

www.elsevier.nl/locate/carres

CARBOHYDRATE RESEARCH

Carbohydrate Research 330 (2001) 205-214

Reactions of some 2- and 4-O-triflylglycopyranosides with MeLi, *t*-BuOK, and pyridine

Ahmed El Nemr, Tsutomu Tsuchiya*

Institute of Bioorganic Chemistry, 3-34-17 Ida, Nakahara-ku, Kawasaki 211-0035, Japan

Received 13 October 2000; accepted 20 October 2000

Abstract

As an extension of our previous work on secondary triflates of carbohydrates [El Nemr, A.; Tsuchiya, T. *Tetrahedron Lett.* **1995**, *36*, 7665–7668. El Nemr, A.; Tsuchiya, T.; Kobayashi, Y. *Carbohydr. Res.* **1996**, *293*, 31–59. El Nemr, A.; Tsuchiya, T. *Carbohydr. Res.* **1997**, *301*, 77–87. El Nemr, A.; Tsuchiya, T. *Carbohydr. Res.* **1997**, *303*, 267–281], the reaction modes of several methyl 2- and 4-O-triflyl-D-glycopyranosides with MeLi (strong base), *t*-BuOK (moderately strong base), and pyridine (weak base) have been studied. This paper describes the reactions of 3-O-benzyl-4,6-O-benzylidene-2-O-triflyl-D-gluco and -mannopyranosides with MeLi to give mainly the corresponding 2-C-methyl derivatives through α -elimination, with *t*-BuOK to give either the 2,3-unsaturated compounds through β -elimination or detriflyl 2-ols, and with hot pyridine to give the corresponding 2-pyridinium salts with inversion (except for the 2-O-triflyl- α -D-mannopyranoside (8)). 2,3,6-Tri-O-benzyl-4-O-triflyl- α -D-gluco and -mannopyranoside severe Ltd. All rights reserved.

Keywords: Triflate; MeLi; *t*-BuOK; Pyridine; Deuterated compound; α -Elimination; β -Elimination; Pyridinium salt; Nucleophilic substitution

We have recently reported¹⁻³ a new reaction with some carbohydrate triflates when they are treated with MeLi or BuLi in diethyl ether giving *C*-methyl (or butyl) or unsaturated compounds, both through α -elimination with removal of a hydrogen (or deuterium) atom at the carbon bearing a CF₃SO₃ group as a proton (deuteron). To clarify the reaction modes for these compounds when the strongly basic Me(Bu)Li is changed to a weaker base such as *t*-BuOK or pyridine, 3-*O*-triflyl-Dgluco- and -D-allo-furanoses and the corresponding pyranosides were examined. It was found that, when *t*-BuOK was used, the 3-*O*-

triflyl-D-glucopyranosides afforded the corresponding 2.3and/or 3.4-unsaturated compounds through α -elimination, and the 3-O-triflyl-D-allopyranosides gave the corresponding unsaturated compounds through β -elimination.⁴ When pyridine was used, however, most of the compounds readily gave the corresponding 3-pyridinium derivatives with inversion;⁴ it should be emphasized that 2-O-benzyl-4,6-O-benzylidene-3-Omethvl triflyl- α -D-glucopyranoside readily gave the 3-deoxy-3-pyridinium-D-allocorresponding pyranoside, even though the steric and electrostatic 1,3-diaxial interactions⁵ between MeO-1 and the pyridine molecule approaching C-3 would be expected, in the transition state, to hinder the reaction. The reaction should thus be facilitated by pyridine, a noncharged,^{5,6} which may generate only weak electrostatic

^{*} Corresponding author.

E-mail address: seiyuken@mx1.alpha-web.ne.jp (T. Tsuchiya).

repulsion between its slightly negative-charged nitrogen and MeO-1. This paper is an extension of our previous work and describes the reactions of 2- and 4-*O*-triflyl-D-glycopyranosides with MeLi, *t*-BuOK, and pyridine to clarify the limitation of the foregoing reactions.

Synthesis of triflates

Methyl 3-O-benzyl-4,6-O-benzylidene-2-Otriflyl- β -D-(2-²H)mannopyranoside (10')[†] was prepared by the usual Swern oxidation- $(NaBD_4)$ reduction procedure for methyl 3-Obenzyl-4,6-O-benzylidene-β-D-glucopyranoside (5),⁷ followed by triflation $(5 \rightarrow 2 \rightarrow 9' \rightarrow 10'; 2)$ was prepared in high yield through a different route already reported⁸). Likewise, the 2deuterated 2-O-triflyl- α -D anomer (8') of 10' was prepared from methyl 3-O-benzyl-4,6-*O*-benzylidene- α -D-glucopyranoside (3)⁷ via a similar route involving oxidation – $(NaBD_4)$ reduction reactions $(3 \rightarrow 1 \rightarrow 3')$, with triflation of the resulting HO-2 group (to give 4'), inversion of the C-2 function (with NaOBz–DMF), subsequent debenzoylation (to give 7'), and triflation of the epi-HO-2 group.

Reactions of undeuterated and deuterated 2and 4-triflates with MeLi, *t*-BuOK, and pyridine

At first, unlabeled methyl 3-O-benzyl-4,6-O-benzylidene-2-O-triflyl- α - (4)⁹⁻¹¹ and - β -Dglucopyranosides (6)⁹ were treated with *t*-BuOK in diethyl ether, whereupon only the detriflyl 3-ols 3⁷ and 5⁷ were produced, in 76 and 68% yields, respectively (this suggests that the process can be used for detriflation in some cases). As previously reported, compounds 4 and 6 are known to give the C-2-alkyl derivatives when treated with the strongly basic Me(Bu)Li in diethyl ether^{1,2} (Table 1). Compounds 4 and 6 were next treated with hot pyridine (~80 °C, 7 h). In this case, the 2-deoxy-2-pyridinium compounds having the D-manno structure (13 and 17, respectively) were produced as the sole products in high yields (Table 1). This means that the S_N2 reactions by pyridine proceed as smoothly as those by such anionic nucleophiles as N_3^- and F^- or by the strongly basic hydrazine.^{6,9,12}

The D-mannopyranosides were examined next. When the 2-O-triflyl- α -D-mannopyranoside (8) was treated with MeLi, the C-2methyl-D-gluco derivative $(12)^2$ was obtained in high yield unaccompanied by the D-manno isomer, along with the detriflyl 2-ol $(7)^{13}$ and a trace amount of unsaturated compounds 11.¹⁴ It is noteworthy that the abstraction of H-2 by Me(Bu)Li occurs readily, although, in 8, the $S_N 2$ reaction at C-2 is quite difficult.^{5,6,15} In the reactions of 8 and the corresponding D-2derivative (8') with t-BuOK, the 2,3-unsaturated compounds, 11 and 11', respectively, were mainly produced as observed for 4, 6, and 10', through β -(H-3) [but not α -(H- or D-2)] elimination, as indicated by the retention of deuterium at C-2 in 11'.

