70), 149 (100); HRMS [M]⁺ for C₉H₉FN₂: 164.0750, found 164.0755.

Acknowledgements

Financial support from the National Science Council of the Republic of China, Taiwan is gratefully acknowledged.

Supplementary data

Supplementary data related to this article can be found online at http://dx.doi.org/10.1016/j.tet.2013.03.042.

References and notes

- (a) Lohou, E.; Sopkova, J.; Schumann, P.; Boulouard, M.; Stiebing, S.; Rault, S.; Collot, V. Bioorg. Med. Chem. 2012, 20, 5296 and references cited therein; (b) Salerno, L.; Modica, M. N.; Romeo, G.; Pittala, V.; Siracusa, M. A.; Amato, M. E.; Acquaviva, R.; Di Giacomo, C.; Sorrenti, V. Eur, J. Med. Chem. 2012, 49, 118; (c) Schumann, P.; Collot, V.; Hommet, Y.; Gsell, W.; Dauphin, F.; Sopkova, J.; MacKenzie, E. T.; Duval, D.; Boulouard, M.; Rault, S. Bioorg, Med. Chem. Lett. 2001, 11, 1153.
- (a) Kaltenbach, R. F.; Patel, M.; Waltermire, R. E.; Harris, G. D.; Stone, B. R. P.; Klabe, R. M.; Garber, S.; Bacheler, L. T.; Cordova, B. C.; Logue, K.; Wright, M. R.; Erickson-Viitanen, S.; Trainor, G. L. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 605; (b) Sun, J.-H.; Teleha, C. A.; Yan, J.-S.; Rodgers, J. D.; Nugiel, D. A. J. Org. Chem. **1997**, *62*, 5627; (c) Rodgers, J. D.; Johnson, B. L.; Wang, H.; Greenberg, R. A.; Erickson-Viitanen, S.; Klabe, R. M.; Cordova, B. C.; Rayner, M. M.; Lam, G. N.; Chang, C.-H. *BioMed. Chem. Lett.* **1996**, *6*, 2919.
- (a) Thangadurai, A.; Minu, M.; Wakode, S.; Agrawal, S.; Narasimhan, B. Med. Chem. Res. 2012, 21, 1509; (b) Rosati, O.; Curini, M.; Marcotullio, M. C.; Macchiarulo, A.; Perfumi, M.; Mattioli, L.; Rismondo, F.; Cravotto, G. Bioorg. Med. Chem. 2007, 15, 3463; (c) El-Hawash, S. A. M.; Badawey, E. A. M.; El-Ashmawey, I. M. Eur. J. Med. Chem. 2006, 41, 155; (d) Caron, S.; Vazquez, E. Org. Process Res. Dev. 2001, 5, 587; (e) Bistochi, G. A.; De Meo, G.; Pedini, M.; Ricci, A.; Brouilhet, H.; Bucherie, S.; Rabaud, M.; Jacquignon, P. Farmaco, Ed. Sci. 1981, 36, 315; (f) Picciola, G.; Ravenna, F.; Carenini, G.; Gentili, P.; Riva, M. Farmaco, Ed. Sci. 1981, 36, 1037.
- (a) Zhu, W.; Zhai, X.; Li, S.; Cao, Y.; Gong, P.; Liu, Y. Chin. Chem. Lett. 2012, 23, 703; (b) Hartmann, M.; Sommer, M. E.; Keppler, B. K.; Kratz, F.; Einhaeuser, T. J. J. Inorg. Biochem. 1995, 59, 214; (c) Clarke, M. J. Coord. Chem. Rev. 2003, 236, 209; (d) Keppler, B. K.; Hartmann, M. Met.-Based Drugs 1994, 1, 145.
- (a) Yakaiah, T.; Kurumurthy, C.; Lingaiah, B. P. V.; Narsaiah, B.; Pamanji, R.; Velatooru, L. R.; Venkateswara Rao, J.; Gururaj, S.; Parthasarathy, T.; Sridhar, B. Med. Chem. Res. 2012, 21, 4261; (b) De Lena, M.; Lorusso, V.; Latorre, A.; Fanizza, G.; Gargano, G.; Caporusso, L.; Guida, M.; Catino, A.; Crucitta, E.; Sambiasi, D.; Mazzei, A. Eur. J. Cancer 2001, 37, 364.
- (a) Harada, H.; Morie, T.; Hirokawa, Y.; Terauchi, H.; Fujiwara, I.; Yoshida, N.; Kato, S. *Chem. Pharm. Bull.* **1995**, 43, 1912; (b) Robertson, D. W.; Bloomquist, W.; Cohen, M. L; Reid, L. R.; Schenck, K.; Wong, D. T. *J. Med. Chem.* **1990**, 33, 3176.
- (a) Schmidt, A.; Beutler, A.; Snovydovych, B. Eur. J. Org. Chem. 2008, 24, 4073; (b) Stadlbauer, W.; Camp, N. In Science of Synthesis: Houben-Weyln Methods of Molecular Transformations; Thieme: Stuttgart, Germany, 2002; Vol. 12, p 227.
 (a) Porter, H. D.; Peterson, W. D. Organic Synthesis; 1955; Collect. Vol. III660; (b)
- (a) Porter, H. D.; Peterson, W. D. Organic Synthesis; 1955; Collect. Vol. III660; (b) Huisgen, R.; Bast, K. Organic Synthesis; 1973; Collect. Vol. V650; (c) Foster, R. H.; Leonard, N. J. J. Org. Chem. **1979**, 44, 4609; (d) Bartsch, R. A.; Yang, I.-W. J. Heterocycl. Chem. **1984**, 21, 1063; (e) Arnautu, A.; Collot, V.; Ros, J. C.; Alayrac, C.; Witulski, B.; Rault, S. Tetrahedron Lett. **2002**, 43, 2695.
- 9. Dell'Erba, C.; Novi, M.; Petrillo, G.; Tavani, C. Tetrahedron 1994, 50, 3529.
- (a) Jin, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2007, 46, 3323; (b) Liu, Z.; Shi, F.; Martinze, P. D. G.; Raminelli, C.; Larock, R. C. J. Org. Chem. 2008, 73, 219; (c) Wu, C.; Fang, Y.; Larock, R. C.; Shi, F. Org. Lett. 2010, 12, 2234; (d) Spiteri, C.; Keeling, S.; Moses, J. E. Org. Lett. 2010, 12, 3368; (e) Li, P.; Zhao, J.; Wu, C.; Larock, R. C.; Shi, F. Org. Lett. 2011, 13, 3340.
- (a) Lukin, K.; Hsu, M. C.; Fernando, D.; Leanna, M. R. J. Org. Chem. 2006, 71, 8166;
 (b) Lokhande, P. D.; Raheem, A.; Sabale, S. T.; Chabukswar, A. R.; Jagdale, S. C. Tetrahedron Lett. 2007, 48, 6890; (c) Yu, S.; Haight, A.; Kotecki, B.; Wang, L.; Lukin, K.; Hill, D. R. J. Org. Chem. 2009, 74, 9539.
- 12. (a) Wray, B. C.; Stambuli, J. P. Org. Lett. **2010**, *12*, 4576; (b) Counceller, C. M.; Eichman, C. C.; Wray, B. C.; Stambuli, J. P. Org. Lett. **2008**, *10*, 1021.

