

Phosphorus, Sulfur, and Silicon and the Related Elements

ISSN: 1042-6507 (Print) 1563-5325 (Online) Journal homepage: https://www.tandfonline.com/loi/gpss20

Zn-catalyzed dihydrosulfenylation of alkynes using thiols

Nobukazu Taniguchi & Kenji Kitayama

To cite this article: Nobukazu Taniguchi & Kenji Kitayama (2019): Zn-catalyzed dihydrosulfenylation of alkynes using thiols, Phosphorus, Sulfur, and Silicon and the Related Elements, DOI: 10.1080/10426507.2019.1603720

To link to this article: <u>https://doi.org/10.1080/10426507.2019.1603720</u>

1	ſ	1	(1

Published online: 20 Apr 2019.

🖉 Submit your article to this journal 🗹

Article views: 7

View Crossmark data 🗹

Zn-catalyzed dihydrosulfenylation of alkynes using thiols

Nobukazu Taniguchi^a and Kenji Kitayama^b

^aDepartment of Chemistry, Fukushima Medical University, Fukushima, Japan; ^bInnovation Park, Daicel Corporation, Himeji, Hyogo, Japan

ABSTRACT

Zinc-catalyzed hydrosulfenylation of alkenes afforded regioselectively the corresponding sulfides in good yields. Furthermore, the method can promote dihydrosulfenylation of alkynes. The procedure could produce anti-Markovnikov type dithioacetals in excellent yields.

GRAPHICAL ABSTRACT

Taylor & Francis Taylor & Francis Group

Check for updates

ARTICLE HISTORY

Received 28 March 2019 Accepted 1 April 2019

KEYWORDS Hydrosulenylation; alkene; alkyne; thiol; zinc catalyst

Introduction

Dithioacetals are important compounds in organic synthesis.^[1] These are usually prepared from carbonyl compounds with thiols, and are widely used as convenient intermediates.^[2]

Although the method has been well established, a synthesis by alkyne dihydrosulfenylation has been hardly researched. However, several reports have been published to date (Scheme 1).^[3,4] These procedures employ alkynes having electron-withdrawing groups or a specialized calcium catalyst under microwave irradiation.

As a general rule, it is known that the reaction of alkynes with thiols affords the corresponding vinyl sufides via radical process (Figure 1).^[5] The reaction proceeds via *anti*-Markovnikov addition. However, the dihydrosulfenylation hardly proceeds.

Therefore, we challenged to synthesize regioselectively *anti*-Markovnikov type dithioacetals.

To solve this problem, the choice of metal catalysts is very important. Initially, the activity of numerous metal catalysts for alkene hydrosulfenylations was investigated.

Results and discussion

To establish suitable conditions, the hydosulfenylation of alkenes was surveyed. As shown in Table 1, when a mixture of 4-toluenethiol with styrene was conducted in CH_2Cl_2 , the disulfide was obtained in 71% yield (Entry 1). The addition of a CeCl₃ catalyst in DMF gave no product (Entry 2). However, the reaction in CH_2Cl_2 produced the expected sulfide **2a** in 75% yield (Entry 3). Similar results were obtained when the reaction was performed with $LaCl_3$ or $ZnCl_2$ (Entries 4–5). Moreover, the zinc-catalyzed reaction gave good regioselective results in various solvents, and the formation of disulfides was suppressed (Entries 6–8). On the other hand, a reaction using PdCl₂ and CuF₂ afforded unsatisfactory results (Entries 9–10). Thus, the ZnCl₂ catalyst efficiently promoted the hydrosulfenylation of styrene.

On the basis of the obtained results, we then focused our attention on the addition of thiols to alkynes. Initially, to find suitable conditions, a reaction of 1-phenylacetylene with toluenethiol was investigated. When the reaction was treated by zinc catalyst in toluene, the corresponding dithioacetal 6a was obtained in 76-79% yield (Entries 1-2 in Table 2). However, as shown in entry 3, the reaction with 4bromobenzenethiol afforded vinyl sulfide 7a in 90% yield, while dihydrosulfenylation hardly proceeded. To promote this procedure, several zinc salts were examined. When the ZiBr₂ catalyst was employed, the expected dithioacetal 6a was obtained in 60% yield, and 7a was produced at 33% yield (Entry 4). Fortunately, the ZnI₂ catalyzed reaction was increased the yield to 71%, and the formation of vinyl sulfide was suppressed (Entry 5). Other zinc catalysts were inferior to ZnI_2 (Entries 6–7).

Sequentially, various dihydrosulfenylations of alkynes were evaluated (Table 3). When a mixture of terminal aryl alkynes with thiols was treated by ZnI_2 , the corresponding dithioacetals **6** were obtained in excellent yields. The procedure with arenethiols afforded excellent results whereas using alkyl thiols slightly decreased the reactivity.

Furthermore, internal alkynes as well as terminal alkynes gave good results (Entries 15–16).