Compound 8 was next heated in pyridine. In this case, no pyridinium compound was produced and three 2,3-unsaturated products [11, 18, and 19^{16} (major)] were formed. Compound 18 was assigned to be an α . β -unsaturated aldehyde based on the ¹H NMR (CHO, δ 9.98, $J_{1,2}$ 7 Hz), ¹³C NMR (CHO, δ 190.5), and mass spectra. Compound 19 was assigned to be the 2-eno-1,5-lactone¹⁶ having possibly an E_5 conformation based on the ¹H NMR (H-2, δ 5.46; H-3, δ 7.30) and mass spectra. As observed in many other 2-sulfonylated α -D-mannopyranosides, the $S_N 2$ reactions at C-2 occur with difficulty,^{5,6} possibly because of the steric repulsion between MeO-1 and the approaching nucleophiles to C-2 from the lower side in their transition states; in this case, however, electrostatic repulsion between MeO-1 and pyridine will be negligible, and the steric interaction should be the sole cause. Even so, the weakly basic, noncharged pyridine molecule can not attack at C-2 of 8 and instead attacks H-3 (to produce 11 by β -elimination) or H-1 (to produce 19 by β -elimination), as shown in Scheme 1. Compound 18 may be produced by hydrolysis of 11 with contaminant water in the pyridine, catalyzed by the CF₃SO₃H liberated during the reaction.

[†] Compounds with a primed number are for the deuterated derivatives of the corresponding nondeuterated compounds throughout this paper.

Next, the 2-labeled 2-O-triflyl-B-D-mannopyranoside (10') was examined. Treatment of 10' with MeLi (this reaction is not reported in Refs. 1-4) gave a mixture of four compounds: 14^{15} 14', 15^{2} and 16^{2} the ratio of the nonlabeled (14) and 2-labeled 2.3-unsaturated compounds (14') being 3:2 (20% in total). Compound 14 was considered to be produced by initial D-2 abstraction by MeLi (α-elimination) followed by $3 \rightarrow 2$ proton migration with subsequent removal of the 2-OTf group^{1,2} (the whole reaction pattern closely resembles β-elimination and is liable to be so misjudged, in the absence of D-2 labeling). The 2-C-methyl-Dgluco (15) and -D-manno (16) derivatives (2:3, 76% in total) were considered to be produced by initial D-2 abstraction (α -elimination) followed by formation of the 2-oxo intermediate (by removal of the $F_3CSO_2^-$ group) and rapid reaction of the intermediate with excess MeLi.^{1,2} The difference in the ratio of productspecies between 8 and 10' may be ascribed to the difference in anomeric configuration.

Compound 10' was next treated with *t*-BuOK, whereupon a 2-labeled compound 14' was exclusively produced by β -elimination; its ¹H NMR spectrum showed a very clear pattern, due to the absence of H-2, as compared with that obtained from the treatment of 10' with MeLi (to give a mixture of 14 and 14'; see Section 2). When 10' was heated in pyridine, the 2-deoxy-2-pyridinium compound 20' with the D-gluco structure was produced with inversion, in high yield and unaccompanied by any unsaturated or ring-contracted product¹⁷ (Table 1).

The 4-deuterated -4-*O*-triflyl- α -D-gluco-(21'³) and -galactopyranosides (25'²) were next examined. As shown in Table 1, reactions of 21'³ and 25'² with MeLi or *t*-BuOK gave the corresponding 3,4- (26') and/or 4,5-unsaturated (22,² 22') compounds, or the detriflyl 4-ol (23'²), respectively; the reaction pattern (α - or β -elimination) and the product-species are fundamentally similar to that for the 3-*O*-triflyl- α -Dglycopyranosides already reported^{1,2} (see Table 1). When 21 and 25 were treated with hot pyridine, the corresponding 4-deoxy-4-pyridinium compounds, 24 and 27,² respectively were produced readily under inversion in high yields.

Summarizing all our data for the secondary triflates hitherto studied [Refs. 1-4 with this paper], it is concluded that, in treatment with Me(Bu)Li in diethvl ether, all 2-O-triflvlglvcopyranosides tested gave the 2-C-methyl (or butyl) derivatives, mainly through α -elimination, and the $3^{-1,2}$ and $4^{-}O$ -triflyl analogs gave mainly the corresponding unsaturated compounds through α -elimination or the detrify alcohols. In the reactions with t-BuOK, all compounds gave mainly the corresponding unsaturated compounds through *B*-elimination or the detriflyl alcohols. The foregoing results are therefore contradictory to the generally accepted concept that double bonds formed by removal of a sulfonyloxy group always arise through *B*-elimination, and, instead, indicate that double bonds are formed through either α or β-elimination, depending upon the structures of the starting materials and the reaction conditions. In the case of pyridine, all compounds, except 2-O-triflyl- α -D-mannopyranoside (8), gave the corresponding pyridinium salts in high yields with inversion.

1. Experimental

General methods.—Optical rotations were determined with a Perkin–Elmer 241 polarimeter. Mass spectra were measured by the fastatom bombardment method with a JEOL

SX-102 spectrometer. NMR spectra (¹H at 250 or 500 MHz, ¹³C at 125.8 MHz, and ¹⁹F at 235.35 MHz) were recorded with Bruker AC-250P or AMX-500 spectrometers, using Me₄Si and CFCl₃ (for ¹⁹F) as the internal and external references, respectively. TLC was performed on Silica Gel 60 F_{254} (E. Merck 5715 and 5717), and detected by charring with aq 50% H₂SO₄. Column chromatography was performed on Wakogel C-200.