- 3-Unsubstituted 1-alkyl-1*H*-indazoles: (a) Hunt, K. W.; Moreno, D. A.; Suiter, N.; Clark, C. T.; Kim, G. Org. Lett. 2009, 11, 5054; (b) Saenz, J.; Mitchell, M.; Bahmanyar, S.; Stankovic, N.; Perry, M.; Craig-Woods, B.; Kline, B.; Yu, S.; Albizati, K. Org. Process Res. Dev. 2007, 11, 30.
- 3-Substituted 1-alkyl-1H-indazoles: Vina, D.; del Olmo, E.; Lopez-Perez, J. L.; San Feliciano, A. Org. Lett. 2007, 9, 525.
- 2-Aryl-2H-indazoles; (a) Song, J. J.; Yee, N. K. Org. Lett. 2000, 2, 519 1-Aryl-1Hindazoles; (b) Song, J. J.; Yee, N. K. Tetrahedron Lett. 2001, 41, 2937.
- 3-Substituted 1-alkyl-1H-indazoles: Caron, S.; Vazquez, E. Synthesis 1999, 4, 588 and references cited therein.
- 17. 2-Alkyl-2H-indazoles: Cheung, M.; Boloor, A.; Stafford, J. A. J. Org. Chem. 2003, 68, 4093.
- 1-Aryl-1*H*-indazoles: Lebedev, A. Y.; Khartulyari, A. S.; Voskoboynikov, A. Z. J. Org. Chem. **2005**, 70, 596.
- 1-Aryl-1*H*-indazoles: Pabba, C.; Wang, H.-J.; Mulligan, S. R.; Chen, Z.-J.; Stark, T. M.; Gregg, B. T. *Tetrahedron Lett.* **2005**, *46*, 7553.
- 3-Unsubstituted 1-alkyl-1H-indazoles: Wheeler, R. C.; Baxter, E.; Campbell, I. B.; Macdonald, S. J. F. Org. Process Res. Dev. 2011, 15, 565.
- (a) Klein, M.; Gericke, R.; Mederski, W.; Beier, N.; Lang, F. WO 2007/090494, August 16, 2007. (b) Bingaman, D. US 2006/0189608, August 24, 2006. (c)

