Bicyclic Mesoionic Pyrimidines with Cardiovascular Activity

C. Oliver Kappe and Thomas Kappe*

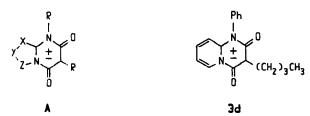
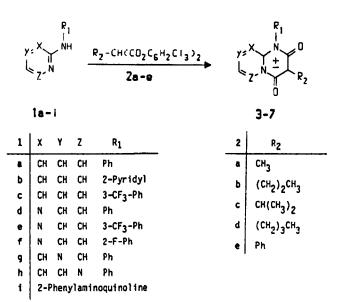
Institute of Organic Chemistry, Karl-Franzens-University Graz, Heinrichstr. 28, A-8010 Graz, Austria

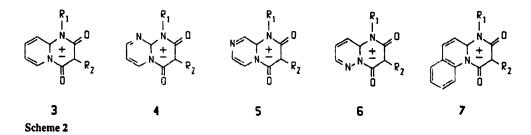
Received September 3, 1990

Reaction of α -Anilino-azines 1a-1 with activated malonates (magic malonates) 2a-e leads to bicyclic mesoionic systems 3-7. Out of these, pyrido[1,2*a*]pyrimidines 3b,d are active as cardiotonics, whereas pyrimido[1,2-*a*]pyrimidines 4a-g show significant anti-anginal and anti-hypertensive activity. Kreuzkonjugierte und pseudo-kreuzkonjugierte mesomere Betaine, 18. Mitt.: Bicyclische mesoionische Pyrimidinderivate mit Wirkung auf das Cardiovaskuläre System

Die Reaktion von α -Anilino-azinen 1a-1 mit aktiven Malonestem (magic malonates) 2a-e führt zu bicyclischen mesoionischen Systemen 3-7. Von diesen sind Pyrido[1,2-a]pyrimidine 3b,d als Cardiotonika wirksam. Pyrimido[1,2-a]pyrimidine 4a-g zeigen antianginöse und antihypertensive Aktivität.

After the discovery of six-membered mesoionic heterocycles in 1971 a rapid development and expansion of the chemistry of these type of compounds took place and a great number of different ring systems have been prepared²⁾. From the pharmacological point of view the so-called "mesoionic xanthine analogs" (Structure A) found much attention in recent years^{2,3)}. Some of these compounds, *e.g.* mesoionic thiazolo[3,2-a]pyrimidine-5,7-diones exhibit antibacterial activity against both *Gram*-negative and *Gram*-positive organisms⁴⁾. A number of them show theophylline like activity⁵⁾ or act as cyclo-AMP-phosphodiesterase inhibitors⁶⁾. In most of these compounds, however, the mesoionic pyrimidine moiety is connected to a five-membered heterocyclic ring. The biological potential of other bicyclic six-membered mesoionic heterocycles remained unexplored.


Chart 1

X,Y,Z = CH, CR, N, NR, O, S

R = Alkyl

R-Key for 3-7 see Tab. 1 Scheme 1

Recently a general pharmacological screening⁷⁾ of mesoionic pyrido[1,2-a]pyrimidine 3d revealed that this compound has an interesting cardiotonic profile: Apart from being slightly antihypertensive the main interest focuses on the longlasting positive inotropic effect which is superior to Amrinone (see Pharmacology). These results prompted us to synthesize and to investigate the pharmacological profile of a series of compounds related to **3d** in order to establish a structure-activity relationship.

Chemistry

The synthesis of bicyclic pyrimidine mesoions 3-7 was accomplished by condensation of α -anilino-azines 1a-i

Arch. Pharm. (Weinheim) 324, 863-866 (1991)

©VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1991 0365-6233/91/1111-0863 \$ 3.50 + .25/0

