

Journal of Fluorine Chemistry 94 (1999) 91-103

Perfluoralkylsubstituierte β-Chlorvinylaldehyde: eine neue Klasse von building blocks zur Synthese fluorierter Heterocyclen

Dieter Greif^{a,*}, U. Eilitz^b, M. Pulst^b, D. Riedel^b, M. Wecks^b

^aHochschule für Technik, Wirtschaft und Sozialwesen Zittau/Görlitz, Fachbereich Mathematik und Naturwissenschaften, Theodor-Körner-Allee 16, D-02763, Zittau, Germany

D-02705, Zhiau, Germany ^bFakultät für Chemie und Mineralogie der Universität Leipzig, Institut für Organische Chemie, Talstraße 35, D-04103, Leipzig, Germany

Received 11 August 1998; accepted 25 November 1998

Abstract

By the preparation of β -chloro- β -perfluoroalkyl substituted acroleins, synthesized in three steps starting from benzylcyanide and ethyl perfluoroalkyl carboxylates, a versatile class of building blocks was obtained in good yields. β -Chloro- β -perfluoroalkyl substituted vinylaldehydes represent reactive C₃-building blocks for preparing perfluoroalkyl substituted *N*-, *S*- and *N*,*S*-containing five and six membered heterocycles. A possible mechanism of formation of 5-CF₃-substituted triazoles is discussed.

Using *p*-xylylenedicyanide as starting material the reaction results in the formation of bis- β -chloro- β -perfluoroalkyl substituted acroleins. So it is possible to synthesize different bis-quinolins and also perfluoroalkyl substituted polymers with diazaanthracene or quinoline substructure. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Perfluoroalkyl; Building blocks; Heterocycles; β-Chlorovinylaldehydes

1. Einleitung

Fluorierte heterocyclische Verbindungen erlangten in den letzten Jahren große Bedeutung in Pharmazie und Agrochemie. Eine Reihe von antiviralen, antitumoralen und fungiziden Stoffen konnte synthetisiert werden, bei denen die Fluorsubstitution der Schlüssel für ihre biologische Aktivität ist [1–3]. Um in ein Molekül selektiv Fluor einführen zu können, stehen prinzipiell zwei Methoden zur Verfügung:

- direkte Einführung in einem späten Schritt mittels Fluorierungsreagenzien,
- Verwendung fluorhaltiger building blocks.

Für die direkte Einführung von Fluor stehen eine Reihe von Fluorierungsreagenzien und -techniken zur Verfügung [4,5]. Gewisse Nachteile dieser Methode sind die oft hohe Reaktivität der Fluorierungsmittel, die die Kontrolle von Regio- und Stereoselektivität erschweren. Ausnahmen bilden DAST [6] und OLAH's Reagenz [7], die wegen ihrer guten Handhabbarkeit zu den wahrscheinlich wichtigsten Fluorierungsmitteln in der organischen Chemie geworden sind. Bei vorhandener Multifunktionalität eines Moleküls erweist sich die *building block*-Methode meist als effizienter.

Durch die kontrollierbare Reaktivität der *building blocks* kann schon zu Beginn einer Synthesesequenz der Ort festgelegt werden, an dem sich der Fluorsubstituent im Endprodukt befindet.

2. Resultate und Diskussion

Mit der Darstellung der β -Chlor- β -perfluoralkylvinylaldehyde **1** wurde eine neue Klasse von *building blocks* erschlossen, die vor allem die Synthese fluorierter Heterocyclen gestatten. Dabei erfolgt die Darstellung der β -Chlor- β -perfluoralkylvinylaldehyde **1a–i** durch Vilsmeier–Haack– Arnold-Reaktion mit substituierten Benzyltrifluormethylketonen [8–10]. Setzt man 1,4-Bis-(2-perfluoralkyl-2oxoethyl)-benzol mit zwei Äquivalenten Vilsmeier-Reagenz um, so erhält man in 82%iger Ausbeute die doppelt chlorformylierten Verbindungen, 1,4-Bis-(3-chlor-3-perfluoralkyl-2-propen-1-al-2-yl)-benzole **2** (Bild 1, Bild 2 sowie Tabellen 1 und 2).

Mit Hilfe der ¹⁹F-NMR-Spektren lassen sich die Anteile der drei möglichen Diastereomere der Verbindungen **2a,b** (E/E, E/Z und Z/Z) bestimmen.

^{*}Corresponding author.

^{0022-1139/99/} - see front matter © 1999 Elsevier Science S.A. All rights reserved. PII: S0022-1139(98)00353-4

Bild 2.

Tabelle 1 β -Chlor- β -perfluoralkylvinylaldehyde **1**

Verbindung	R	R _f
1a	Н	CF ₃
1b	4-F	CF_3
1c	4-Cl	CF_3
1d	4-Br	CF_3
1e	3-CF ₃	CF ₃
1f	$4-CF_3$	CF_3
1g	4-CH ₃ O	CF ₃
1h	2,3,4,5,6-F	CF ₃
1i	Н	C_3F_7

Tabelle 2

1,4-Bis-(3-chlor-3-perfluoralkyl-2-propen-1-al-2-yl)-benzole 2				
Verbindung	R _f			
2a 2b	CF ₃ C ₃ F ₇			

Durch Substitution der Chloratome in den β -Chlor- β perfluoralkylvinylaldehyden 1 mittels Natriumsulfids erhält man β -Mercapto- β -perfluoralkylvinylaldehyde 3, die mit α , β -ungesättigten Carbonylverbindungen wie Acrolein, Crotonaldehyd, Zimtaldehyd und Methylvinylketon zu perfluoralkylsubstituierten 2*H*-Thiopyranen reagieren [11].

Die Darstellung von 2-Benzoylthiophenen mit einer Perfluoralkylgruppe in 5-Position gelang durch Reaktion der β -Mercapto- β -perfluoralkylvinylaldehyde **3** mit verschieden substituierten Phenacylbromiden [11]. Perfluoralkylsubstituierte Thiophene **5** sind darüberhinaus durch Reaktion der β -Chlor- β -perfluoralkylvinylaldehyde **1** mit Na₂S und substituierten Benzylbromiden zugänglich. Die während der Reaktion entstehenden Thioether **4** lassen sich isolieren; die Thiophensynthese ist aber auch als "Eintopfreaktion" durchführbar (Bild 3).

Die Umsetzung der β -Chlor- β -perfluoralkylvinylaldehyde **1** mit primären aromatischen Aminen führt zu 2perfluoralkylsubstituierten Chinolinen bzw. fluorierten benzoanellierten Chinolinen [12]. In Analogie zu diesen Cyclisierungsreaktionen der "einfachen" β -Chlor- β -perfluoralkylvinylaldehyde **1** erwarteten wir bei Umsetzung von 1,4-Bis-(3-chlor-3-perfluor-alkyl-2-propen-1-al-2-yl)benzolen **2** mit primären aromatischen Aminen die Bildung von *p*-phenylenüberbrückten Bischinolinderivaten **6** (Bild 4).

Setzt man Verbindung **2a** mit der doppelt molaren Menge des entsprechenden Anilins in Eisessig um, entstehen in

Bild 3.

Bild 4.

Tabelle 3 *p*-phenylenüberbrückte Chinoline **6**

p phonylonacereraence chinemie e		
Verbindung	R	
6a	6'-OH	
6b	6'-COOH	
6с	6'-OCH3	
6d	6'-CF ₃	
6e	6'-COCH ₃	
	5	

guten	Ausbeuten	1,4-Bis-(2-trifluormethyl-chinol-3-yl)-
benzol	e 6 (Tabelle	3).

Es stellte sich nun die Frage, ob β -Chlor- β -perfluoralkylvinylaldehyde **1** auch mit Phenylendiaminen zu perfluoralkylsubstituierten Heterocyclen cyclisieren können. Abhängig vom Typ der Phenylendiamine wurden sehr unterschiedliche Ergebnisse erhalten.

Bei der Umsetzung der β -Chlor- β -perfluoralkylvinylaldehyde **1** mit *p*-Phenylendiamin erhielten wir 2,6-Di(perfluoralkyl)-1,5-diazaanthracene **7** in guten Ausbeuten (Bild 5 und Tabelle 4).

Mit *m*-Phenylendiamin entstanden unter vergleichbaren Reaktionsbedingungen lediglich komplexe, nicht trennbare

Tabel	le	4
Diag		theorem

Diazaaninracene 7				
Verbindung	R _f	Ar		
7a	CF ₃	C ₆ H ₅		
7b	CF ₃	4'-Br-C ₆ H ₄		
7c	CF ₃	$3'-CF_3-C_6H_4$		
7d	CF ₃	$4'-OCH_3-C_6H_4$		

Gemische. Mit *o*-Phenylendiamin kommt es in perchlorsaurer alkoholischer Lösung zur Bildung der violett gefärbten Benzodiazepiniumsalze **8**, die bis -35° C stabil sind, sich jedoch beim Versuch der Aufarbeitung zersetzen. Die Rohprodukte lagern sich dabei unter Ringverengung in das stabilere Benzimidazoliumperchlorat **9** um (Bild 6).

Die Darstellung 6,6'-verknüpfter symmetrischer Bischinolinderivate **10** gelingt durch Reaktion der β -Chlor- β perfluoralkylvinylaldehyde **1** mit Benzidin in Eisessig. Diese Reaktion verläuft allerdings langsamer und mit geringeren Ausbeuten als die Cyclisierung mit *p*-Phenylendiamin zu den Diazaanthracenen **7** (Bild 7).

Durch Polykondensation von 1,4-Bis-(3-chlor-4,4,4-trifluor-2-buten-1-al-2-yl)-benzol (**2a**) mit aromatischen Bisnucleophilen wie *p*-Phenylendiamin und Benzidin gelingt es, polymere Strukturen vom Typ **11** und **12** mit Trifluormethylgruppen an definierten Stellen des Heterocyclus zu synthetisieren (Bild 8).