Preparation of starting materials

Methyl 3-O-benzyl-4,6-O-benzylidene-β-D- $(2-^{2}H)$ glucopyranoside (5') and methyl 3-Obenzyl-4,6-O-benzylidene- β -D-(2-²H)mannopyranoside (9'). To a cold (-78 °C) solution of oxalyl chloride (0.94 mL, 10.7 mmol) in CH₂Cl₂ (20 mL) was added Me₂SO (1.52 mL, 21.5 mmol) and after 15 min, methyl 3-O-ben $zyl - 4, 6 - O - benzylidene - \beta - D - glucopyranoside$ (5)⁷ (2.0 g, 5.37 mmol) in CH₂Cl₂ (15 mL) was added dropwise and the mixture was stirred for 30 min. After the addition of Et_3N (3 g), the mixture was warmed to rt and kept for 1 h. Water (20 mL) was added, and the organic layer separated was washed with water, dried (Na_2SO_4) , and concentrated. The residue was recrystallized from MeOH to give 2 as needles (1.85 g), mp 179-180 °C (lit.8 no data reported), $[\alpha]_{D}^{22} - 76^{\circ} (c \ 1, \text{CHCl}_{3})$ (lit.⁸ no data reported); m/z 371.22 (M⁺ + 1); Anal. Calcd for $C_{21}H_{22}O_6$: m/z 370.14 for M⁺; ¹H NMR $(CDCl_3)$: δ 3.59 (s, 3 H, OCH₃), 3.75 (dt, 1 H, $J_{4.5} \approx J_{5.6}$ 10, $J_{5.6'}$ 4.3 Hz, H-5), 3.85 (t, 1 H, J_{6,6'} 10 Hz, H-6), 3.94 (dd, 1 H, H-4), 4.23 (dd, 1 H, $J_{1,3} \sim 1$, $J_{3,4}$ 9.5 Hz, H-3), 4.45 (dd, 1 H, H-6'), 4.76 (d, 1 H, H-1), 4.86 (ABq, 2 H, J 12 Hz, CH₂Ph), 5.58 (s, 1 H, CHPh); ¹³C NMR $(CDCl_3): \delta$ 58.01, 66.49, 68.58, 73.31, 81.92, 82.09, 101.11, 101.58, 196.45 (C-2). To a solu-

tion of 2 (1.50 g) in MeOH (40 mL) was added NaBD₄ (0.22 g, 5.27 mmol) and the solution was kept for 2 h at rt. Excess CO₂ (dry ice) was added, the solution was concentrated, and the residue was chromatographed (1:1 hexane-EtOAc) to give, from the fastermoving fractions, compound 5' as needles (97 mg, 6% based on 5), mp 182-183 °C (unlabeled compound, lit.⁷ 184–185 °C); $[\alpha]_D^{22}$ 45° (c 0.5, CHCl₃), (unlabeled, lit.⁷ $[\alpha]_{\rm D} - 48^{\circ}$ (CHCl₃)); m/z 374.27 (M⁺ + 1); Anal. Calcd for $C_{21}H_{23}DO_6$: m/z 373.16 for M⁺; ¹H NMR (CDCl₃): δ 2.45 (s, 1 H, OH), 3.46 (dt, 1 H, $J_{4,5} \approx J_{5,6}$ 10.5, $J_{5,6'}$ 5.0 Hz, H-5), 3.57 (s, 3 H, OCH₃), 3.68 (dd, 1 H, H-4), 3.69 (d, 1 H, J₃₄ 8.0 Hz, H-3), 3.80 (t, 1 H, H-6), 4.33 (s, 1 H, H-1), 4.36 (dd, 1 H, H-6'), 4.88 (ABq, 2 H, J 12 Hz, CH₂Ph), 5.58 (s, 1 H, CHPh). From the slower-moving fractions compound 9' was obtained as needles (1.38 g, 85% based on 5), mp 116–118 °C (lit.⁸ no data reported); $[\alpha]_D^{22}$ -30° (c 0.5, CHCl₃), (lit.⁸ no data reported); m/z 374.24 (M⁺ + 1); Anal. Calcd for $C_{21}H_{23}DO_6$: m/z 373.16 for M⁺; ¹H NMR (CDCl₃): δ 2.55 (s, 1 H, OH), 3.35 (ddd, 1 H, J_{4.5} 9.5, J_{5.6} 10, J_{5.6'} 4.5 Hz, H-5), 3.56 (s, 3 H, OCH₃), 3.65 (d, 1 H, J_{3.4} 9.5 Hz, H-3), 3.89 (t, 1 H, H-6), 4.14 (t, 1 H, H-4), 4.34 (dd, 1 H, H-6'), 4.41 (s, 1 H, H-1), 4.81 (ABq, 2 H, J 12 Hz, CH_2Ph) 5.61 (s, 1 H, CHPh), no H-2 signal was observed.

Methyl 3-O-benzyl-4,6-O-benzylidene- α -D- $(2-^{2}H)$ glucopyranoside (3'). A solution of 3^{7} (1.5 g, 4.03 mmol) in CH₂Cl₂ (10 mL) was oxidized as described for 2 to give 1 as needles (1.42 g), mp 146–147 °C, $[\alpha]_{D}^{22}$ +11° (c 1, CHCl₃); m/z 369.10 (M⁺ – 1), 371.12 (M⁺ + 1); Anal. Calcd for $C_{21}H_{22}O_6$: m/z 370.16 for M⁺; ¹H NMR (CDCl₃): δ 3.47 (s, 3 H, OCH₃), 3.81 (t, 1 H, H-6), 3.87 (dd, 1 H, H-4), 4.19 (dt, 1 H, $J_{4.5} \approx J_{5.6}$ 10.5, $J_{5.6'}$ 5.0 Hz, H-5), 4.38 (dd, 1 H, H-6'), 4.53 (d, 1 H, J_{3,4} 10.5 Hz, H-3), 4.75 (s, 1 H, H-1), 4.82 (ABq, 2 H, J 12 Hz, CH_2Ph), 5.56 (s, 1 H, CHPh). A solution of 1 (1.2 g) in MeOH (30 mL) was treated with NaBD₄ as described for 9' to give 3' as needles (1.16 g, 91% based on 3), mp 186–188 °C (unlabeled compound, lit.⁷ 187-188 °C, $[\alpha]_{D}^{22} + 76^{\circ}$ (c 1, CHCl₃) (unlabeled, lit.⁷ $[\alpha]_D$ + 78° (CHCl₃)); m/z 372.16 (M⁺ - 1), 374.19 (M⁺ + 1); Anal. Calcd for C₂₁H₂₃DO₆: m/z 373.19 for M⁺; ¹H NMR (CDCl₃): δ 2.33 (s, 1 H, OH), 3.45 (s, 3 H, OCH₃), 3.64 (t, 1 H, H-6), 3.75 (t, 1 H, H-4), 3.82 (d, 1 H, $J_{3,4}$ 10 Hz, H-3), 3.84 (dt, 1 H, $J_{4,5} \approx J_{5,6} \sim 10$, $J_{5,6'}$ 4 Hz, H-5), 4.30 (dd, 1 H, H-6'), 4.80 (s, 1 H, H-1), 4.87 (ABq, 2 H, J 11.5 Hz, CH₂Ph), 5.57 (s, 1 H, CHPh); no H-2 signal was observed. Methyl 3-O-benzyl-4,6-O-benzylidene-2-Otriflyl- α -D-(2-²H)glucopyranoside (4'). Prepared from 3' (1.0 g, 2.68 mmol) as described in the general procedure for triflation to give 4' as needles (1.21 g, 89%), mp 82–84 °C (unlabeled compound, lit.⁹ 83– 85 °C), [α]_D²² + 34° (*c* 1, CHCl₃) (unlabeled, lit.⁹ [α]_D + 35.7° (CHCl₃)); *m*/*z* 504.14 (M⁺

