2-Hydroxyketones; XIV¹. A Facile One-Step Synthesis of 3,3,6,8-Tetrasubstituted Flavanones

Alexandru CAŞCAVAL

Department of Organic and Macromolecular Chemistry, Polytechnic Institute of Iassy, R-6600 Iassy, Calea 23 August 22, Romania

The investigation of the syntheses of chromone and chromanone derivatives exhibiting physiological activity has led us to apply some known reactions (Vilsmeier-Harnisch, Mannich-Werner) to a few halogenated alkyl 2-hydroxyphenyl ketones; we have thus developed a versatile synthesis of some new 3,6,8-trisubstituted chromones² and 3,3,6,8-tetrasubstituted 4-chromanones³ which, according to pharmacological screening, act on the smooth muscular system. These results encouraged me to publish a similar one-step synthesis of some new 3,3,6,8-tetrasubstituted flavanones derived from a halogenated chalcone by both cyclization and Mannich reaction: 3,5-dichloro-2-hydroxyphenyl 1-phenylpropen-2-yl ketone (1) reacts with aqueous formaldehyde and cyclic secondary amines (2) at room temperature (24 h) to afford 3-cycl-aminomethyl-6,8-dichloro-3-methylflavanones (3).

It is interesting to note that under the same conditions the reaction of chalcone 1 with aqueous formaldehyde and diethylamine yields 6,8-dichloro-3-hydroxymethyl-3-methylflavanone (4) which is a possible intermediate in the formation of Mannich bases 3.

Table. Substituted Flavanones (3, 4) prepared

Prod- uct	Yield [%]	m.p. [°C]	Molecular formula ^a	I.R. ν [cm ¹]	1 H-N.M.R. (CDCl $_{3}$ /TMS $_{\mathrm{int}}$) b [ppm]
3a	79	162~163°	C ₂₁ H ₂₁ Cl ₂ NO ₂ (389.9)	3000 (CH); 1670 (CO)	7.6-7.8 (dd, 2 H); 7.3-7.6 (m, 5 H); 5.8 (s, 1 H); 2.4-3.0 (m, 6 H); 1.5-1.8 (m, 4 H); 1.0 (s, 3 H)
3b	51	151-152°	C ₂₂ H ₂₃ Cl ₂ NO ₂ (403.9)	3000 (CH); 1680 (CO)	7.6-7.8 (dd, 2H); 7.2-7.5 (m, 5H); 5.8 (s, 1H); 2.1-2.8 (m, 6H); 1.3 (m, 6H); 1.0 (s, 3H)
3c	57	166-167°	$C_{21}H_{21}Cl_2NO_3$ (405.9)	3000 (CH); 1685 (CO)	7.6-7.8 (dd, 2 H); 7.3-7.6 (m, 5 H); 5.85 (s, 1 H); 3.4-3.6 (t, 4 H); 2.8-3.1 (t, 4 H); 2.0-2.5 (m, 2 H); 1.0 (s, 3 H)
3d	50	167-168°	$C_{23}H_{26}Cl_2N_2O_3$ (428.9)	3300 (OH); 2900 (CH); 1680 (CO)	7.6-7.8 (dd, 2 H); 7.1-7.5 (m, 5 H); 5.8 (s, 1 H); 3.4 (t, 2 H); 3.1 (1 H); 3.0-2.2 (m, 12 H); 1.0 (s, 3 H)
4	66	193~194°	C ₁₇ H ₁₄ Cl ₂ O ₃ (336.9)	3400 (OH); 1690 (CO)	7.6–7.8 (dd, 2H); 7.3–7.6 (m, 5 H); 5.8 (s, 1 H); 3.4 (2 H); 1.5 (s, 1 H); 1.0 (s, 3 H)

^a The microanalyses were in satisfactory agreement with the calculated values: C, ± 0.25 ; H, ± 0.20 ; N, ± 0.25 ; Cl, ± 0.25 .

The structures of all new compounds were proven by microanalytical, I.R.-spectral, and ¹H-N.M.R.-spectral data.

3,5-Dichloro-2-hydroxyphenyl 1-Phenylpropen-2-yl Ketone (1):

A solution of benzaldehyde (5.31 g, 50 mmol) in dioxan (25 ml) is added to a vigorously stirred solution of 1-(3,5-dichloro-2-hydroxyphenyl)-1-propanone4 (10.96 g, 50 mmol) in aqueous 10% potassium hydroxide (100 ml) + dioxan (25 ml) at room temperature. Stirring is continued for 24 h, the mixture then acidified with dilute hydrochloric acid (100 ml), and the precipitated crude yellow product 1 isolated and recrystallized from ether; yield: 9.37 g (61%); m.p. 137-138°C.

C₁₆H₁₂Cl₂O₂ H 3.91 Cl 23.10 calc. C 62.56 found 62.17 4.26 22.86 (306.9)

I.R. (KBr): v = 3050 (CH); 1620 (C=O) cm⁻¹.

¹H-N.M.R. (CDCl₃/TMS_{int}): δ = 12.3 (s, 1 H); 7.7-7.9 (dd, 2 H); 7.1-7.5 (m, 5H); 5.9-6.0 (d, 1H); 1.0 ppm (s, 3H).

3-cycl-Aminomethyl-6,8-dichloro-3-methylflavanones (3); General Procedure:

To a solution of chalcone 1 (307 mg, 1 mmol) and the secondary cyclic amine 2 (technical grade; 1.5 mmol) in methanol (25 ml) is added aqueous 30% formaldehyde (0.5 ml, 4 mmol) and the mixture is allowed to stand at room temperature for 24 h. Cold water (100 ml) is then added and the product 3 is extracted with ether (50 ml). The extract is dried with sodium sulfate and evaporated to give the essentially pure product. For purification, products 3 are recrystallized from methanol (Table).

6,8-Dichloro-3-hydroxymethyl-3-methylflavanone (4):

To a solution of chalcone 1 (1 g, 3 mmol) in methanol (50 ml) is added diethylamine (1.5 ml, 15 mmol) and aqueous 30% formaldehyde solution (1.25 ml, 10 mmol). The mixture is allowed to stand at room temperature for 24 h. Then, cold water (100 ml) is added to precipitate the crude product 4 which is isolated and recrystallized from methanol to give the analytically pure product 4; yield: 0.72 g (66%); m.p. 193-194°C.

The author is thankful to "Alexander von Humboldt-Stiftung", Bad Godesberg (West-Germany), for providing a fellowship at the University of Freiburg i. Br., and also to BASF/Ludwigshafen (West-Germany), for the gift of several compounds.

2-Hydroxyketones. XIII: A. Caşcaval, Bul. Inst. Polit. Iaşi, in press.

³ A. Caşcaval, Synthesis 1983, 579.

Recorded on a JEOL instrument at 50°C and 60 MHz.

A. Caşcaval, Liebigs Ann. Chem. 1980, 669.

⁴ D. S. Tarbell, Y. Sato, J. Am. Chem. Soc. 68, 1091 (1946).