Die Schmelzpunkte der Verbindungen 11 und 12 liegen über 300°C; in organischen Lösungsmitteln sind diese Polymere unlöslich, so daß die Strukturaufklärung sehr erschwert ist. Spezielle Untersuchungen zur Charakterisier-

Bild 6.

Bild 8.

ung der Polymere (Molekulargewicht, Erweichungstemperatur und thermische Stabilität) werden zur Zeit durchgeführt. In Übereinstimmung mit der Literatur [13] sollten sich die fluorierten Polymere **11** und **12** vor allem für die Herstellung polymerer Trennmembranen eignen.

Breiten Raum nahmen Untersuchungen zum Cyclisierungsverhalten der β -Chlor- β -perfluoralkylvinylaldehyde 1 mit aliphatischen *N*-Nucleophilen ein. Folgende Ergebnisse können wir vorstellen: Mit Hydroxylamin und Semicarbazid reagieren β -Chlor- β -perfluoralkylvinylaldehyde 1 und 2 erwartungsgemäß zu Oximen 13 bzw. Semicarbazonen 14; ein Ringschluß konnte, im Unterschied zu entsprechenden unfluorierten Verbindungen, in keinem Fall beobachtet werden. Mit Hydrazin bilden sich die in 5-Position perfluoralkylsubstituierten Pyrazole **15** (R=H), ohne daß sich Zwischenstufen isolieren lassen (Bild 9).

Dagegen lieferte die Umsetzung der β -Chlor- β -perfluoralkylvinylaldehyde **1** mit Phenylhydrazin sowohl in Ethanol unter sauren Bedingungen oder mit Triethylamin als auch in Eisessig auch nach mehrstündigem Erhitzen unter Rückfluß keine Pyrazolderivate **15**, sondern lediglich die entsprechenden Phenylhydrazone. Da das Chloratom für diese

Reaktion aufgrund der starken Acceptorwirkung der CF₃-Gruppe nicht hinreichend nucleofug ist, wurde es gegen die Mercaptofunktion ausgetauscht. Erwärmt man nun die β -Mercapto- β -perfluoralkylvinylaldehyde **3** mit ethanolischer Phenylhydrazinlösung solange unter Rückfluß, bis keine H₂S-Entwicklung mehr nachweisbar ist, erhält man die erwarteten Pyrazolderivate **15** (R=C₆H₅) als farblose kristalline Verbindungen.

 β -Chlor- β -perfluoralkylvinylaldehyde 1 reagieren mit Ammoniumrhodanid und Guanidin zu perfluoralkylsubstituierten Isothiazolen 16 und Pyrimdinen 17. Dagegen konnten mit Harnstoff und Thioharnstoff unter vergleichbaren Reaktionsbedingungen keine definierten Produkte erhalten werden (Bild 10).

Einen unerwarteten Verlauf nahm die Reaktion der β -Chlor- β -perfluoralkylvinylaldehyde **1** mit Natriumazid. Normalerweise reagieren β -Chlorvinylaldehyde mit Natriumazid über die Stufe der β -Azidovinylaldehyde unter nachfolgender N₂-Eliminierung zu den entsprechenden Isoxazolderivaten [14]. Bei Einsatz der β -Chlor- β -perfluoralkylvinylaldehyde **1** fanden wir jedoch im Gegensatz zu der kürzlich erschienen Mitteilung von Laurent [15], daß sich die nach der Reaktion von **1** mit NaN₃ in DMF isolierten Produkte als 4-perfluoralkylsubstituierte Triazole **18a–d** erwiesen. Die Bildung der Triazole **18** ist durch einen elektrocyclischen Ringschluß der im ersten Reaktionsschritt gebildeten β -Azido- β -perfluoralkylvinylaldehyde und anschließender formaler Decarbonylierung erklärbar (Bild 11).

1,4-Bis-(3-chlor-4,4,4-trifluor-2-buten-1-al-2-yl)-benzol (2a) reagiert analog zu 1,4-Bis-4-trifluormethyl-1,2,3-triazol-5-yl)-benzol (18e) (Bild 12).

Untersuchungen zum Mechanismus dieser ungewöhnlichen Cyclisierung zeigten, daß es im Anschluß an die nucleophile Substitution des Chloratoms durch das Azidion zur Hydratisierung der Aldehydgruppe kommt, was auf den starken -I-Effekt der Perfluoralkylgruppe zurückzuführen ist. Unter Cyclisierung und Abspaltung von Ameisensäure entstehen die Triazole **18** (Bild 13).

Der Nachweis der abgespaltenen Ameisensäure erfolgte indirekt durch Nachweis von Stickstoffwasserstoffsäure, die entsteht, wenn Ameisensäure mit im Überschuß verwendetem Natriumazid reagiert. Die so entstandene Stickstoffwasserstoffsäure konnte im Schutzgasstrom durch Einleiten in Fe(III)-Lösung nachgewiesen werden.

3. Experimentelle Einzelheiten

Die angegebenen Schmelzpunkte wurden auf einem Mikroheiztisch nach Boëtius bestimmt und stellen korrigierte Werte dar. Elementaranalysen wurden mit einem "CHNS-Simultan-Bestimmung Elementar Vario EL" (Firma Heraeus) gemessen. Die NMR-Spektren wurden mit den folgenden Geräten aufgenommen: Varian Gemini 200 (Firma Varian), Varian Gemini 300 (Firma Varian) und Varian Gemini 2000 (Firma Varian). Die NMR-Verschiebungen sind in ppm angegeben und für ¹H- und ¹³C-Spektren auf Lösungsmittelrestsignal referenziert; das für die ¹⁹F-Spektren wurde Trifluoressigsäure als externer Standard verwendet. Signale, die tieffeldverschoben zum Standard erscheinen, sind mit positivem Vorzeichen versehen. Die IR-

Bild 12

Spektren wurden mit den Geräten ATI Mattson (Firma Unicam) und Specord M 80 (Firma Carl-Zeiss-Jena) aufgenommen. Die Massenspektren wurden mit den Geräten VG 12-250 (Firma Masslab) bzw. MAT 212 (Firma Masslab) bei 70eV unter direkter Probenzufuhr gemessen. Das FAB-Spektrum wurde mit dem Fisons VG Autospec FAB-Massenspektrometer (Cäsium-Primärionenquelle; 30 keV; 1 µA Primärstrom) aufgenommen. Bei der säulenchromatographischen Trennung der Produkte wurde Kieselgel 60 der Fa. Merck mit einer Korngröße 63-200 µm eingesetzt. Ausgangsverbindungen wurden nach den angegeben Literaturvorschriften dargestellt oder käuflich erworben. Die verwendeten Lösungsmittel wurden in gereinigter und getrockneter Form eingesetzt: Ether und THF wurden über Calciumchlorid vorgetrocknet und anschließend über Natrium destilliert; Toluol wurde über Natrium destilliert; Chloroform, Methylenchlorid und Petrolether (30/85) wurden über Calciumchlorid getrocknet und destilliert. DMF wurde nach Organikumsvorschrift [16] gereinigt.

3.1. Benzyl-(4,4,4-trifluor-2-phenylbut-2-en-1-al-3-yl)sulfid (4)

10 mmol (2.4 g) Natriumsulfidnonahydrat werden in 50 ml DMF aufgeschlämmt. Nach Zutropfen von 10 mmol (2.4 g) β-Chlor-β-trifluormethylvinylaldehyd (**1a**) wird ca. zwölf Stunden bei Raumtemperatur gerührt, bis alles Natriumsulfid umgesetzt ist. Nach Zugabe von 10 mmol (1.7 g) Benzylbromid wird sechs Stunden auf 50°C erwärmt, auf Eiswasser gegossen und dreimal mit Ether extrahiert. Die Etherphasen werden über Natriumsulfat getrocknet und das Lösungsmittel abgezogen. Das verbleibende orange Öl wird säulenchromatographisch gereinigt.

Ausbeute: 2.5 g (78%, *E*/*Z*: 80/20); oranges Öl.

¹H-NMR (CDCl₃, 200.0 MHz) δ : 3.75 (s, 2H, *CH*₂-Z); 4.11 (s, 2H, *CH*₂-E); 6.93–6.97, 7.07–7.15, 7.27–7.32, 7.35– 7.46 (4m, 10H, Benzyl und Phenyl-E/Z); 9.98 (s, 1H, *CHO*-E); 10.20 (q, 1H, *CHO*-Z, ⁵*J*_{H,F} = 3.0 Hz).

¹³C-NMR (CDCl₃, 50.3 MHz) δ: 39.7 (q, CH₂-Z, ⁴ $J_{C,F} = 1.9$ Hz); 41.3 (q, CH₂-E, ⁴ $J_{C,F} = 1.5$ Hz); 123.4 (q, CF₃-E, ¹ $J_{C,F} = 277.7$ Hz); 123.5 (q, CF₃-Z, ¹ $J_{C,F} = 278.9$ Hz); 128.5, 128.8, 129.1, 129.5, 129.6, 129.9 (*C*2,3,4,5,6-Benzyl und Phenyl-E); 128.9, 129.0, 129.2, 129.3, 129.7, 130.1 (*C*2,3,4,5,6-Benzyl und Phenyl-Z); 133.6 (*C*1-Phenyl-E); 133.9 (*C*1-Phenyl-Z); 135.9 (*C*1-Benzyl-Z); 136.2 (*C*1-Benzyl-E); 137.6 (q, *C*-CF₃-E, ${}^{2}J_{C,F} = 32.8$ Hz); 141.3 (q, *C*-CF₃-Z, ${}^{2}J_{C,F} = 33.6$ Hz); 149.2 (q, *C*-C-CF₃-Z, ${}^{3}J_{C,F} = 2.3$ Hz); 153.7 (q, *C*-C-CF₃-E, ${}^{3}J_{C,F} = 2.3$ Hz); 188.9 (q, *C*HO-Z, ${}^{4}J_{C,F} = 3.5$ Hz); 191.8 (*C*HO-E).