Table 1

Reagant	Starting material	Product and yield (%)		Reference
	H ₅ C ₆ CH OBn OCH ₃ OCH ₃	Bn0 11 ¹⁴	OBn OH 3 ⁷	
MeLi	7	0	0 <u>Me</u> 91 ^a	2
BuLi		0	0 12 ^{OH} ^{Bu} 77 ^a	2
BuOK		0	он 76	
Pyridine		0	0 Py ⁺ orf 80	
	H ₅ C ₆ CH OBn OCH ₃	BnO		
MeLi	6	14 0	5 0 4 39^{a} 4	2 52 ^a 2
BuLi		0	$0 \xrightarrow{\mathbf{Bu}} 18^{\mathbf{a}} \xrightarrow{0}$	59 ^a
BuOK		0	он I 68	Bu
Pyridine		0	0 Py⁺⁻oтf 88	
	H ₅ C ₆ CH OBn OT OCH ₃	Bn0 11 ¹⁴	17 Bno D OH 11' 12 ²	он 7 ¹³
MeLi	8 (R=H)	trace	77 ^a	18
BuOK	8	93	L	0
BuOK Pyridine	8 [.] (R=D)	5~ 8		

Table 1 (Continued)

Reagant	Starting material	Product and yield (%)	Reference
MeLi	H ₅ C ₆ CH OBnTfO D 10'	$\begin{array}{c} & & & & & \\ & & & & \\ &$	он. ме 16 ² 45 ^a
'BuOK Pyridine		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	94 DTf
	Bn0 H OBn OCH ₃ OBn	$\begin{array}{c} BnO \\ H \\ OBn \\ 22 \\ \end{array} \begin{array}{c} BnO \\ OBn \\ D \\ OBn \\ HO \\ HO \\ \end{array} \begin{array}{c} BnO \\ H \\ OBn \\ HO \\ \end{array} \begin{array}{c} BnO \\ H \\ OBn \\ HO \\ \end{array}$	BNO DOBN HO 23' ²
MeLi MeLi ^t BuOK	21 (R=H) ¹⁸ 21' (R=D) 21'	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	79 3 81
Pyridine	21		OBn 82 24
	TFO OBn OBn OCH ₃ OBn	$\begin{array}{c} BnO \\ H \\ \hline OBn \\ \end{array} \begin{array}{c} BnO \\ D \\ \hline OBn \\ \end{array} \begin{array}{c} BnO \\ H \\ \hline BnO \\ \end{array} \begin{array}{c} BnO \\ H \\ \hline BnO \\ \end{array} \begin{array}{c} BnO \\ H \\ \hline BnO \\ \end{array} \begin{array}{c} BnO \\ H \\ \hline BnO \\ \end{array} \begin{array}{c} BnO \\ H \\ \hline BnO \\ \end{array} \begin{array}{c} C \\ C \\ C \\ C \\ \end{array} \begin{array}{c} C \\ C $	Bn0 D Bn0 26'
MeLi MeLi ^c ^t BuOK	25' (R=D) ² 25 (R=H) ¹⁹ 25'	36 ^a 0 0 45 ^a 0 0 34 ^b 0 BnO –	0 3 54 ^b
Pyridine ^c	25	רזיס די דיס די	0Bn 98 27 ²

 a_{α} -elimination

 $^{b}\beta$ -elimination

^cThe reaction was performed as described in the general procedure.

- 1), 506.16 (M⁺ + 1); Anal. Calcd for $C_{22}H_{22}DF_{3}O_{8}S$: m/z 505.11 for M⁺; ¹H NMR (CDCl₃): δ 3.47 (s, 3 H, OCH₃), 3.69 (t, 1 H, H-4), 3.76 (t, 1 H, H-6), 3.88 (dt, 1 H, $J_{4,5}$ 9, $J_{5,6}$ 10, $J_{5,6'}$ 4.5 Hz, H-5), 4.12 (d, 1 H, $J_{3,4}$ 9 Hz, H-3), 4.31 (dd, 1 H, H-6'), 4.81 (ABq, 2 H, J 11.5 Hz, CH_2Ph), 4.96 (s, 1 H,

H-1), 5.56 (s, 1 H, CHPh); no H-2 signal was observed.

Methyl 3-O-benzyl-4,6-O-benzylidene- α -Dmannopyranoside (7). A mixture of methyl 3-O-benzyl-4,6-O-benzylidene-2-O-triflyl- α -Dglucopyranoside (4)⁹⁻¹¹ (2.1 g, 4.17 mmol) and NaOBz (1.81 g, 12.6 mmol) in DMF (50 mL)

was heated at 80 °C for 8 h. Water (50 mL) was added and the mixture was extracted with CHCl₃ (70 mL \times 3). The extracts comwere washed with water, bined dried (Na_2SO_4) , and concentrated in vacuo to give the crude 2-O-Bz derivative of 7 as a syrup (1.98 g). A mixture of the syrup and NaOMe in MeOH was allowed to stand for 1 h. After excess CO₂ (dry ice) was added, the mixture was concentrated and the residue was chromatographed (1:1 hexane-EtOAc) to give 7 as a syrup (1.21 g, 78%), $[\alpha]_{D}^{22} + 50^{\circ}$ (c 1, CHCl₃), (lit.¹³ $[\alpha]_{D}^{25} + 51^{\circ}$ (CHCl₃)); ¹H NMR (CDCl₃): δ 2.74 (s, 1 H, OH), 3.36 (s, 3 H, OCH₃), 3.75–3.93 (m, 3 H, H-4,5,6), 4.02 (m, 1 H, H-2), 4.08 (m, 1 H, H-3), 4.27 (dd, 1 H, H-6'), 4.74 (d, 1 H, J₁₂ 1.5 Hz, H-1), 4.78 (ABq, 2 H, J 11.5 Hz, CH₂Ph), 5.61 (s, 1 H, CHPh).

Methyl 3-O-benzyl-4,6-O-benzylidene- α -D- $(2^{-2}H)$ mannopyranoside (7'). A mixture of 4' (1.05 g, 2.08 mmol) and NaOBz (0.91 g, 6.32 mmol) in DMF (30 mL) was heated as described for 7 to give the crude 2-O-Bz derivative of 7' as a syrup (1.12 g). Debenzovlation (cat. NaOMe in MeOH) followed by chromatography (1:1 hexane–EtOAc) gave 7' as a syrup (582 mg, 75%), $[\alpha]_{D}^{22}$ + 49° (c 1, CHCl₃), (unlabeled compound, lit.¹³ $[\alpha]_{D}^{25}$ + 51° (CHCl₃)); m/z 372.17 (M⁺ - 1), $(M^+ + 1);$ 374.19 Anal. Calcd for $C_{21}H_{23}DO_6$: *m*/*z* 373.19 for M⁺: ¹H NMR $(CDCl_3)$: δ 2.74 (s, 1 H, OH), 3.36 (s, 3 H, OCH₃), 3.79 (dt, 1 H, $J_{4,5} \approx J_{5,6} \sim 10$, $J_{5,6'}$ 4 Hz, H-5), 3.86 (t, 1 H, H-6), 3.92 (t, 1 H, H-4), 4.08 (d, 1 H, J_{3,4} 10 Hz, H-3), 4.27 (dd, 1 H, H-6'), 4.74 (s, 1 H, H-1), 4.78 (ABq, 2 H, J 11.5 Hz, CH₂Ph), 5.61 (s, 1 H, CHPh).