Kappe	and	Kappe
-------	-----	-------

Tab. 1: Reaction conditions for the formation of bicyclic mesoions 3-7

No.	Entry 1	Entry 2	R ₁	R ₂	React Time (min.)	:ion Temp.(^O C)	Yield (%)	Melt. Point (^O C)	solvent ^a
3a	la	2a	Ph	СН _З	10	180	75	292-298	C
3b	1a	2b	Ph	(CH ₂)2CH3	30	220	70	258-260	В
3c	la	2c	Ph	сн(сн ₃)2	30	220	81	295-298	С
3d	1a	2d	Ph	(CH ₂)3CH3	30	220	66	178-180	в
3e	16	2b	2-Pyridyl	(CH ₂)2CH3	10	160	75	217-218	B
3f	15	2d	2-Pyridyl	(CH ₂)3CH3	10	160	88	179-180	B
3g	lc	2c	3-CF ₃ -Ph	CH(CH3)2	30	220	81	170-172	D
3h	lc	2d	3-CF3-Ph	(CH ₂)3CH3	30	220	87	204 - 207	В
4a	1d	2b	Ph	(CH ₂) ₂ CH ₃	10	180	81	195-197	A
4b	1d	2c	Ph	CH(CH ₃)2	10	180	68	223-227	A
4c	1d	2d	Ph	(CH2)3CH3	10	180	80	196-201	A
4d	le	2c	3-CF3-Ph	Сн(Сн3)2	15	180	66	200-202	A
4e	le	2d	3-CF3-Ph	(CH ₂) ₃ CH ₃	15	180	63	169-171	D
4f	1f	2b	2-F-Ph	(CH2)2CH3	5	180	62	187-189	A
4 g	lf	2d	2-F-Ph	(CH ₂) ₃ CH ₃	5	180	60	194-198	A
4h	1d	2e	Ph	Ph	10	180	65	305-320	C
5a	lg	2d	Ph	(CH ₂)3CH3	5	180	68	195-197	D
ба	lh	2d	Ph	(CH ₂) ₃ CH ₃	10	180	65	258-260	с
7a	11	2d	Ph	(CH ₂) ₃ CH ₃	3	160	52	191-193	A

^{a)} recrystallization solvent: A = Toluene, B = Xylene, C = Bromobenzene, D = Toluene/Petroleum Ether

Tab. 2: Antihypertensive activity and positive inotropic effect of mesoionic pyrido $[1,2-\alpha]$ pyrimidines 3b,d

No.	Antihypertensive activity ED 50 p.o. (rats) in mg/kg	positiv inotropic effect MIC (in vitro) in ug/ml normal reserpinized guinea pig a		
3Ь	50		25	
30 30	25	25 25	5	
Amrinone	•	100	100	

Tab. 3: Antianginal- and antihypertensive activity of mesoionic pyrimido[1,2- α]pyrimidines 4a-h

No.	Antianginal activity ED 100 p.o. (mice) in mg/kg	Antihypertensive activity ED 50 p.o. (rats) in mg/kg		
4a	10	2		
4b	25	10		
4c	25	25		
4d	45	10		
4e	45	10		
4f	100	inactive		
4g	12	inactice		
4h	inactive	inactive		

Tab. 4: Analytical and IR-data of mesoions 3-7

Formula Analysis (calcd./four	
No. (moł. weight) C H N	nd) IR (cm ⁻¹)
3a C ₁₅ H ₁₂ N ₂ O ₂ 71.42 4.79 11.10 (252.27) 71.55 4.58 11.10	1700, 1655, 1630
3b C ₁₇ H ₁₆ N ₂ O ₂ 72.84 5.75 9.99 (280.33) 72.65 5.80 10.11	1690, 1650-1630
$\begin{array}{cccc} 3c & C_{17}H_{16}N_{2}O_{2} & 72.84 & 5.75 & 9.99 \\ & & & (280.33) & 72.89 & 5.50 & 9.94 \end{array}$	1690, 1650, 1620
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1690, 1650-1630
3e C ₁₆ H ₁₅ N ₃ O ₂ 68.31 5.37 14.94 (281.31) 68.45 5.23 15.06	1715, 1675, 1665-1630
3f C ₁₇ H ₁₇ N ₃ O ₂ 69.14 5.80 14.23 (295.34) 68.97 5.80 14.12	1710, 1670, 1660-1630
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1695, 1680, 1650, 1620
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1690, 1685, 1645, 1610
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1700, 1645-1615
4b C ₁₆ H ₁₅ N ₃ O ₂ 68.31 5.37 14.94 (281.31) 68.62 5.47 14.80	1700, 1650-1615
$\begin{array}{cccc} 4c & C_{17} H_{17} N_3 0_2 & & 69.14 & 5.80 & 14.23 \\ & & & (295.34) & & 69.03 & 5.72 & 14.43 \end{array}$	1700, 1635, 1615
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1700, 1680, 1630, 1610
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1700, 1685, 1645, 1610
$\begin{array}{rrrr} \text{4f} \text{C}_{16}\text{H}_{14}\text{FN}_{3}\text{O}_{2} & \text{64.21} & \text{4.71} & \text{14.04} \\ & (299.31) & \text{64.38} & \text{4.79} & \text{13.97} \end{array}$	1690, 1635
$\begin{array}{rrrr} 4g & {}^{C}_{17}{}^{H}_{16}{}^{FN}_{3}{}^{O}_{2} & & 66.12 & 5.15 & 13.41 \\ & & (313.33) & & 66.36 & 5.06 & 13.37 \end{array}$	1690, 1635
$\begin{array}{ccccccc} 4h & C_{19}H_{13}N_{3}O_{2} & 72.37 & 4.55 & 13.33 \\ & & & 72.11 & 4.63 & 12.99 \end{array}$	1680, 1655-1630
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1690, 1635
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1690, 1635, 1610
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1690, 1640, 1610