¹⁹F-NMR (CDCl₃, 188.2 MHz) δ : 19.91 (CF₃-E); 24.55 (CF₃-Z).

IR (Film, cm⁻¹): 1724, 1690 (C=O); 1216, 1177, 1133 (C–F).

MS (*m*/*e*, %): 322 (M^{+*}, 10); 231 (M–C₇H₇, 25); 183 (M–C₇H₇–CO–HF, 10); 91 (C₇H₇⁺, 100).

Elementaranalyse: berechnet für $C_{17}H_{13}F_3OS$ (322.34): C: 63.34%; H: 4.06%; gefunden: C: 63.14%; H:4.09%.

3.2. 5-Trifluormethyl-2-[4'-nitrophenyl]-4-phenylthiophen(5)

10 mmol (2.4 g) Natriumsulfidnonahydrat werden in 50 ml DMF aufgeschlämmt und 10 mmol (2.4 g) β-Chlor-β-trifluormethylvinylaldehyd (**1a**) zugetropft. Man läßt ca. zwölf Stunden bei Raumtemperatur rühren, gibt 10 mmol (2.2 g) *p*-Nitrobenzylbromid zu und erwärmt sechs Stunden auf 50°C. Es wird auf Eiswasser gegossen und dreimal mit Ether extrahiert. Die Lösung wird über Natriumsulfat getrocknet und das Lösungsmittel abezogen. Das Öl wird säulenchromatografisch gereinigt, das Lösungsmittel abgezogen und der anfallende Feststoff umkristallisiert.

Ausbeute: 2.3 g (66%); Fp.: 129–130°C; gelbliche Kristalle (n-Hexan).

¹H-NMR (CDCl₃, 200.0 MHz) δ : 7.42 (q, 1H, H3, ⁵ $J_{\text{H,F}} = 1.5 \text{ Hz}$); 7.44–7.47 (m, 5H, Phenyl); 7.77 (d, 2H, H2,6-[4-Nitrophenyl], ³ $J_{\text{H,H}} = 9.0 \text{ Hz}$); 8.28 (d, 2H, H3,5-[4-Nitrophenyl], ³ $J_{\text{H,H}} = 9.0 \text{ Hz}$).

¹³C-NMR (CDCl₃, 50.3 MHz) δ: 122.8 (q, *CF*₃, ¹*J*_{C,F} = 270.0 Hz); 125.1 (*C*3,5-[4-Nitrophenyl]); 126.9 (q, *C*-CF₃, ²*J*_{C,F} = 36.6 Hz); 127.1 (*C*2,6-[4-Nitrophenyl]); 129.0, 129.1, 129.2 (*C*2,3,4,5,6-Phenyl); 129.5 (*C*3); 134.4 (*C*1-Phenyl); 139.3 (*C*1-[4-Nitrophenyl]); 143.0 (*C*2); 146.0 (q, *C*-C-CF₃, ³*J*_{C,F} = 2.8 Hz); 148.1 (*C*4-[4-Nitrophenyl]). ¹⁹F-NMR (CDCl₃, 188.2 MHz) δ: 26.22 (s, *CF*₃). IR (KBr, cm⁻¹): 1516, 1343 (NO₂); 1227, 1174, 1112 (C–F). MS (*m/e*, %): 349 (M⁺⁺, 100); 319 (M–NO, 13); 234 (M–NO₂–CF₃, 18).

Elementaranalyse: berechnet für $C_{17}H_{10}F_3NO_2S$ (349.33): C: 58.45%, H: 2.89%, N: 4.01%; gefunden: C: 58.34%, H: 2.79%, N: 3.98%.

3.3. Allgemeine Vorschrift zur Darstellung p-phenylenüberbrückter Chinoline 6

Man löst 10 mmol β -Chlor- β -trifluormethylvinylaldehyd (**2a**) in 30 ml Eisessig und gibt die doppelt molare Menge des jeweiligen Anilins unter Rühren zu. Danach wird für 30 Minuten zum Sieden erhitzt, wobei die gelbe Lösung sich zunächst rot und dann wieder gelb färbt. Nach Abkühlen der Lösung gibt man langsam Wasser zu, wobei das Produkt ausfällt. Man saugt ab und kristallisiert um.

3.4. 1,4-Bis-(2'-trifluormethyl-6'-hydroxychinol-3'-yl)benzol (**6a**)

Ansatz: 3.9 g (2a) mit 2.2 g 4-Aminophenol.

Ausbeute: 3.6 g (71%); Fp.: $>360^{\circ}$ C; gelbes Pulver (Aceton).

¹H-NMR (DMSO-D₆, 300.1 MHz) δ : 7.36 (d, 2H, H5, ⁴J_{H,H} = 2.7 Hz); 7.49 (dd, 2H, H7, ³J_{H,H} = 9.3 Hz; ⁴J_{H,H} = 2.7 Hz); 7.56 (s, 4H, Phenyl); 8.08 (d, 2H, H8, ³J_{H,H} = 9.3 Hz); 8.37 (s, 2H, H4); 10.57 (s, 2H, OH).

¹³C-NMR (DMSO-D₆, 75.5 MHz) δ: 108.4 (C5); 122.4 (q, CF₃, ¹J_{C,F} = 276.3 Hz); 124.5 (C7); 129.1 (C2,3,5,6-Phenyl); 130.3 (C3); 131.2 (C4); 132.6 (C1,4-Phenyl); 137.4 (C8); 138.4 (C4a); 140.6 (C8a); 140.9 (q, C-CF₃, ${}^{2}J_{C,F} = 31.4$ Hz); 158.3 (C6).

¹⁹F-NMR (DMSO-D₆, 282.3 MHz) δ: 18.84 (CF₃)

IR (KBr, cm⁻¹): 1180, 1135, 1085 (C–F).

MS (*m*/*e*, %): 500 (M^{+*}, 100); 471 (M–CHO, 4); 431 (M–CF₃, 2); 250 (M/2, 43).

Elementaranalyse: berechnet für $C_{26}H_{14}F_6N_2O_2$ (500.42) C: 62.42%; H: 2.79%; N: 5.59%; gefunden: C: 62.05%; H: 2.75%; N: 5.22%.

3.5. 1,4-Bis-(2'-trifluormethyl-6'-carboxychinol-3'-yl)benzol (**6b**)

Ansatz: 3.9 g (**2a**) mit 2.7 g 4-Aminoenzoesäure. Ausbeute: 5.3 g (95%); Fp.: >360°C; hellgelbes Pulver (DMF).

¹H-NMR (DMSO-D₆, 300.1 MHz) δ : 7.65 (s, 4H, Phenyl); 7.95 (s, 2H, *H*5); 8.33 (d, 2H, *H*8, ³*J*_{H,H} = 8.8 Hz); 8.38 (d, 2H, *H*7, ³*J*_{H,H} = 8.8 Hz); 8.89 (s, 2H, *H*4); 13.15 (s, 2H, COO*H*).

¹⁹F-NMR (DMSO-D₆, 282.3 MHz) δ : 18.03 (CF₃).

IR (KBr, cm⁻¹): 1695 (C=O); 1185, 1145, 1080 (C–F). MS (m/e, %): 556 (M⁺⁺, 100); 491 (M–COOH–HF, 60); 473 (M–COOH–HF–H₂O, 70); 330 (C₂₁H₁₀F₂NO, 40); 120 (C₄HF₃N, 40); 65 (C₅H₅, 30). Elementaranalyse: berechnet für $C_{28}H_{14}F_6N_2O_4$ (556.44) C: 60.44%; H: 2.54%; N: 5.04%; gefunden: C: 59.91%; H: 2.72%; N: 4.95%.

3.6. 1,4-Bis-(2'-trifluormethyl-6'-methoxychinol-3'-yl)benzol (**6c**)

Ansatz: 3.9 g (2a) mit 2.2 g p-Anisidin.

Ausbeute: 4.3 g (82%); Fp.: 288°C; gelbliche Kristalle (DMF).

¹H-NMR (Pyridin-D₅, 300.1 MHz) δ : 3.92 (s, 6H, CH₃O); 7.32 (d, 2H, H5, ⁴J_{H,H} = 2.8 Hz); 7.60 (dd, 2H, H7, ³J_{H,H} = 9.3 Hz, ⁴J_{H,H} = 2.8 Hz); 7.73 (s, 4H, Phenyl); 8.11 (s, 2H, H4); 8.30 (d, 2H, H8, ³J_{H,H} = 9.3 Hz).

¹⁹F-NMR (Pyridin-D₅, 282.3 MHz) δ : 17.76 (CF₃).

IR (KBr, cm⁻¹): 1220 (C–O); 1175, 1115, 1090 (C–F).

MS (*m*/*e*, %): 528 (M⁺⁺, 100); 498 (M–CH₂O, 3); 264 (M/2, 4).

Elementaranalyse: berechnet für $C_{28}H_{18}F_6N_2O_2$ (528.42): C: 63.64%; H: 3.43%; N: 5.30%; gefunden: C: 63.33%; H: 3.59%; N: 5.64%.

3.7. 1,4-Bis-(2',6'-bis-[trifluormethyl]-chinol-3-yl)benzol (6d)

Ansatz: 3.9 g (**2a**) mit 3.2 g 4-Trifluormethylanilin. Ausbeute: 4.9 g (81%); Fp.: 264–266°C; gelbliche Kristalle (DMF).