General procedure for preparation of triflates.—To a cold $(-10 \,^{\circ}\text{C})$ solution of an alcohol (1 mmol) in 2:1 CH₂Cl₂–pyridine (6 mL) was added (CF₃SO₂)₂O (1.3 mmol) and the solution was kept for 2 h at 0 $^{\circ}\text{C}$. After addition of water (0.5 mL), the mixture was concentrated, and the residue was purified by chromatography (3:1 hexane–EtOAc).

Methyl 3-O-*benzyl*-4,6-O-*benzylidene*-2-O*triflyl*- α -D-*mannopyranoside* (8). Prepared from 7, needles (83%), mp 90–91 °C, $[\alpha]_{D}^{22}$ + 18° (*c* 1, CHCl₃); *m*/*z* 505.15 (M⁺ + 1); Anal. Calcd for $C_{22}H_{23}F_3O_8S$: m/z 504.11 for M⁺; ¹H NMR (CDCl₃): δ 3.40 (s, 3 H, OCH₃), 3.82 (m, 1 H, H-5), 3.87 (t, 1 H, H-6), 4.03 (m, 2 H, H-3,4), 4.26 (dd, 1 H, H-6'), 4.78 (ABq, 2 H, J 12 Hz, CH₂Ph), 4.84 (d, 1 H, H-1), 5.08 (t, 1 H, $J_{1,2} \approx J_{2,3} \sim$ 1.5 Hz, H-2), 5.62 (s, 1 H, CHPh). Anal. Calcd for $C_{22}H_{23}F_3O_8S$: C, 52.38; H, 4.60. Found: C, 52.29; H, 4.59.

Methyl 3-O-*benzyl*-4,6-O-*benzylidene*-2-O*triflyl*- α -D-(2-²H)*mannopyranoside* (**8**'). Prepared from **7**' as needles (81%), mp 91–93 °C (unlabeled compound, 90–91 °C), [α]_D²² + 18° (*c* 1, CHCl₃) (unlabeled, [α]_D²² + 18° (CHCl₃)); *m*/*z* 504.02 (M⁺ – 1), 506.02 (M⁺ + 1); Anal. Calcd for C₂₂H₂₂DF₃O₈S: *m*/*z* 505.11 for M⁺; ¹H NMR (CDCl₃): δ 3.39 (s, 3 H, CH₃), 3.81 (dt, 1 H, J_{4,5} \approx J_{5,6} 10, J_{5,6'} 4 Hz, H-5), 3.85 (t, 1 H, H-6), 4.03 (m, 2 H, H-3,4), 4.26 (dd, 1 H, H-6'), 4.78 (ABq, 2 H, J 12 Hz, CH₂Ph), 4.84 (s, 1 H, H-1), 5.08 (br s, 0.06 H, H-2), 5.62 (s, 1 H, CHPh).

Methyl 3-O-*benzyl*-4,6-O-*benzylidene*-2-O*triflyl*- β -D-(2-²H)*mannopyranoside* (10'). Prepared from 9' as needles (93%), mp 98–99 °C (unlabeled compound, lit.¹⁵ 99 °C), $[\alpha]_D^{22} - 35^\circ$ (*c* 1, CHCl₃), (unlabeled, lit.¹⁵ $[\alpha]_D - 36^\circ$ (CHCl₃)); *m*/*z* 506.23 (M⁺ + 1); Anal. Calcd for C₂₂H₂₂DF₃O₈S: *m*/*z* 505.11 for M⁺; ¹H NMR (CDCl₃): δ 3.37 (ddd, 1 H, *J*_{4,5} 9.5, *J*_{5,6} 10.3, *J*_{5,6'} 5 Hz, H-5), 3.55 (s, 3 H, OCH₃), 3.75 (d, 1 H, H-3), 3.90 (t, 1 H, H-6), 4.00 (t, 1 H, *J*_{3,4} \approx *J*_{4,5} 9.5 Hz, H-4), 4.33 (dd, 1 H, H-6'), 4.51 (s, 1 H, H-1), 4.80 (ABq, 2 H, *J* 12 Hz, *CH*₂Ph), 5.62 (s, 1 H, *CHP*h).

General procedure for the reactions of triflates with MeLi.—To a cold (-50 °C) solution of a triflate (0.2 mmol) in dry Et₂O (5 mL) was added MeLi (0.8 mmol, as a 1.4 M solution in Et₂O), and the solution was kept for 1 h at rt. Aq 2 M NH₄Cl (5 mL) and CHCl₃ (50 mL) were stirred in and the organic layer separated was washed with water, dried (Na₂SO₄), concentrated, and the reside was chromatographed.

Reaction of **8** *with MeLi*. After the general procedure followed by chromatography (1:1 hexane–EtOAc), **8** (100 mg) gave 12^2 (59 mg) and 7^{13} (13 mg) as syrups, respectively.

Reaction of **10**['] *with MeLi*. After the general procedure, 10' (100 mg) gave, on chromatography (5:1 hexane-EtOAc), a 3:2 mixture of 14^9 and 14' as needles (14 mg, 20%), mp 82–84 °C (unlabeled compound, lit.¹⁵ 83 °C), $[\alpha]_{D}^{22} - 108^{\circ}$ (c 0.5, CHCl₃) (unlabeled, lit.¹⁵ $[\alpha]_{D}$ – 110° (CHCl₃)); ¹H NMR (CDCl₃): δ 3.42 (s, 3 H, OCH₃), 3.81 (dt, 1 H, J_{4,5} 8.5, J_{5,6} 10, J_{5.6'} 4 Hz, H-5), 3.91 (t, 1 H, H-6), 4.32 (dd, 1 H, H-6'), 4.44 (d with narrow multiplets, 1 H, H-4), 4.70 (t, 0.6 H, $J_{1,2} \approx J_{2,4} \sim 1.5$ Hz, H-2), 4.88 (ABq, 2 H, J 12 Hz, CH₂Ph), 5.39 (dd, 0.6 H; d, 0.4 H, $J_{1.4} \sim 2.5$ Hz, H-1), 5.62 (s, 1 H, CHPh). Further development with 1:1 hexane-EtOAc gave, from the fastermoving fractions, compound 15 as a syrup (24 mg, 31%), $[\alpha]_{D}^{22} - 41^{\circ}$ (c 1, CHCl₃), (unlabeled, lit.² $[\alpha]_D^{24} - 43^\circ$ (CHCl₃)); ¹H NMR (CDCl₃): all signals are identical with those reported.² From the slower-moving fractions compound 16 was obtained as a solid (34 mg, 45%), $[\alpha]_{D}^{22} - 37^{\circ}$ (*c* 1, CHCl₃), (unlabeled, lit.² $[\alpha]_{D}^{24} - 35^{\circ}$ (CHCl₃)); ¹H NMR (CDCl₃): all signals are identical with those reported.²