with substituted bis-2,4,6-trichlorophenylmalonates (magic malonates) **2a-e**. This general synthetic approach has been used frequently in the last 20 years for the preparation of mono- and bicyclic six-membered mesoionic heterocycles²). In all cases described in Table 1 the reaction was performed without any solvent, by simply heating the two starting compounds in equimolar mixture at the required temp. As seen in Table 1, both, reaction times and reaction temp., vary significantly depending on the heterocyclic

system used. Therefore, the rather unreactive 2-phenylamino-pyridine 1a requires about 220°C (30 min) to react with 2b-d, whereas the highly reactive 2-phenylamino-quinoline 1i forms the corresponding tricyclic mesoion 7a at 160°C (3 min). All mesoions 3-7 were obtained in moderate to good yields as yellow or orange-red colored solids. They are stable in solution at room temp., however, they may hydrolize in protic solvents under acid or basic catalysis.

Pharmacology

According to their pharmacological activity, mesoions 3-7 may be divided into two groups:

a) mesoionic pyrido[1,2-*a*]pyrimidines 3a-h acting as cardiotonics: In this group the two most active compounds were 3b and 3d. Apart from their weak antihypertensive activity the main interest is due to the longlasting positive inotropic effect noted both in normal and reserpinized guinea-pig atria (Table 2). These results were confirmed by studies conducted in anaesthetized dogs at 10 mg/kg i.d. where 3b proved to be equal in activity to Amrinone⁸; 3d was even more active. These two compounds seem to be acting through a "xanthine-like" mechanism, by increasing the c-AMP level. Modifications in the alkyl side chain (R₂) to improve the activity proved to be ineffective: 3c (R₂ = CH(CH₃)₂) surprisingly is devoid of any cardiotonic effect, whereas 3a (R₂ = CH₃) is a rather toxic compound (LD₁₀₀ i.p. = 200 mg/kg (mice)). All other compounds (3e-h) were inactive.

b) mesoionic pyrimido[1,2-a]pyrimidines 4a-h as anti-anginal drugs: As shown in Table 3, all compounds tested in this series (except 4h, $R_2 = Ph$) have anti-anginal activity, in most cases accompanied by a strong antihypertensive effect (e.g.: 4a). However, slight modifications as in 4g ($R_1 =$ o-F-Ph instead of Ph) led to compounds with anti-anginal activity only. These mesoions may be acting similar to glyceryl trinitrate⁹ or molsidomine¹⁰.

Mesoionic pyrazino[1,2-a]pyrimidine (5), pyrimido[1,2-b]pyridazine (6) and pyrimido[1,2-a]quinoline (6) were devoid of any pharmacological activity.

The authors are very grateful to LIPHA⁷⁾ for providing the pharmacological results presented in this article.

Experimental Part

MP.: Gallenkamp melting point apparatus model MFB-595 (open capillary, uncorrected).- IR: Perkin Elmer 298 (KBr disks).- ¹H-NMR: Varian EM 360 at 60 MHz (TMS as int. standard).- Elemental analyses: C,H,Nautomat Carlo Erba 1106.

Starting materials: 2-Phenylamino-pyridine (1a) and 2,2'-dipyridylamine (1b) were purchased from ALDRICH and used without further purification. 2-Phenylamino-pyrimidine (1d)¹¹, 2-phenylamino-pyrazine (1g)¹², 3-phenylamino-pyridazine (1h)¹³, and 2-phenylamino-quinoline (1i)¹⁴) were prepared from the corresponding chloroheterocycles with aniline following published procedures. 2-(3-Trifluorophenylamino)-pyridine (1c), mp. 79-81°C, 2-(3-trifluorophenylamino)-pyrimidine (1e), mp. 82-84°C, and 2-(2fluorophenylamino)-pyrimidine (1f), mp. 117-118°C were synthesized in analogy to these procedures¹⁵). Substituted bis-(2,4,6-trichlorophenyl)-malonates were prepared as described¹⁶).