¹H-NMR (Pyridin-D₅, 300.1 MHz) δ : 7.84 (s, 4H, Phenyl); 8.08 (d, 2H, H8, ³ $J_{\rm H,H} = 8.7$ Hz); 8.44–8.50 (m, 6H, H4,5,7).

¹⁹F-NMR (Pyridin-D₅, 282.3 MHz) δ : 15.56 (CF₃); 16.84 (s, CF₃).

IR (KBr, cm⁻¹): 1190, 1170, 1130, 1085, 1060 (C–F). MS (*m*/*e*, %): 604 (M⁺⁺, 100); 585 (M–F, 30); 535 (M–

CF₃, 18); 302 (M/2, 32); 69 (CF₃, 2) Elementaranalyse: berechnet für $C_{28}H_{12}F_{12}N_2$ (604.37): C: 55.64%; H: 2.00%; N: 4.64%; gefunden: C: 55.49%; H: 2.31%; N: 4.92%.

3.8. 1,4-Bis-(6'-acetyl-2'-trifluormethylchinol-3'-yl)benzol (**6e**)

Ansatz: 3.9 g (2a) mit 2.7 g 4-Aminoacetophenon.

Ausbeute: 4.3 g (78%); Fp.: 338–340°C (Zers.); gelbliche Kristalle (DMF).

¹H-NMR (Pyridin-D₅, 300.1 MHz) δ : 2.80 (s, 6H, CH₃CO); 7.70 (s, 4H, Phenyl); 8.32–8.53 (m, 6H, H5,7,8); 8.71 (s, 2H, H4).

¹⁹F-NMR (Pyridin-D₅, 282.3 MHz) δ : 16.96 (CF₃).

IR (KBr, cm⁻¹): 1695 (C=O); 1190, 1130, 1080 (C–F). MS (*m*/*e*, %): 552 (M⁺⁺, 66); 537 (M–CH₃, 100).

Elementaranalyse: berechnet für $C_{30}H_{18}F_6N_2O_2$ (552.44): C: 65.22%; H: 3.28%; N: 5.07%; gefunden: C: 64.91%; H: 3.54%; N: 5.45%.

3.9. 1,4-Bis-(2'-trifluormethylbenzo[f]chinol-3'-yl)benzol (**6f**)

Ansatz: 3.9 g (**2a**) mit 2.9 g β -Naphthylamin.

Ausbeute: 4.2 g (75%); Fp.: 300° C; farblose Kristalle (DMF).

¹H-NMR (Pyridin-D₅, 300.1 MHz) δ : 7.75–7.85 (m, 4H, *H*6,7); 7.88 (s, 4H, Phenyl); 8.17 (d, 2H, *H*9, ³*J*_{H,H} = 9.1 Hz); 8.25 (d, 2H, *H*10, ³*J*_{H,H} = 9.1 Hz); 8.64 (d, 2H, *H*8, ³*J*_{H,H} = 7.3 Hz); 8.81 (d, 2H, *H*5, ³*J*_{H,H} = 7.3 Hz); 9.28 (s, 2H, *H*4).

¹⁹F-NMR (Pyridin-D₅, 282.3 MHz) δ: 17.77 (CF₃).

IR (KBr, cm⁻¹): 1180, 1130, 1105 (C–F).

MS (*m*/*e*, %): 568 (M^{+*}, 100); 548 (M–HF, 7); 284 (M/2, 72).

Elementaranalyse: berechnet für $C_{34}H_{18}F_6N_2$ (568.46): C: 71.83%; H: 3.19%; N: 4.93%; gefunden: C: 71.22%; H: 3.28%; N: 5.33%.

3.10. Allgemeine Vorschrift zur Darstellung der Diazaanthracene 7

Man löst 10 mmol β -Chlor- β -trifluormethylvinylaldehyd 1 in 30 ml Eisessig und gibt die halbmolare Menge *p*-Phenylendiamin unter Rühren zu. Danach wird für 30 Minuten zum Sieden erhitzt, wobei die gelbe Lösung sich zunächst rot und dann wieder gelb färbt. Nach Abkühlen der Lösung gibt man langsam Wasser zu, wobei das Produkt ausfällt. Man saugt ab und kristallisiert um.

3.11. 2,6-Bistrifluormethyl-3,7-diphenyl-1,5diazaanthracen (**7a**)

Ansatz: 2.3 g (1a) mit 0.6 g p-Phenylendiamin.

Ausbeute: 1.6 g (68%); Fp.: 259°C; gelbliche Kristalle (Toluol).

¹H-NMR (CDCl₃, 200.0 MHz) δ : 7.43–7.52 (m, 10H, Phenyl); 8.46 (s, 2H, H9,10); 8.88 (s, 2H, H4,8).

¹³C-NMR (CDCl₃, 50.3 MHz) δ : 122.2 (q, *CF*₃, ¹*J*_{C,F} = 276.9 Hz); 125.5 (*C*3); 128.8, 129.2, 129.6 (*C*2,3,4,5,6-Phenyl); 133.5 (*C*9,10); 135.6 (*C*1-Phenyl); 135.9 (*C*4,8); 137.4 (*C*4a,8a); 146.8 (*C*9a,10a); 147.0 (q, *C*-CF₃, ²*J*_{C,F} = 33.2 Hz).

¹⁹F-NMR (CDCl₃, 188.2 MHz) δ: 16.47 (CF₃).

IR (KBr, cm⁻¹): 1180, 1130, 1100 (C–F).

MS (*m*/*e*, %): 468 (M⁺⁺, 100); 449 (M–F, 20); 429 (M–HF–F, 5); 399 (M–CF₃, 46); 359 (M–CF₃-2 HF, 60); 330 (M-2 CF₃, 21); 234 (M/2, 61); 69 (CF₃, 30).

Elementaranalyse: berechnet für $C_{26}H_{14}F_6N_2$ (468.37): C: 66.67%; H: 3.01%; N: 5.98%; gefunden: C: 66.26%; H: 2.80%; N: 5.96%.

3.12. 3,7-Di-(4'-bromphenyl)-2,6-bistrifluormethyl-1,5diazaanthracen (**7b**)

Ansatz: 3.1 g (1d) mit 0.6 g p-Phenylendiamin.

Ausbeute: 1.9 g (62%); Fp.: 190–192°C; gelbliche Kristalle (Toluol).

¹H-NMR (CDCl₃, 200.0 MHz) δ : 7.32 (d, 4H, H2,6-Phenyl, ³J_{H,H} = 8.6 Hz); 7.63 (d, 4H, H3,5-Phenyl, ³J_{H,H} = 8.6 Hz); 8.47 (s, 2H, H9,10); 8.85 (s, 2H, H4,8).

 19 F-NMR (CDCl₃, 188.2 MHz) δ : 15.10 (CF₃).

IR (KBr, cm⁻¹): 1190, 1135, 1095 (C–F).

MS (*m/e*, %): 630 (M^{+•} [⁷⁹Br, ⁸¹Br] 50); 628 (M^{+•} [⁷⁹Br, ⁸¹Br], 78); 626 (M^{+•}, 59); 547 (M–Br, 4); 477 (M–HCF₃–Br, 15); 313 (M/2, 50).

Elementaranalyse: berechnet für $C_{26}H_{12}Br_2F_6N_2$ (626.17): C: 49.48%; H: 1.93%; N: 4.47%; gefunden: C: 49.62%; H: 2.11%; N: 4.47%.

3.13. 2,6-Bistrifluormethyl-3,7-bis-(3'-trifluormethylphenyl)-1,5-diazaanthracen (**7c**)

Ansatz: 3 g (1e) mit 0.6 g *p*-Phenylendiamin.

Ausbeute: 3 g (88%); Fp.: 188–190°C; farblose Kristalle (Toluol).

¹H-NMR (CDCl₃, 200.0 MHz) δ : 7.64–7.77 (m, 8H, Phenyl); 8.52 (s, 2H, *H*9,10); 8.89 (s, 2H, *H*4,8).

¹³C-NMR (CDCl₃, 50.3 MHz) δ: 121.9 (q, *CF*₃, ¹*J*_{C,F} = 276.6 Hz); 124.3 (q, *CF*₃-Phenyl, ¹*J*_{C,F} = 272.5 Hz); 125.3 (*C*3); 126.1 (q, *C*2-Phenyl, ³*J*_{C,F} = 3.6 Hz); 126.5 (q, *C*4-Phenyl, ³*J*_{C,F} = 3.6 Hz); 129.4 (*C*6-Phenyl); 131.4 (q, *C*3-Phenyl, ²*J*_{C,F} = 32.8 Hz); 133.0 (*C*5-Phenyl); 133.9 (*C*9,10); 134.0 (*C*1-Phenyl); 135.8 (*C*4,8); 137.9 (*C*4a,8a); 147.0 (q, *C*-CF₃, ²*J*_{C,F} = 34.6 Hz); 147.2 (*C*9a,10a).

¹⁹F-NMR (CDCl₃, 188.2 MHz) δ : 15.06 (CF₃-Phenyl); 16.38 (CF₃).

IR (KBr, cm⁻¹): 1230, 1185, 1130, 1100, 1070 (C–F).

MS (*m*/*e*, %): 604 (M⁺⁺, 100); 585 (M–F, 33); 535 (M–CF₃, 24); 516 (M–CF₃–F, 48); 495 (M–CF₃-2 HF, 32); 475 (M–CF₃-3 HF, 5); 302 (M/2, 38); 69 (CF₃, 42).

Elementaranalyse: berechnet für $C_{28}H_{12}F_{12}N_2$ (604.36): C: 55.64%; H: 2.00%; N: 4.63%; gefunden: C: 55.24%; H: 2.07%; N: 4.41%.

3.14. 2,6-Bistrifluormethyl-3,7-(4'-methoxyphenyl)-1,5diazaanthracen (7d)

Ansatz: 2,6 g (1g) mit 0.6 g p-Phenylendiamin.