Harmange, J.-C.; Booker, S.; Bauer, D.; Kim, T.-S.; Cheng, Y.; Xu, S.; Ning, X.; Kim, J.; Tasker, A. WO 2005/073224, August 11, 2005. (d) Woods, K.; Fisher, J.; Claiborne, A.; Li, T.; Thomas, S.; Zhu, G.-D.; Diebold, R.; Liu, X.; Shi, Y.; Klinghofer, V.; Han, E.; Guan, R.; Magnone, S.; Johnson, E.; Bouska, J.; Olson, A.; de Jong, R.; Oltersdorf, T.; Luo, Y.; Rosenberg, S.; Giranda, V.; Li, Q. *Bioorg. Med. Chem. Lett.* **2006**, *14*, 6832; (e) Stocks, M.; Barber, S.; Ford, R.; Leroux, F.; St. Gallay, S.; Teague, S.; Xue, Y. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 3459; (f) Pinto, D.; Smallheer, J.; Corte, J.; Zilun, H.; Cavallaro, C.; Gilligan, P.; Quan, M. WO 2007/070826, June 21, 2007. (g) Santhakumar, V.; Tomaszewski, M. WO 2006/052190, May 18, 2006. (h) Guillemont, J.; Kennis, L.; Mertens, J.; Van Dun, J.; Somers, M.; Wouters, W. WO 2006/03146, January 12, 2006. (i) Bouchet, P.; Lazaro, R.; Benchidmi, M.; Elguero, J. *Tetrahedron* **1980**, *36*, 3523.

- 22. Lafferty, J. J.; Tedeschi, D. H.; Zirkle, C. L. US 1964/3133081, May 12, 1964.
- 23. Burke, M. J.; Trantow, B. M. *Tetrahedron Lett.* **2008**, 49, 4579.
- Piccionello, A. P.; Pace, A.; Pierro, P.; Pibiri, I.; Buscemi, S.; Vivona, N. Tetrahedron 2009, 65, 119.
- 25. Doyle, M. P.; Dellaria, J. F., Jr.; Siegfried, B.; Bishop, S. T. J. Org. Chem. 1977, 42, 3494.
- 26. Kawakubo, H.; Fukuzaki, K.; Sone, T. Chem. Pharm. Bull. 1987, 35, 2292.
- 27. Chakrabarty, M.; Kundu, T.; Arima, S.; Harigaya, Y. Tetrahedron **2008**, 64, 6711.