General procedure for the reactions of triflates with t-BuOK.—To a solution of a triflate (0.2 mmol) in dry ether (3 mL) was added t-BuOK (0.6 mmol), and the mixture was stirred for 3 h at rt. Water (7 mL) was added and the resulting mixture was extracted with CHCl₃ (20 mL × 3). The combined organic solution was washed with water, dried (Na₂SO₄), and concentrated. The residue was chromatographed on silica gel with 1:1 hexane–EtOAc.

Reaction of **8** *with* t-*BuOK.* After the general procedure, **11** was obtained as needles (93%), mp 121–122 °C (lit.¹⁴ 120–121 °C), $[\alpha]_{D}^{22}$ + 56° (*c* 1, CHCl₃) (lit.¹⁴ $[\alpha]_{D}^{22}$ + 59° (*c* 0.6, CHCl₃)); *m*/*z* 353.17 (M⁺ – 1), 355.17 (M⁺ + 1); Anal. Calcd for C₂₁H₂₂O₅: *m*/*z* 354.15 for M⁺; ¹H NMR (CDCl₃): δ 3.41 (s, 3 H, OCH₃), 3.83 (t, 1 H, H-6), 4.11 (dt, 1 H, $J_{4,5} \approx J_{5,6}$ 10, $J_{5,6'}$ 4.5 Hz, H-5), 4.26 (dd, 1 H, H-4), 4.30 (dd, 1 H, H-6'), 4.74 (dd, 1 H, $J_{1,2}$ 3.2, $J_{2,4} \sim$ 1.6 Hz, H-2), 4.86 (ABq, 2 H, *J* 12 Hz, CH₂Ph), 5.01 (d, 1 H, H-1), 5.58 (s, 1 H, CHPh).

Reaction of **8**' with t-BuOK to give methyl 3 -O-benzyl-4,6-O-benzylidene-2-deoxy- α -D-(2-²H)erythro-hex-2-enopyranoside (**11**'). Needles, mp 119–121 °C (unlabeled compound, lit.¹⁴ 120–121 °C), $[\alpha]_D^{22} + 57^\circ$ (*c* 1, CHCl₃) (unlabeled, lit.¹⁴ $[\alpha]_D + 59^\circ$ (*c* 0.6, CHCl₃)); *m/z* 354.13 (M⁺ – 1), 356.13 (M⁺ + 1); Anal. Calcd for C₂₁H₂₁DO₅: *m/z* 355.15 for M⁺; ¹H NMR (CDCl₃): δ 3.41 (s, 3 H, OCH₃), 3.83 (t, 1 H, H-6), 4.11 (dt, 1 H, J_{4,5} 9, J_{5,6} 10, J_{5,6'} 4.5 Hz, H-5), 4.26 (dd, 1 H, J_{1,4} ~ 1 J_{4,5} 9 Hz, H-4), 4.30 (dd, 1 H, H-6'), 4.74 (dd, 0.06 H, H-2), 4.87 (ABq, 2 H, J 12 Hz, CH₂Ph), 5.02 (s, 1 H, H-1), 5.59 (s, 1 H, CHPh).

Reaction of 10' with t-BuOK. After the general procedure, 14' was obtained as needles (84%), mp 83-84 °C (unlabeled compound, lit.¹⁵ 83 °C), $[\alpha]_{D}^{22} - 109^{\circ}$ (c 1, CHCl₃), (unlabeled, lit.¹⁵ $[\alpha]_{D} - 110^{\circ}$ (CHCl₃)); m/z 354.21 $(M^+ - 1)$; Anal. Calcd for $C_{21}H_{21}DO_5$: m/z355.15 for M⁺; ¹H NMR (CDCl₃): δ 3.42 (s, 3) H, OCH₃), 3.81 (dt, 1 H, J_{4.5} 8.5, J_{5.6} 10, J_{5.6}' 4 Hz, H-5), 3.90 (t, 1 H, H-6), 4.32 (dd, 1 H, H-6'), 4.44 (dd, 1 H, H-4), 4.70 (t, ~ 0.06 H, H-2), 4.88 (ABq, 2 H, J 12 Hz, CH₂Ph), 5.39 (d, 1 H, J₁₄ 2.5 Hz, H-1), 5.62 (s, 1 H, CHPh). Reaction of $21'^3$ with t-BuOK to give methyl 2,3,6-tri-O-benzyl-4-deoxy- β -L-threo-hex-4enopyranoside (22²), methyl 2,3,6-tri-O-benzyl-4-deoxy- β -L-(4- ^{2}H)threo-hex-4-enopyranoside (22) and methyl 2,3,6-tri-O-benzyl- α -D-(4- ^{2}H)glucopyranoside (23'²). Chromatography as described in the general procedure gave a 1:4.5 mixture of 22 and 22' as a syrup (14%), $[\alpha]_D^{22}$ $+79^{\circ}$ (c 0.5, CHCl₃) (unlabeled compound, lit.² $[\alpha]_{D}^{22}$ + 78° (c 1, CHCl₃)); ¹H NMR (CDCl₃): δ 3.49 (s, 3 H, OCH₃), 3.78 (dd, 1 H, J_{1,2} 2.5, J_{2,3} 7 Hz, H-2), 3.92 (sl. br s, 2 H, H-6,6'), 4.23 (~dt, 1 H, $J_{2,3}$ 7, $J_{3,6} \approx J_{3,6'} \sim 1$ Hz, H-3); 4.54, 4.63, and 4.77 (each ABq, 2 H, J 12 Hz, $CH_2Ph \times 3$, 4.85 (d, 1 H, H-1), 5.04 (d, 0.18 H, $J_{3,4}$ 3 Hz, H-4). Further development gave 23' as a syrup (81%), $[\alpha]_D^{22}$ $+11.5^{\circ}$ (c 0.6, CHCl₃) (lit.² $[\alpha]_{D}^{22}$ $+12^{\circ}$ $(CHCl_3)).$