Ausbeute: 2 g (77%); Fp.: 190° C; gelbliche Kristalle (Toluol).

¹H-NMR (CDCl₃, 200.0 MHz) δ : 3.88 (s, 6H, CH₃O); 6.98 (d, 4H, H3,5-Phenyl, ³J_{H,H} = 8.6 Hz); 7.32 (d, 4H, H2,6-Phenyl, ³J_{H,H} = 8.6 Hz); 8.42 (s, 2H, H9,10); 8.84 (s, 2H, H4,8).

¹⁹F-NMR (CDCl₃, 188.2 MHz) δ: 16.50 (CF₃).

IR (KBr, cm⁻¹): 1170, 1125, 1080 (C–F).

MS (*m*/*e*, %): 528 (M^{+*}, 100); 513 (M–CH₃, 8); 264 (M/2, 13).

Elementaranalyse: berechnet für $C_{28}H_{18}F_6N_2O_2$ (528.42): C: 63.64%; H: 3.43%; N: 5.30%; gefunden: C: 63.10%; H: 3.56%; N: 5.28%.

3.15. Benzimidazoliumperchlorat (9)

Zu einer Lösung von 10 mmol des jeweiligen β -Chlor- β trifluormethylvinylaldehyds **1** in 30 ml absolutem Ethanol tropft man 10 mmol (1.1 g) *o*-Phenylendiamin, gelöst in 10 ml Ethanol, innerhalb von zehn Minuten zu. Nach Zugabe von 5 ml 70% iger Perchlorsäure färbt sich die Mischung violett. Man rührt ca. zehn Minuten bei Raumtemperatur, bis Entfärbung eintritt. Die Lösung wird eingeengt, der entstandene Niederschlag abgesaugt und umkristallisiert.

Ausbeute: 1.6 g (75%); Fp.: 190–192°C (Zers.); farblose Kristalle (Eisessig).

¹H-NMR (Aceton-D₆, 200.0 MHz) δ : 7.62–7.72 (m, 2H, *H*3,6); 7.87 (dd, 2H, *H*4,5); 9.60 (s, 1H, C*H*); 13.42 (s {br}, 2H, N*H*).

¹³C-NMR (Aceton-D₆, 50.3 MHz) δ : 115.9 (C3,6); 128.1 (C4,5); 131.7 (C1,2); 141.8 (CH).

IR (KBr, cm^{-1}): 2820, 2859 (C=NH⁺); 1526 (N–H); 1104 (ClO₄⁻); 747 (C–H).

MS-FAB m/e (%): 118 (M-HClO₄, 22).

Elementaranalyse: berechnet für $C_7H_7ClN_2O_4$ (218.59): C: 38.46%; H: 3.23%; N: 12.82%; O: 29.28%; Cl: 16.22%; gefunden: C: 38.65%; H: 3.19%; N: 12.66%; O: 28.00%; Cl: 16.78%.

3.16. Allgemeine Vorschrift zur Darstellung der Bischinoline 10

Man löst 10 mmol β -Chlor- β -trifluormethylvinylaldehyd 1 in 20 ml Eisessig und gibt die halbmolare Menge Benzidin unter Rühren zu. Danach wird für 30 Minuten zum Sieden erhitzt. Nach Abkühlen der Lösung gibt man langsam Wasser zu, wobei das Produkt ausfällt. Man saugt ab und kristallisiert um.

3.17. 2,2'-Bistrifluormethyl-3,3'-diphenyl-6,6'-bischinolin (10a)

Ansatz: 2.3 g (1a) mit 0.9 g Benzidin.

Ausbeute: 0.9 g (33%); Fp.: 309°C; farblose Kristalle (Toluol).

¹H-NMR (DMSO-D₆, 200.0 MHz) δ : 7.51–7.57 (m, 10H, Phenyl); 8.37 (d, 2H, H8,8', ³J_{H,H} = 8.8 Hz); 8.45 (dd, 2H, H7,7', ³J_{H,H} = 8.8 Hz; ⁴J_{H,H} = 1.8 Hz); 8.62 (s, 2H, H4,4'); 8.66 (d, 2H, H5,5', ⁴J_{H,H} = 1.8 Hz).

¹⁹F-NMR (DMSO-D₆, 188.2 MHz) δ : 17.74 (CF₃).

IR (KBr, cm⁻¹): 1180, 1125, 1080 (C–F).

MS (*m*/*e*, %): 544 (M^{+*}, 75); 543 (M–H, 100); 474 (M–HCF₃, 10); 272 (M/2, 10).

Elementaranalyse: berechnet für $C_{32}H_{18}F_6N_2$ (544.47): C: 70.58%; H: 3.33%; N: 5.14%; gefunden: C: 71.01%; H: 3.49%; N: 5.18%.

3.18. 2,2'-Bistrifluormethyl-3,3'-di-(4'-methoxyphenyl)-6,6'-bischinolin (**10b**)

Ansatz: 2.6 g (1g) mit 0.9 g Benzidin.

Ausbeute: 1.3 g (44%); Fp.: 316°C; gelbliche Kristalle (Toluol).

¹H-NMR (DMSO-D₆, 300.1 MHz) δ : 3.83 (s, 6H, *CH*₃O); 7.07 (d, 4H, *H*3,5-Phenyl, ³*J*_{H,H} = 8.8 Hz); 7.42 (d, 4H, *H*2,6-Phenyl, ³*J*_{H,H} = 8.8 Hz); 8.22 (d, 2H, *H*8,8', ³*J*_{H,H} = 8.5 Hz); 8.30 (s, 2H, *H*4,4'); 8.63 (d, 2H, *H*7,7', ³*J*_{H,H} = 8.5 Hz); 9.53 (s, 2H, *H*5,5').

¹⁹F-NMR (DMSO-D₆, 282.3 MHz) δ : 18.34 (CF₃).

IR (KBr, cm⁻¹): 1250 (C–O); 1190, 1130, 1080 (C–F). MS (m/e, %): 604 (M⁺⁺, 32); 395 (C₂₃H₁₆F₃NO₂, 100);

302 (M/2, 9).

Elementaranalyse: berechnet für $C_{34}H_{22}F_6N_2O_2$ (604.51): C: 67.55%; H: 3.67%; N: 4.63%; gefunden: C: 67.83%; H: 3.86%; N: 4.88%.

3.19. Allgemeine Vorschrift zur Darstellung der Oxime 13

12 mmol Hydroxylaminhydrochlorid werden in 30 ml Methanol gelöst. Dazu gibt man tropfenweise 10 mmol β -Chlor- β -trifluormethylvinylaldehyd **1** unter Rühren zu. Es wird eine Stunde unter Rückfluß erhitzt und nach Abkühlen der Mischung mit der dreifachen Menge Wasser verdünnt. Der ausfallende Niederschlag wird abgesaugt, mit Wasser gewaschen und umkristallisiert.

3.20. 3-Chlor-4,4,4-trifluor-2-phenyl-but-2-en-1-oxim (13a)

Ansatz: 2.3 g (**1a**) mit 0.9 g Hydroxylaminhydrochlorid. Ausbeute: 1.9 g (78%; *E/Z*: 65/35); Fp.: 130–133°C; farblose Kristalle (Cyclohexan).

¹H-NMR (CDCl₃, 200.0 MHz) δ : 7.11–7.18 (m, 5H, Phenyl-Z); 7.38–7.46 (m, 5H, Phenyl-E); 8.24 (s, 1H, OH-Z); 8.34 (s, 1H, OH-E); 8.38 (q, 1H, CH=N-Z, ${}^{5}J_{\text{H,F}} = 1.8 \text{ Hz}$); 8.45 (s, 1H, CH=N-E).

¹³C-NMR (CDCl₃, 50.0 MHz) δ: 120.8 (q, *C*F₃-E, ¹*J*_{C,F} = 274.3 Hz); 121.3 (q, *C*F₃-Z, ¹*J*_{C,F} = 275.0 Hz); 124.4 (q, *C*-CF₃-E, ²*J*_{C,F} = 37.0 Hz); 125.8 (q, *C*-CF₃-Z, ²*J*_{C,F} = 38.5 Hz); 128.7, 128.8, 129.0, 129.3, 129.4, 129.5 (*C*2,3,4,5,6-Phenyl-E und Z); 133.1 (*C*1-Phenyl-E); 135.0 (*C*1-Phenyl-Z); 139.9 (q, *C*-C-CF₃-E, ³*J*_{C,F} = 2.3 Hz); 141.2 (q, *C*-C-CF₃-Z, ³*J*_{C,F} = 1.8 Hz); 147.6 (q, *C*H=N-Z, ⁴*J*_{C,F} = 3.4 Hz); 149.9 (*C*H=N-E).

¹⁹F-NMR (CDCl₃, 188.2 MHz) δ : 18.14 (CF₃-E); 19.39 (CF₃-Z).

IR (KBr, cm⁻¹): 1550 (C=N); 1165, 1135, 1080 (C–F). MS (*m/e*, %): 249 (M⁺⁺, 11); 232 (M–OH, 37); 214 (M–

Cl, 47); 69 (CF₃, 100). Elementaranalyse: berechnet für C₁₀H₇ClF₃NO (249.60): C: 48.12%; H: 2.83%; N: 5.61%; gefunden: C: 47.93%; H: 3.15%; N: 5.69%.

3.21. 3-Chlor-4,4,4-trifluor-2-(3'-trifluormethylphenyl)but-2-en-1-oxim (13b)

Ansatz: 3 g (**1e**) mit 0.9 g Hydroxylaminhydrochlorid. Ausbeute: 2.5 g (80%; *E/Z*: 66/34); Fp.: 86–87°C; farblose Kristalle (Cyclohexan).