CONTACT Nobukazu Taniguchi 🖾 taniguti@fmu.ac.jp 🗈 Department of Chemistry, Fukushima Medical University, Fukushima, 960-1295, Japan.

$$R^{1} \xrightarrow{\qquad} R^{2} + R^{3}SH \xrightarrow{\qquad \text{cat.Ca(ONI)}_{2}} R^{1} \xrightarrow{\qquad \text{R}_{2}} R^{3}$$
(2 equiv.) dioxane, 100 °C R^{2}

Scheme 1. Previous dihydrosulfenylation of alkyne.

Figure 1. General process of dihydrosulfenylation.

Table 1. Investigation of reactivity of styrene with thiol by metal catalysts^a.

1	none	CH_2CI_2	0	0	trace	71
2	CeCl ₃ (10)	DMF	trace	0	trace	trace
3	CeCl ₃ (10)	CH_2CI_2	75	0	trace	trace
4	$LaCl_3(10)$	CH_2CI_2	76	0	trace	trace
5	ZnCl ₂ (10)	CH_2CI_2	72	0	trace	trace
6	ZnCl ₂ (10)	DMF	70	0	trace	trace
7	ZnCl ₂ (10)	PhMe	70	0	trace	trace
8	ZnCl ₂ (10)	dioxane	72	0	trace	trace
9	PdCl ₂ (10)	CH_2CI_2	41	0	trace	42
10	$CuF_2(5)$	DMF	0	0	0	91

^aReaction conditions: A mixture of **1a** (0.3 mmol), 4-MeC₆H₄SH (0.33 mmol) and metal catalysts in solvent (0.3 mL) was treated at rt in air. ^bIsolated yield after silica gel chromatography.

Table 2. Investigation of suitable condition^a.

	Ph	2xRSH, ⁽² (10 mol%) , air 100 °C 18 h	SR SR + Ph	∕~~SR 7a
Entry	RSH	ZnX ₂	6a (%) ^b	7a(%) (E/Z) ^c
1	4-MeC ₆ H₄SH	ZnCl ₂	76	trace
2	4-MeC ₆ H ₄ SH	Znl ₂	79	trace
3	4-BrC ₆ H₄SH	ZnČl ₂	trace	90(91/9)
4	4-BrC ₆ H₄SH	ZnBr ₂	60	33(88/12)
5	4-BrC ₆ H₄SH	Znl ₂	71	trace
6	4-BrC ₆ H₄SH	Zn(OAc) ₂	0	91(87/13)
7	4-BrC ₆ H ₄ SH	ZnSO ₄	trace	90(95/5)
3-				

^aReaction conditions: A mixture of **5a** (0.3 mmol), thiol (0.63 mmol) and ZnX_2 (10 mol%) in PhMe (0.3 mL) at 100 °C in air.

^blsolated yield after silica gel chromatography.

^cThe ratio was determined by ¹H NMR.

To clear the reaction mechanism, some experiments were then performed. When a reaction was examined in the absence of oxygen, the corresponding dithioacetal was

Table 3. Zn-catalyzed dihydrosulfenylation^a.

	2xR ³ SH, Znl ₂ (10 mol%)	-1 $\xrightarrow{R^2}$ SR ³	
	5 PhMe, air 100 °C	R' SR ³ 6	
Entry	6	h	6 (%) ^b
1	PhCH ₂ CH(SPh) ₂	18	77
2	$PhCH_2CH(SC_6H_4Me-4)_2$	18	79
3	PhCH ₂ CH(SC ₆ H ₄ OMe-4) ₂	18	82
4	PhCH ₂ CH(SC ₆ H ₄ Br-4) ₂	18	71
5	PhCH ₂ CH(SC ₆ H ₄ Cl-4) ₂	18	78
6	PhCH ₂ CH(SC ₆ H ₄ Me-2) ₂	24	80
7 ^c	PhCH ₂ CH(SC ₆ H ₄ Br-2) ₂	36	50
8	PhCH ₂ CH(SnBu) ₂	42	43
9	4-MeC ₆ H ₄ CH ₂ CH(SC ₆ H ₄ Me-4) ₂	18	87
10	4-MeOC ₆ H ₄ CH ₂ CH(SC ₆ H ₄ Me-4) ₂	18	74
11	4-PhC ₆ H ₄ CH ₂ CH(SC ₆ H ₄ Me-4) ₂	18	67
12	4-FC ₆ H ₄ CH ₂ CH(SC ₆ H ₄ Me-4) ₂	18	82
13 ^c	nHexCH ₂ CH(SC ₆ H ₄ Me-4) ₂	64	78
14	$EtO_2CCH_2CH(SC_6H_4Me-4)_2$	18	81
15	PhCH ₂ C(Me)(SC ₆ H ₄ Me-4) ₂	18	72
16	PhCH ₂ C(Et)(SC ₆ H ₄ Me-4) ₂	18	68

^aReaction conditions: A mixture of 5 (0.3 mmol), thiol (0.63 mmol) and Znl₂ (10 mol%) in PhMe (0.3 mL) was treated at 100 °C in air. Isolated yield after silica gel chromatography. ^cZnCl₂ (20 mol%).