Reaction of $25'^2$ with t-BuOK to give methyl 2,3,6-tri-O-benzyl-4-deoxy- β -L-(4-²H)threohex-4-enopyranoside (22') and 2,3,6-tri-O-benzyl - 4 - deoxy - α - D - (4 - ²H)erythro - hex - 3 enopyranoside (26'). Chromatography as described in the general procedure gave 22' as a syrup (34%), $[\alpha]_{D}^{22}$ + 79° (c 1.2, CHCl₃) (unlabeled compound, lit.² $[\alpha]_{D}^{22}$ + 78° (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 3.49 (s, 3 H, OCH₃), 3.78 (dd, 1 H, $J_{1,2}$ 2.5, $J_{2,3}$ 7 Hz, H-2), 3.92 (sl. br s, 2 H, H-6,6'), 4.23 (dt, 1 H, $J_{2,3}$ 7, $J_{3,6} \approx J_{3,6'} \sim 1$ Hz, H-3); 4.54, 4.63, and 4.77 (each ABq, 2 H, J 12 Hz, $CH_2Ph \times 3$), 4.85 (d, 1 H, H-1). Further development gave **26**' as a syrup (54%), $[\alpha]_{D}^{2D} - 40^{\circ}$ (*c* 1.1, CHCl₃); m/z 446.30 (M⁺ – 1); Anal. Calcd for C₂₈H₂₉DO₅: m/z 447.22 for M⁺; ¹H NMR (acetone- d_6): δ 3.45 (s, 3 H, OCH₃), 3.50 (dd, 1 H, H-6), 3.58 (dd, 1 H, H-6'), 4.16 (dd, 1 H, $J_{2,5}$ 2.5, $J_{5,6}$ 5.0, $J_{5,6'}$ 6.0 Hz, H-5), 4.58, 4.75 and 4.82 (each ABq, 2 H, J 12 Hz, $CH_2Ph \times 3$), 4.94 (d, 1 H, H-1).

General procedure for the reactions of triflates with pyridine.—A solution of a triflate (0.2 mmol) in pyridine (2 mL) was heated at 80 °C for 7 h, except for 8. After excess pyridine has been evaporated in vacuo, the residue dissolved in CHCl₃ (20 mL) was washed with water, dried (Na₂SO₄), and concentrated. The residue was chromatographed on silica gel (5:1 CHCl₃–MeOH) to give the pyridinium trifluoromethanesulfonate.

Reaction of $\mathbf{4}^{9-11}$ with pyridine to give methvl 3-O-benzyl-4,6-O-benzylidene-2-de $oxv-2-(pvridinium-1-vl)-\alpha-D-mannopvranoside$ *triflate* (13). Syrup, $[\alpha]_{D}^{22}$ -41° (c 0.5, CHCl₃); ¹H NMR (CDCl₃): δ 3.45 (s, 3 H, OCH₃), 3.80 (t, 1 H, $J_{5,6} \approx J_{6,6'}$ 10 Hz, H-6), 4.06 (dt, 1 H, $J_{4,5} \approx J_{5,6}$ 10, $J_{5,6'}$ 5.5 Hz, H-5), 4.10 (t, 1 H, J_{3,4} 10 Hz, H-4), 4.32 (dd, 1 H, H-3), 4.38 (dd, 1 H, H-6'), 4.78 (ABq, 2 H, J 12 Hz, CH₂Ph), 5.22 (d, 1 H, $J_{1,2} < 0.5$, $J_{2,3}$ 5.8 Hz, H-2), 5.39 (s, 1 H, H-1), 5.61 (s, 1 H, CHPh), 8.00, 8.40 and 8.97 (each m of 2, 1, and 2 H, respectively, C₅H₅N); ¹⁹F NMR (CDCl₃): δ - 78.54 (s, CF₃SO₃).

Reaction of **6**⁹ with pyridine to give methyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-(pyridinium-1-yl)- β -D-mannopyranoside triflate (**17**). Needles, mp 73–75 °C, $[\alpha]_{D}^{23}$ + 38° (*c* 1, CHCl₃); *m*/*z* 434.16 (M⁺); Anal. Calcd for C₂₆H₂₈NO₅: *m*/*z* 434.20 for M⁺; ¹H NMR (CDCl₃): δ 1.70 (s, 2 H, H₂O), 3.50 (s, 3 H, OCH₃), 3.63 (dt, 1 H, J_{5,6} 5 Hz, H-5), 3.83 (t, 1 H, H-6), 4.01 (t, 1 H, J_{3,4} \approx J_{4,5} 10 Hz, H-4), 4.38 (dd, 1 H, H-6'), 4.41 (dd, 1 H, H-3), 4.82 (ABq, 2 H, J 12 Hz, CH₂Ph), 5.16 (d, 1 H, H-1), 5.60 (s, 1 H, CHPh), 5.78 (dd, 1 H, $J_{1,2}$ 2.8, $J_{2,3}$ 5.5 Hz, H-2), 7.92, 8.31 and 9.06 (m of 2, 1, and 2 H, respectively, C₅H₅N). Anal. Calcd for C₂₇H₂₈F₃NO₈S·H₂O: C, 53.90; H, 5.03; N, 2.33. Found: C, 54.03; H, 5.06; N, 2.38.

Reaction of 8 with pyridine to give 11^{14} , 3-O-benzyl-4,6-O-benzylidene-2-deoxy-D-erythro-hex-2-enal (18), and 4,6-O-benzylidene-2.3-dideoxy-D-erythro-hex-2-eno-1.5-lactone (19)¹⁶. Heating 8 (120 mg, 0.24 mmol) in pyridine (4 mL) at 60 °C for 12 h followed by concentration of the solution in vacuo gave a residue, which was chromatographed (1:1 hexane-EtOAc) to give, from the fastermoving fractions, compound 11^{14} as needles (7 mg, 8%) and, from the second-moving fractions, compound 19 as a solid (25 mg, 45%), mp 135–136 °C (lit.¹⁶ 136–137 °C), $[\alpha]_{D}^{22} + 32^{\circ}$ (c 1, CHCl₃) (lit.¹⁶ $[\alpha]_{D}^{27} + 33^{\circ}$ (c 1, CHCl₃); m/z 233.15 (M⁺ + 1); Anal. Calcd for $C_{13}H_{12}O_4$: m/z 332.09 for M⁺; ¹H NMR (CDCl₃): δ 4.04 (unresolved m, 1 H, H-6; signals are complex due to virtual couplings involving H-4), 4.38–4.53 (unresolved m, 3 H, H-4,5,6'), 5.46 (d, 1 H, H-2), 5.60 (s, 1 H, CHPh), 7.30 (d, 1 H, H-3); J₂₃ 6 Hz; ¹³C NMR (CDCl₃): δ 67.91 (C-6), 73.08 (C-4 or 5), 77.52 (C-5 or 4), 102.35 (CHPh); 106.32 (C-2), 126.45, 128.34, 129.47 and 136.23 (Ph), 161.36 (C-3), 188.07 (C-1), which were confirmed by the C-H correlation spectrum; the H-4,5, and 6' could not be resolved even in the spectrum in pyridine- d_5 . From the slowest-moving fractions compound 18 was obtained as a syrup (18 mg, 20%), $[\alpha]_{D}^{22}$ + 0.2° (c 1, CHCl₃); m/z 339.16 (M⁺ - 1), 341.16 (M⁺ + 1); Anal. Calcd for $C_{20}H_{20}O_5$: m/z 340.13 for M⁺; ¹H NMR (CDCl₃): δ 2.61 (d, 1 H, OH), 3.73 (dd, 1 H, J₅₆ 10, J₆₆ 11 Hz, H-6), 4.20 (m, 1 H, H-5), 4.40 (dd, 1 H, $J_{56'}$ 5.5 Hz, H-6'), 4.90 (d, 1 H, J_{45} 9.2 Hz, H-4), 4.95 (ABq, 2 H, J 11.5 Hz, CH₂Ph), 5.59 (s, 1 H, CHPh), 5.66 (d, 1 H, $J_{1,2}$ 7 Hz, H-2), 9.98 (d, 1 H, H-1); ¹³C NMR (CDCl₃): δ 63.33 (C-5), 71.28 (C-6), 71.38 (C-4), 79.66 (CH₂Ph), 101.81 (CHPh), 108.33 (C-2), 190.50 (C-1).