¹H-NMR (CDCl₃, 200.0 MHz) δ : 7.31–7.71 (m, 8H, Phenyl-E und Z); 8.36 (q, 1H, CH=N-Z, ⁵J_{H,F} = 1.6 Hz); 8.41 (s, 1H, OH-Z); 8.42 (s, 1H, CH=N-E); 8.53 (s, 1H, OH-E).

¹³C-NMR (CDCl₃, 50.3 MHz) δ : 120.7 (q, *C*F₃-E, ¹*J*_{C,F} = 274.6 Hz); 121.1 (q, *C*F₃-Z, ¹*J*_{C,F} = 275.4 Hz); 124.1 (q, *C*F₃-Phenyl-E, ¹*J*_{C,F} = 272.8 Hz); 124.2 (q, *C*F₃-Phenyl-Z, ¹*J*_{C,F} = 273.1 Hz); 125.9–126.4, 129.3, 129.8, 132.3, 132.5 (*C*2,3,4,5,6-Phenyl-E und Z); 131.5 (q, *C*-CF₃-E, ²*J*_{C,F} = 33.2 Hz); 131.9 (q, *C*-CF₃-Z, ²*J*_{C,F} = 32.8 Hz); 133.9 (*C*1-Phenyl-E); 135.7 (*C*1-Phenyl-Z); 138.5 (q, *C*-C-CF₃-E, ³*J*_{C,F} = 2.3 Hz); 139.9 (q, *C*-C-CF₃-Z, ³*J*_{C,F} = 3.4 Hz); 149.8 (*C*H=N-E).

¹⁹F-NMR (CDCl₃, 188.2 MHz) δ: 14.84 (C*F*₃-Phenyl-E); 14.92 (C*F*₃-Phenyl-Z); 18.09 (C*F*₃-E); 19.05 (C*F*₃-Z).

IR (KBr, cm⁻¹): 1570 (C=N); 1175, 1125, 1080, 1045 (C–F).

MS (*m*/*e*, %): 317 (M^{+*}, 10); 282 (M–Cl, 13); 248 (M–CF₃, 9); 169 (M–Cl–CF₃–CH=NOH, 22); 69 (CF₃, 100).

Elementaranalyse: berechnet für $C_{11}H_6ClF_6NO$ (317.60): C: 41.60%; H: 1.90%; N: 4.41%; gefunden: C: 41.44%; H: 2.16%; N: 4.48%.

3.22. 3-Chlor-4,4,4-trifluor-2-phenyl-but-2-en-1semicarbazon (14)

12.5 mmol (1.4 g) Semicarbazidhydrochlorid werden mit 17 mmol (1.4 g) wasserfreiem Natriumacetat verrieben, die Mischung wird dann mit 20 ml absolutem Ethanol aufgekocht, heiß filtriert. Zum Filtrat werden 10 mmol (2.3 g) β-Chlor-β-trifluormethylvinylaldehyd (**1a**) getropft und eine Stunde auf dem Wasserbad erwärmt. Nach Zugabe von 60 ml Wasser läßt man abkühlen, saugt den entstandenen Niederschlag ab, wäscht ihn mit Wasser und kristallisiert um.

Ausbeute 1.9 g (65%; *E*/*Z*: 70/30); Fp.: 169–171°C; farblose Kristalle (EtOH/H₂O).

¹H-NMR (CDCl₃, 200.0 MHz) δ : 5.34 (s {br}, 2H, NH₂); 7.11–7.19 (m, 5H, Phenyl-Z); 7.35–7.43 (m, 5H, Phenyl-E); 8.04 (q, 1H, CH=N-Z, ⁵J_{H,F} = 1.9 Hz); 8.12 (s, 1H, CH=N-E); 10.31 (s, 1H, CH=N-Z); 10.51 (s, 1H, NH-E).

¹³C-NMR (CDCl₃, 50.3 MHz) δ : 121.1 (q, *C*F₃-E, ¹*J*_{C,F} = 273.6 Hz); 121.6 (q, *C*F₃-Z, ¹*J*_{C,F} = 274.4 Hz); 123.0 (q, *C*-CF₃-E, ²*J*_{C,F} = 36.6 Hz); 123.2 (q, *C*-CF₃-Z, ²*J*_{C,F} = 36.9 Hz); 128.2, 128.6, 128.9, 129.2, 129.3, 129.4 (*C*2,3,4,5,6-Phenyl-E und Z); 133.8 (*C*1-Phenyl-E); 135.7 (*C*1-Phenyl-Z); 137.9 (q, *C*H=N-Z, ⁴*J*_{C,F} = 3.6 Hz); 140.2 (*C*H=N-E); 142.1 (q, *C*-C-CF₃-E, ³*J*_{C,F} = 2.7 Hz); 143.7 (q, *C*-C-CF₃-Z, ³*J*_{C,F} = 2.1 Hz); 158.4 (*C*=O).

¹⁹F-NMR (CDCl₃, 188.2 MHz) δ : 18.40 (CF₃-E); 19.67 (CF₃-Z).

IR (KBr, cm⁻¹): 1710 (C=O); 1570 (C=N); 1180, 1135, 1090 (C–F).

MS (*m*/*e*, %): 291 (M^{+*}, 2); 275 (M–NH₂, 3); 256 (M–Cl, 15); 248 (M–CO–NH, 24); 232 (M–CO–NH–NH₂, 100); 212 (M–CO–NH–NH₂–HF, 18).

Elementaranalyse: berechnet für $C_{11}H_9ClF_3N_3O$ (291.65): C: 45.29%; H: 3.11%; N: 14.41%; gefunden: C: 45.82%; H: 3.32%; N: 14.58%.

3.23. 5-Trifluormethyl-4-phenylpyrazol (15a)

10 mmol (2.3 g) β -Chlor- β -trifluormethylvinylaldehyd (1a) werden in 20 ml Ethanol gelöst. Zu dieser Lösung tropft man anschließend ein Gemisch aus 10 mmol (0.4 g) 80% igem Hydrazinhydrat und 10 mmol (1g) Triethylamin. Es wird eine Stunde unter Rückfluß erhitzt und nach dem Erkalten auf Wasser gegossen. Man extrahiert dreimal mit Ether und trocknet über Natriumsulfat. Nach Abziehen des Lösungsmittels wird der verbleibende Feststoff umkristallisiert.

Ausbeute: 1.4 g (64%); Fp.: 119–121°C; farblose Kristalle (Cyclohexan).

¹H-NMR (DMSO-D₆, 300.1 MHz) δ : 7.34–7.43 (m, 5H, Phenyl); 8.19 (s, 1H, CH); 13.75 (s, 1H, NH).

¹⁹F-NMR (DMSO-D₆, 282.3 MHz) δ: 20.52 (CF₃).

IR (KBr, cm⁻¹): 1480 (C=N); 1160, 1135, 1110 (C–F). MS (*m/e*, %): 212 (M^{+*}, 100); 191 (M–F, 3); 165 (M– HCN–HF, 9); 143 (M–CF₃, 9); 116 (C₈H₆N, 11); 89 (C₇H₅, 13).

Elementaranalyse: berechnet für $C_{10}H_7F_3N_2$ (212.19) C: 56.61%; H: 3.33%; N: 13.21%; gefunden: C: 56.30%; H: 3.34%; N: 12.81%.

3.24. Allgemeine Vorschrift zur Darstellung der Pyrazole 15b–d

10 mmol (20 mmol bei 15d) Natriumsulfidnonahydrat werden in 30 ml Methanol 30 Minuten unter Rückfluß erhitzt. Dazu werden 10 mmol β-Chlor-β-trifluormethylvinylaldehyd 1 bzw. 2 gegeben und eine Stunde unter Rückfluß erhitzt. Das Lösungsmittel wird abgezogen, der Rückstand mit Wasser aufgenommen und filtriert. Es wird mit Ether überschichtet und mit Essigsäure ange säuert, wobei die Mercaptoverbindung ausfällt und sich sofort in der Etherphase löst. Die organische Phase wird eingeengt und mit 20 ml Ethanol versetzt. 10 mmol (20 mmol bei 15d) Phenylhydrazin und ca. fünf Tropfen konzentrierte Schwefelsäure werden zugetropft und ca. 20 Stunden unter Rückfluß erhitzt, bis keine H₂S-Entwicklung mehr auftritt. Es wird auf Wasser gegossen, mit Chloroform extrahiert und über Natriumsulfat getrocknet. Das Lösungsmittel wird abgezogen und der anfallende Feststoff umkristallisiert.

3.25. 5-Trifluormethyl-1,4-diphenylpyrazol (15b)

Ansatz: 2.3 g (**1a**), 2.4 g Natriumsulfidnonahydrat und 1.1 g Phenylhydrazin.

Ausbeute: 1.6 g (56%); Fp.: $124-126^{\circ}$ C; farblose Kristalle (EtOH).

¹H-NMR (CDCl₃, 300.1 MHz) δ : 7.49–7.57 (m, 10H, Phenyl); 8.11 (s, 1H, CH).

¹⁹F-NMR (CDCl₃, 282.3 MHz) δ: 16.73 (CF₃).

IR (KBr, cm⁻¹): 1495 (C=N); 1175, 1150, 1135 (C–F). MS (m/e, %): 288 (M⁺⁺, 4); 192 (C₁₀H₆F₂N₂, 5); 150

 $(C_8H_7FN_2^+, 65); 108 (C_3HF_3N^+, 100); 77 (C_6H_5^+, 49).$

Elementaranalyse: berechnet für $C_{16}H_{11}F_3N_2$ (288.28) C: 66.69%; H: 3.82%; N: 9.72%; gefunden: C: 65.42%; H: 4.02%; N: 9.15%.

3.26. 5-Heptafluorpropyl-1,4-diphenylpyrazol (15c)

Ansatz: 3.4 g (1i), 2.4 g Natriumsulfidnonahydrat und 1.1g Phenylhydrazin.