General procedure for the preparation of bicyclic mesoionic pyrimidines 3-7

A mixture of 10 mmols of 1a-i and 10 mmols of the corresponding active malonate 2a-e was heated to 160-220°C for 3-30 min (Table 1). After

cooling to ambient temp. the yellow oil was digested several times with petroleum ether to remove trichlorophenol formed during the reaction. Addition of diethylether yields yellow to orange crystalline products which were recrystallized from the solvents given in Table 1.

Tab. 5: ¹H-NMR spectroscopic data of selected mesoions 3-7

No.	¹ H-NMR (ppm) ^a
3a	1.96 (s, CH_3), 6.75 (dd, J = 9 Hz, 1.5 Hz, H-9), 7.42 - 8.08 (m, H-7 and H-8), 7.55 (s, 5 ArH), 9.31 (dd, J = 7 Hz, 2 Hz, H-6).
4b	1.19 (d, J = 7 Hz, 2 CH ₃), 2.45 (q, J = 7 Hz, CH), 7.21 - 7.65 (m, 6 ArH), 8.92 (dd, J = 5 Hz, 2 Hz, H-8), 9.48 (dd, J = 7 Hz, 1.5 Hz, H-6).
5a	0.93 (t, J = 7 Hz, CH_3), 1.28 - 1.70 (m, CH_2CH_2), 2.52 (t, J = 7 Hz, CH_2), 7.35 - 7.77 (m, 5 ArH), 8.21 (s, H-9), 8.55 (d, J = 4 Hz, H-7), 9.05 (d, J = 4 Hz, H-6).
6a	0.90 (t, $j = 7 Hz$, CH_3), $1.10 - 1.75$ (m, CH_2CH_2), 2.45 (t, $J = 7 Hz$, CH_2), $7.08 - 7.88$ (m, $7 ArH$), 8.88 (dd, $J = 5 Hz$, $1.5 Hz$, $H-7$).
7a	0.92 (t, J = 7 Hz, CH_3), 1.15 - 1.72 (m, CH_2CH_2), 2.44 (t, J = 7 Hz, CH_2), 6.51 (d, J = 9 Hz, H-5), 7.16 - 7.81 (m, 8 ArH), 8.08 (d, J = 9 Hz, H-6), 9.39 (dd, J = 7 Hz, 2 Hz, H-10).

a) recorded in d₆-DMSO

References

- 1 Part XVII: T. Kappe and D. Pocivalnik, Heterocycles 20, 1367 (1983).
- 2 Reviews: W. Friedrichsen, A. Böttcher, and T. Kappe, Heterocycles 19, 1083 (1982); T. Kappe, Lect. Heterocycl. Chem. 7, 107 (1984).
- 3 e.g.: G.O. Mbagwu und R. Garland, J. Heterocycl. Chem. 25, 571 (1988).
- 4 R.A. Coburn and R.A. Glennon, J. Pharm. Sci. 62, 1785 (1973).
- 5 R.A. Glennon, M.E. Rogers, R.G. Bass, and S.B. Ryan, J. Pharm. Sci. 67, 1762 (1978).
- 6 R.A. Glennon, S.M. Tejani-Butt, W. Padgett, and J.W. Daly. J. Med. Chem. 27, 1364 (1984).
- 7 All pharmacological investigations in this paper were carried out at LIPHA (Lyonnaise industrielle pharmaceutique), Lyon, France.
- 8 A.E. Farah and A.A. Alousi, Life Sci. 22, 1139 (1978).
- 9 F.J. DiCarlo, Drug Metab. Rev. 4, 1 (1975).
- 10 S. Tanayama, Xenobiotica 4, 175 (1974).
- 11 M. Hirota, T. Sekiya, A. Hishikura, H. Endo, Y. Hamada, and Y. Ito, Bull. Chem. Soc. Jpn. 53, 717 (1980).
- 12 B. Klein, E. O'Donnell, and J. Auerbach, J. Org. Chem. 32, 2412 (1967).
- 13 F. Yoneda, T. Ohtaka, and Y. Nitta, Chem. Pharm. Bull. 11, 740 (1963).
- 14 P. Friedländer and A. Weinberg, Ber. Dtsch. Chem. Ges. 18, 1528 (1885).
- 15 Satisfactory C,H,N-analyses, IR and ¹H-NMR spectra of these compounds were obtained.
- 16 T. Kappe, Monatsh. Chem. 98, 874 (1967). [Ph852]