Reaction of **10**' with pyridine to give methyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-(pyridinium-1-yl)- β -D-(2-²H)glucopyranoside triflate (**20**'). Syrup, $[\alpha]_D^{23} + 38^\circ$ (c 1, CHCl₃); m/z 435.42 (M⁺); Anal. Calcd for C₂₆H₂₇- DNO₅: m/z 435.20 for M⁺; ¹H NMR (CDCl₃): δ 3.37 (s, 3 H, OCH₃), 3.83 (t, 1 H, $J_{5,6} \approx J_{6,6'}$ 10.2 Hz, H-6), 3.87 (dd, 1 H, $J_{3,4}$ 8.0, $J_{4,5}$ 9.5 Hz, H-4), 4.04 (dt, 1 H, H-5), 4.45 (dd, 1 H, $J_{5,6'}$ 4.5 Hz, H-6'), 4.57 (ABq, 2 H, J12 Hz, CH_2 Ph), 4.58 (d, 1 H, H-3), 5.36 (s, 1 H, H-1), 5.63 (s, 1 H, CHPh), 7.87, 8.34 and 8.83 (each m of 2, 1, and 2 H, respectively, C_5H_5 N); ¹⁹F NMR (CDCl₃): δ - 78.62 (s, CF_3SO_3).

Reaction of **21**¹⁸ with pyridine to give methyl 4-deoxy-2,3,6-tri-O-benzyl-4-(pyridinium-1-yl)- α -D-galactopyranoside triflate (**24**). Syrup, $[\alpha]_{22}^{22}$ + 48° (c 2, CHCl₃), ¹H NMR (CDCl₃): δ 3.41 (s, 3 H, OCH₃), 3.58 (dd, 1 H, $J_{5,6}$ 5.5, $J_{6,6'}$ 10.5 Hz, H-6), 3.71 (dd, 1 H, $J_{1,2}$ 3.8, $J_{2,3}$ 10.5 Hz, H-2), 3.86 (dd, 1 H, $J_{5,6'}$ 4.5 Hz, H-6'), 4.21 (s, 2 H, CH₂Ph), 4.38 (dd, 1 H, H-3), 4.51 (dt, 1 H, H-5), 4.64 and 4.80 (each ABq, 2 H, CH₂Ph × 2), 4.98 (d, 1 H, H-1), 5.55 (dd, 1 H, $J_{3,4}$ 5.5, $J_{4,5}$ 3.5 Hz, H-4); 7.70 (t, J 8.5 Hz, 2 H), 8.14 (m, 1 H) and 9.03 (d, 6 Hz, 2 H) (C₅H₅N).

Acknowledgements

We express deep thanks to Dr Hiroshi Naganawa of Institute of Microbial Chemistry, Ms Yoshiko Koyama and Ms Miwa Arai of our institute for measurements of mass spectra, NMR spectra, and assistance in preparing the manuscript, respectively. We are also grateful to Dr Yoshihiko Kobayashi for preparation of some compounds and other valuable advice.

References

- 1. El Nemr, A.; Tsuchiya, T. Tetrahedron Lett. 1995, 36, 7665–7668.
- El Nemr, A.; Tsuchiya, T.; Kobayashi, Y. Carbohydr. Res. 1996, 293, 31–59.
- 3. El Nemr, A.; Tsuchiya, T. Carbohydr. Res. 1997, 301, 77–87.
- 4. El Nemr, A.; Tsuchiya, T. Carbohydr. Res. **1997**, 303, 267–281.
- 5. Richardson, A. C. Carbohydr. Res. 1969, 10, 395-402.
- Miljkovic, M.; Gligorijevic, M.; Glisin, D. J. Org. Chem. 1974, 39, 3223-3226.
- Garegg, P. J.; Iversen, T.; Oscarson, S. Carbohydr. Res. 1976, 50, C12–C14.
- 8. Daves Jr., G. D.; Kovác, P.; Glaudemans, C. P. J. J. *Carbohydr. Chem.* **1990**, *9*, 101–112.
- Haradahira, T.; Maeda, M.; Omae, H.; Yano, Y.; Kojima, M. Chem. Pharm. Bull. 1984, 32, 4758–4766.
- 10. Baer, H. H.; Radatus, B. Carbohydr. Res. 1984, 128, 165-174.
- 11. Fleet, G. W. J.; Gough, M. J.; Shing, T. K. M. Tetrahedron Lett. 1984, 25, 4029-4032.
- 12. Ishido, Y.; Sakairi, N. Carbohydr. Res. 1981, 97, 151-155.
- 13. Nashed, M. A. Carbohydr. Res. 1978, 60, 200-205.
- Kovác, P.; Yeh, H. J. C.; Jung, G. L.; Glaudemans, C. P. J. J. Carbohydr. Chem. 1986, 5, 497–512.
- Haradahira, T.; Maeda, M.; Kai, Y.; Omae, H.; Kojima, M. Chem. Pharm. Bull. 1985, 33, 165–172.
- 16. Furuichi, B. K.; Yogai, S.; Miwa, T. J. Chem. Soc. Chem. Commun. 1980, 66–68.
- 17. Tsuchiya, T.; Ajito, K.; Umezawa, S.; Ikeda, A. Carbohydr. Res. 1984, 126, 45-60.
- 18. Barrett, E.-P.; Goodman, L. J. Org. Chem. 1984, 49, 176–178.
- 19. Doboszewski, B.; Hay, G. W.; Szarek, W. A. Can. J. Chem. 1987, 65, 412-419.