Ausbeute: 1 g (26%); Fp.: 111–113°C; farblose Kristalle (EtOH).

¹H-NMR (CDCl₃, 300.1 MHz) δ : 7.41–7.51 (m, 10H, Phenyl); 7.74 (s, 1H, CH).

¹⁹F-NMR (CDCl₃, 282.3 MHz) δ: -46.59 (2F, 1.CF₂); -24.04 (q, 2F, 2CF₂, ${}^{3}J_{F,F} = 10.0$ Hz); -2.6 (t, 3F, CF₃, ${}^{3}J_{F,F} = 10.0$ Hz).

IR (KBr, cm⁻¹): 1495 (C=N); 1230, 1210, 1180, 1145, 1105, 1070 (C-F).

MS (*m*/*e*, %): 388 (M^{+*}, 100); 369 (M–F, 4); 269 (M–N₂–C₇H₇, 22); 249 (M–HF–N₂–C₇H₇, 42); 222 (M–C₆H₅–HF–CF₃, 20); 77 (C₆H₅, 32).

Elementaranalyse: berechnet für $C_{18}H_{11}F_7N_2$ (388.31) C: 55.68%; H: 2.85%; N: 7.21%; gefunden: C: 54.91%; H: 2.98%; N: 7.01%.

3.27. 1,4-Bis-(5'-trifluormethyl-1'-phenylpyrazol-4'-yl)benzol (15d)

Ansatz: 2.3 g (**2a**), 4.8 g Natriumsulfidnonahydrat und 2.2 g Phenylhydrazin.

Ausbeute: 2.3 g (47%); Fp.: 216–218°C; farblose Kristalle (Aceton).

¹H-NMR (CDCl₃, 300.1 MHz) δ : 7.51–7.56 (m, 14H, Phenyl); 7.83 (s, 2H, CH).

¹³C-NMR (CDCl₃, 75.5 MHz) δ : 120.3 (q, *CF*₃, ¹*J*_{C,F} = 270.0 Hz); 125.5 (*C*1,4-Phenyl); 125.8 (*C*2,3,5,6-Phenyl); 128.0 (q, *C*-CF₃, ²*J*_{C,F} = 37.0 Hz); 129.1, 129.2, 129.4 (*C*2,3,4,5,6-[*N*-Phenyl]); 130.5 (*C*1-[*N*-Phenyl]); 139.8 (*C*4); 140.4 (*C*3).

¹⁹F-NMR (CDCl₃, 282.3 MHz) δ : 23.63 (CF₃).

IR (KBr, cm⁻¹): 1495 (C=N); 1170, 1125, 1100 (C–F). MS (m/e, %): 498 (M⁺⁺, 100); 299 (M–CF₃–C₇H₆N₂, 3); 249 (M/2, 14); 77 (C₆H₅, 29). Elementaranalyse: berechnet für $C_{26}H_{16}F_6N_4$ (498.45) C: 62.65%; H: 3.24%; N: 11.24%; gefunden: C: 62.44%; H: 3.27%; N: 10.61%.

3.28. Allgemeine Vorschrift zur Darstellung der Isothiazole **16**

20 mmol (bei **16b** 40 mmol) trockenes Ammoniumthiocyanat werden mit 10 mmol β -Chlor- β -trifluormethylvinylaldehyd **1** bzw. **2** in 50 ml absolutem Aceton aufgeschlämmt und sechs Stunden unter Rückfluß erhitzt. Es wird auf 100 ml gesättigte Natriumhydrogencarbonatlösung gegossen und dreimal mit Ether extrahiert. Die Etherlösung wird über Natriumsulfat getrocknet und das Lösungsmittel abgezogen. Der Rückstand wird destillativ gereinigt (**16b** wird säulenchromatografisch gereinigt, das Lösungsmittel abgezogen und der zurückbleibende Feststoff umkristallisiert).

3.29. 5-Trifluormethyl-4-phenylisothiazol (16a)

Ansatz: 2.3 g (1a) mit 1.5 g Ammoniumthiocyanat.

Ausbeute: 1.3 g (56%); $Kp_{(1)}$: 80°C (Kugelrohrdestillation); farbloses Öl.

¹H-NMR (CDCl₃, 300.1 MHz) δ : 7.41–7.46 (m, 5H, Phenyl); 8.48 (s, 1H, CH).

¹⁹F-NMR (CDCl₃, 282.3 MHz) δ: 24.68 (CF₃).

IR (KBr, cm⁻¹): 1495 (C=N); 1190, 1145, 1110 (C−F). MS (*m*/*e*, %): 229 (M⁺⁺, 100); 202 (M–HCN, 11); 201 (M–HCN–H, 31); 183 (M–HCN–F, 5); 133 (M–HCN–CF₃, 7); 89 (C₇H₅, 14).

Elementaranalyse: berechnet für $C_{10}H_6F_3NS$ (229.24) C: 52.39%; H: 2.64%; N: 6.11%; gefunden: C: 52.22%; H: 2.73%; N: 5.67%.

3.30. 1,4-Bis-(5'-trifluormethylisothiazol-4'-yl)-benzol (16b)

Ansatz: 3.9 g (2a) mit 3 g Ammoniumthiocyanat.

Ausbeute: 1.8 g (48%); Fp.: 78–79°C; farblose Kristalle (*n*-Hexan).

¹H-NMR (CDCl₃, 200.0 MHz) δ : 7.57 (s, 4H, Phenyl); 8.53 (q, 2H, CH=N, ⁵J_{H,F} = 1.8 Hz).

¹³C-NMR (CDCl₃, 50.3 MHz) δ : 122.2 (q, *CF*₃, ¹*J*_{C,F} = 271.6 Hz); 129.7, 129.8 (*C*2,3,5,6-Phenyl); 131.7 (*C*1,4-Phenyl); 139.8 (q, *C*-C-CF₃, ³*J*_{C,F} = 2.3 Hz); 149.9 (q, *C*-CF₃, ²*J*_{C,F} = 37.4 Hz); 159.8 (*C*H=N).

¹⁹F-NMR (CDCl₃,188.2 MHz) δ: 24.66 (CF₃).

IR (KBr, cm⁻¹): 1496 (C=N); 1191, 1154, 1117 (C–F). MS (*m/e*, %): 380 (M⁺⁺, 100); 361 (M–F, 5); 284 (M–HCN–CF₃, 8); 69 (CF₃, 45).

Elementaranalyse berechnet für $C_{14}H_6F_6N_2S_2$ (380.33): C: 44.21%; H: 1.59%; N: 7.37%; gefunden: C: 44.23%; H: 1.65%; N: 7.18%.

3.31. 2-Amino-4-trifluormethyl-5-phenylpyrimidin (17)

47 mmol (1 g) Natrium werden mit 30 ml absolutem Ethanol umgesetzt. 10 mmol (1.2 g) Guanidinnitrat werden fein gepulvert zugefügt. Es wird 20 Minuten unter Rückfluß erhitzt. Nach dem Abkühlen werden 10 mmol (2.3 g) β -Chlor- β -trifluormethylvinylaldehyd (**1a**) zugetropft, zwei Stunden bei Raumtemperatur gerührt und eine Stunde unter Rückfluß erhitzt. Der angefallene Niederschlag wird abgesaugt und die Lösung eingeengt. Dieser Rückstand wird mit etwas Aceton aufgenommen und unter Zutropfen von Wasser das Produkt ausgefällt und umkristallisiert.

Ausbeute: 0.9 g (39%); Fp.: 184–186°C; farblose Kristalle (CHCl₃).

¹H-NMR (DMSO-D₆, 200.0 MHz) δ : 7.30–7.46 (m, 5H, Phenyl); 7.39 (s, 2H, NH₂); 8.38 (s, 1H, H6).

¹³C-NMR (DMSO-D₆, 50.3 MHz) δ : 121.0 (*C*5); 121.3 (q, *C*F₃, ¹*J*_{C,F} = 277.2 Hz); 128.1, 128.5, 128.6 (*C*2,3,4,5,6-Phenyl); 129.4 (*C*1-Phenyl); 134.8 (*C*6); 151.2 (q, *C*-CF₃, ²*J*_{C,F} = 32.5 Hz); 162.6 (*C*2).

¹⁹F-NMR (DMSO-D₆, 282.3 MHz) δ : 15.36 (CF₃).

IR (KBr, cm⁻¹): 1600, 1490 (C=N); 1190, 1140, 1100 (C–F).

MS (*m*/*e*, %): 239 (M^{+*}, 100); 220 (M–F, 10); 170 (M–CF₃, 30); 151 (Ph–C=C=CF₂, 20); 66 (C₃H₂N₂, 92).

Elementaranalyse: berechnet für $C_{11}H_8F_3N_3$ (239.22) C: 55.25%; H: 3.34%; N: 17.56%; gefunden: C: 54.85%; H: 3.54%; N: 16.90%.

3.32. Allgemeine Vorschrift zur Darstellung der Triazole **18**

Man suspendiert 30 mmol (60 mmol bei **18e**) Natriumazid in 40 ml DMF und tropft 10 mmol β -Chlor- β -trifluormethylvinylaldehyd **1** bzw. **2** langsam unter Rühren zu. Nach 24-stündigem Rühren bei Raumtemperatur gießt man den Ansatz auf 300 ml Eiswasser. Der ausfallende Niederschlag wird abgesaugt, mit Wasser gewaschen und umkristallisiert.

3.33. 5-Trifluormethyl-4-phenyl-1,2,3-triazol (18a)

Ansatz: 2.3 g (1a) mit 2 g Natriumazid.

Ausbeute: 1.4 g (68%); Fp.: 125° C; farblose Kristalle (CCl₄).

¹H-NMR (CDCl₃, 300.1 MHz) δ : 7.51 (m, 3H, Phenyl); 7.61 (m, 2H, Phenyl); 15.89 (s {br}, 1H, NH).