$$Ph \longrightarrow 2x4-MeC_{6}H_{4}SH,$$

$$ZnI_{2} (10 \text{ mol}\%) \longrightarrow SC_{6}H_{4}Me-4$$

$$PhMe, 100 ^{\circ}C \qquad SC_{6}H_{4}Me-4$$

$$SC_{6}H_{4}Me-4$$

$$68\%$$

Scheme 2. A reaction under nitrogen atmosphere.

$$Ph \longrightarrow \begin{array}{c} 2x4-MeC_{6}H_{4}SH, \\ ZnI_{2} (10 \text{ mol}\%) \\ \hline TEMPO (1equiv.) \\ \hline PhMe, 100 \ ^{\circ}C \end{array} \xrightarrow{Ph} \begin{array}{c} SC_{6}H_{4}Me-4 \\ SC_{6}H_{4}Me-4 \\ \hline Not \ detected \end{array}$$

Scheme 3. A reaction in the presence of TEMPO.

Figure 2. A plausible mechanism.

obtained in 68% yield, and this procedure was slightly inhibited (Scheme 2).

On the other hand, a reaction in the presence of TEMPO as a radical scavenger was also investigated (Scheme 3). The procedure was completely inhibited.

From these results, it is considered that the dihydrosulfenylation proceeds via radical processes (Figure 2).^[6] Finally, the procedure is promoted by a zinc catalyst as a Lewis acid.^[7] Further investigation into the exact details of the conditions and the mechanism are now in progress.

Conclusions

In conclusion, we achieved the zinc-catalyzed dihydrosulfenylation of alkynes with thiols. The procedure could regioselectively afford numerous desired dithioacetals in excellent yields.

Acknowledgment

This work was supported by Daicel Corporation.

References

- (a) Comprehensive Organic Synthesis, Vol. 6; Trost, B. M.; Fleming, I. Eds.; Pergamon: New York, **1991**. (b) Krief, A.; In Comprehensive Organometallic Chemistry II, Vol. 11; Abel, E. W.; Stone, F. G. A.; Wilkinson, G. Eds.; Pergamon: New York, **1995**. (c) Metzner, P.; Thuillier, A. In Sulfur Reagents in Organic Synthesis, Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W., Eds.; Academic Press: San Diego, **1994**.
- [2] Greene, T. W.; Wuts, P. G. M. Protecting Groups in Organic Synthesis, 3rd ed.; John Wiley & Sons, Inc.: New York, 1999.
- [3] Anti-Markovnikov type reaction:(a) Kuroda, H.; Tomita, I.; Endo, T. Synth. Commun. 1996, 26, 1539. (b) Wipf, P.; Graham, T. H. Org. Biomol. Chem. 2005, 3, 31. (c) Gaunt, M. J.; Sneddon, H. F.; Hewitt, P. R.; Orsini, P.; Hook, D. F. Ley, S. V. Org. Biomol. Chem. 2003, 1, 15. (d) Huťka, M.;

Tsubogo, T.; Kobayashi, S. Organometallics **2014**, 33, 5626. (e) Nuyken, O.; Siebzehnrübl, F. *Phosphorus and Sulfur* **1988**, 35, 47. (f) Bhadra, S.; Ranu, B. C. *Can. J. Chem.* **2009**, 87, 1605.

- [4] Markovnikov type reaction:(a) Mitamura, T.; Daitou, M.; Nomoto, A.; Ogawa, A. Bull. Chem. Soc. Jpn. 2011, 84, 413. (b) Yadav, J. S.; Reddy, B. V. S.; Raju, A.; Ravindar, K.; Baishya, G. Chem. Lett. 2007, 36, 1474.
- [5] (a) Cao, C.; Fraser, L. R.; Love, J. A. J. Am. Chem. Soc. 2005, 127, 17614. (b) Ranjit, S.; Duan, Z.; Zhang, P.; Liu, X. Org. Lett. 2010, 12, 4134. (c) Kondoh, A.; Takami, K.; Yorimitsu, H. Oshima, K. J. Org. Chem. 2005, 70, 6468. (d) Weiss, C. J.; Wobser, S. D.; Marks, T. J. Organometallics 2010, 29, 6308. (e) Shoai, S.; Bichler, P.; Kang, B.; Buckley, H.; Love, J. A. Organometallics 2007, 26, 5778.
- [6] Curran, D. P.; Martin-Esker, A. A.; Ko, S. B.; Newcomb, M. Rate Constants for Chalcogen Group Transfers in Bimolecular Substitution Reactions with Primary Alkyl Radicals. J. Org. Chem. 1993, 58, 4691. DOI: 10.1021/jo00069a036.
- [7] Yamamoto, Y. From Sigma- to pi-Electrophilic Lewis Acids. Application to Selective Organic Transformations. J. Org. Chem. 2007, 72, 7817. DOI: 10.1021/jo070579k.