¹³C-NMR (CDCl₃, 75.5 MHz) δ : 121.5 (q, *CF*₃, ¹*J*_{C,F} = 268.0 Hz); 126.9, 128.2, 128.8, 129.7 (*C*2,3,4,5,6-Phenyl); 132.6 (q, *C*-CF₃, ²*J*_{C,F} = 37.6 Hz); 141.6 (*C*-C-CF₃).

¹⁹F-NMR (CDCl₃, 282.3 MHz) δ : 20.46 (CF₃).

IR (KBr, cm⁻¹): 1170, 1130, 1015 (C–F).

MS (*m*/*e*, %): 213 (M⁺⁺, 100); 184 (M–N₂–H, 4); 69 (CF₃, 78).

Elementaranalyse: berechnet für $C_9H_6F_3N_3$ (213.15): C: 50.71%; H: 2.84%; N: 19.72%; gefunden: C: 50.54%; H: 3.18%; N: 19.84%.

3.34. 4-(4'-Bromphenyl)-5-trifluormethyl-1,2,3-triazol(18b)

Ansatz: 3.1 g (1d) mit 2 g Natriumazid.

Ausbeute: 2.3 g (79%); Fp.: $187-188^{\circ}C$; farblose Kristalle (CCl₄).

¹H-NMR (CDCl₃, 300.1 MHz) δ : 7.57 (d, 2H, H2,6-Phenyl, ³J_{H,H} = 8.3 Hz); 7.76 (d, 2H, H3,5-Phenyl, ³J_{H,H} = 8.3 Hz); 15.72 (s {br}, 1H, NH).

¹³C-NMR (CDCl₃, 75.5 MHz) δ : 121.4 (q, *C*F₃, ¹*J*_{C,F} = 267.8 Hz); 126.3, 130.2, 131.8, 132.0 (*C*2,3,4,5,6-Phenyl); 132.8 (q, *C*-CF₃, ²*J*_{C,F} = 37.3 Hz); 141.2 (*C*-C-CF₃).

¹⁹F-NMR (CDCl₃, 282.3 MHz) δ : 20.44 (s, CF₃).

IR (KBr, cm⁻¹): 1495 (C=N); 1150, 1110, 1055, 1025 (C–F).

MS (*m/e*, %): 293 (M^{+*} [⁸¹Br], 98); 291 (M^{+*} [⁷⁹Br], 100); 269 (M–N₂, 77); 212 (M–Br, 23); 197 (M–Br–NH, 11); 69 (CF₃, 85).

Elementaranalyse: berechnet für $C_9H_5BrF_3N_3$ (292.05): C: 37.01%; H: 1.73%; N: 14.39%; gefunden: C: 36.85%; H: 2.05%; N: 14.39%.

3.35. 5-Trifluormethyl-4-(3'-trifluormethylphenyl)-1,2,3triazol (**18c**)

Ansatz: 3 g (1e) mit 2 g Natriumazid.

Ausbeute: 0.9 g (32%); Fp.: 95–97°C; farblose Kristalle (CCl₄).

¹H-NMR (CDCl₃, 300.1 MHz) δ : 7.76–7.94 (m, 4H, Phenyl); 15.34 (s {br}, 1H, NH).

¹⁹F-NMR (CDCl₃, 282.3 MHz) δ : 20.97 (CF₃-Phenyl); 24.81 (CF₃).

IR (KBr, cm⁻¹): 1495 (C=N); 1150, 1110, 1055, 1025 (C–F).

MS (*m*/*e*, %): 281 (M^{+*}, 100); 262 (M–F, 33); 253 (M–N₂, 33); 184 (M–N₂–CF₃, 19); 171 (C₈H₅N, 16); 158 (C₇H₆F₃, 49); 69 (CF₃, 35).

Elementaranalyse: berechnet für $C_{10}H_5F_6N_3$ (281.18) C: 42.72%; H: 1.77%; N: 14.94%; gefunden: C: 42.31%; H: 2.21%; N: 14.12%.

3.36. 5-Trifluormethyl-4-(4'-trifluormethylphenyl)-1,2,3triazol (18d)

Ansatz: 3 g (1f) mit 2 g Natriumazid.

Ausbeute: 54%; Fp.: $160-161^{\circ}$ C; farblose Kristalle (CCl₄).

¹H-NMR (DMSO-D₆, 200.0 MHz) δ : 7.85–7.93 (m, 4H, Phenyl); 15.25 (s {br}, 1H, NH).

¹³C-NMR (DMSO-D₆, 50.3 MHz) δ: 121.6 (q, *CF*₃, ${}^{1}J_{C,F} = 268$ Hz); 124.2 (q, *CF*₃-Phenyl, ${}^{1}J_{C,F} = 272$ Hz); 126.0 (q, *C*3,5-Phenyl, ${}^{3}J_{C,F} = 4$ Hz); 129.3 (*C*2,6-Phenyl);

130.2 (q, C4-Phenyl, ${}^{2}J_{C,F} = 32.1 \text{ Hz}$); 133.6 (q, C4, ${}^{2}J_{C,F} = 37.6 \text{ Hz}$); 131.8 (C1-Phenyl); 141.7 (C5).

¹⁹F-NMR (DMSO-D₆, 282.3 MHz) δ : 14.79 (CF₃-Phe-nyl); 18.40 (CF₃).

IR (KBr, cm⁻¹): 1500 (C=N); 1170, 1150, 1125, 1115, 1070 (C-F).

MS (*m*/*e*, %): 281 (M^{+*}, 100); 262 (M–F, 18); 212 (M–CF₃, 4); 145 (C₆H₅–CF₃, 11).

Elementaranalyse: berechnet für $C_{10}H_5F_6N_3$ (281.18) C: 42.72%; H: 1.78%; N: 14.94%; gefunden: C: 41.9%; H: 2.03%; N: 14.05%.

3.37. 1,4-Bis-(5'-trifluormethyl-1',2',3'-triazol-4'-yl)benzol (18e)

Ansatz: 3.9 g (2a) mit 4 g Natriumazid.

Ausbeute: 75%; Fp.: $223-225^{\circ}$ C; farblose Kristalle (CCl₄).

¹H-NMR (DMSO-D₆, 300.1 MHz) δ : 7.81 (s, 4H, Phenyl); 16.23 (s {br}, 2H, NH).

¹³C-NMR (DMSO-D₆, 75.5 MHz) δ: 121.4 (q, *CF*₃, ${}^{1}J_{C,F} = 268.0 \text{ Hz}$); 128.4 (*C*1,4-Phenyl); 128.6 (*C*2,3,5,6-Phenyl); 133.0 (q, *C*-CF₃, ${}^{2}J_{C,F}$ =38.0 Hz); 141.4 (*C*-C-CF₃).

¹⁹F-NMR (DMSO-D₆, 282.3 MHz) δ : 20.52 (s, CF₃).

IR (KBr, cm⁻¹): 1495 (C=N); 1200, 1145, 1125 (C–F). MS (m/e, %): 348 (M^{+*}, 46); 329 (M–F, 41); 320 (M–N₂, 33); 300 (M–N₂–HF, 12); 103 (C₇H₅N, 34); 66 (CH₂F₂N, 100).

Elementaranalyse: berechnet für $C_{12}H_6F_6N_6$ (348.24): C: 41.39%; H: 1.72%; N: 24.14%; gefunden: C: 41.34%; H: 1.30%; N: 24.52%.

Dauksagung

Die Autoren danken der Deutschen Forschungsgemeinschaft (DFG) und dem Fonds der Chemischen Industrie für die gewährte finanzielle Unterstützung.

Literatur

- M. Hudlický, A.E. Pavlatt, Chemistry of Organic Fluorine Compounds II, ACS Monograph, vol. 187, Washington, DC, 1995.
- [2] K. Burger, U. Wucherpfennig, E. Brunner, Adv. Heterocycl. Chem. 60 (1994) 1.
- [3] M.J. Silvester, Aldrichim. Acta 24(2) (1991) 131.
- [4] J.A. Wilkinson, Chem. Rev. 92 (1992) 505.
- [5] M.R.C. Gerstenberger, A. Haas, Angew. Chem. 93 (1981) 659.
- [6] W.J. Middleton, J. Org. Chem. 40 (1975) 574.
- [7] G.A. Olah, J.T. Welch, Y.D. Vankar, M. Nojima, I. Kerekes, J.A. Olah, J. Org. Chem. 44 (1979) 3872.
- [8] M. Weissenfels, M. Pulst, D. Greif, R. Hoffmann, A. Laurent, P. Mison, Z. Chem. 28 (1988) 247.
- [9] R. Hoffmann, D. Greif, M. Pulst, M. Weissenfels, A. Laurent, Z. Chem. 30 (1990) 247.
- [10] G.M. Alvernhe, B. Langlois, A. Laurent, I. LeDrean, A. Selmi, M. Weissenfels, Tetrahedron Lett. 32 (1991) 643.
- [11] G.M. Alvernhe, D. Greif, A. Laurent, M. Pulst, M. Weissenfels, J. Fluorine Chem. 70 (1995) 121.
- [12] D. Greif, D. Riedel, A. Feindt, M. Pulst, J. Prakt. Chem. 337 (1995) 34.
- [13] K. Burger, B. Helmreich, O. Jendrewski, R. Hecht, G. Meier, O. Nuyken, Makromol. Symp. 82 (1994) 143.
- [14] M. Pulst, M. Weissenfels, Z. Chem. 16 (1976) 337.
- [15] J. Diab, A. Laurent, I. LeDrean, J. Fluorine Chem. 84 (1997) 145.
- [16] Organikum, 18.berichtigte Auflage, Deutscher Verlag der Wissenschaften, Berlin, 1990.