
CHEMISTRY LETTERS, pp. 2035-2038, 1986.

Regio- and Stereo-selective Oxidation of <u>gem</u>-Dimethyl Olefins <u>via</u> [2,3]-Sigmatropic Rearrangement of Allyl Amine Oxides

Seiichi INOUE, Norimichi IWASE, Osamu MIYAMOTO, and Kikumasa SATO* Department of Applied Chemistry, Faculty of Engineering, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240

Highly regio- and stereo-selective oxidation sequences are described for the efficient conversion of the gem-dimethyl olefin terminus of acyclic terpenes to terminal trans-allylic alcohols and trans- α , β -unsaturated aldehydes.

Allylic oxidations of <u>gem</u>-dimethyl olefins 1 are extremely important for the synthesis of naturally occurring oxygenated isoprenoids. Hence a number of methods have been reported for the synthesis of terminal <u>trans</u>-allylic alcohols and α,β -unsaturated aldehydes.¹⁾ Here, we report facile, regio- and stereo-selective oxidations of gem-dimethyl olefins 1 as shown in Scheme 1.

Allyl chlorides 2 were prepared by ene-type chlorination²⁾ of olefins 1 using calcium hypochlorite.³⁾ To a stirred mixture of 1 (10 mmol) and calcium hypochlorite (active chlorine 60%; 1.3 g; 11 mmol) in CH_2Cl_2 (100 ml) and water (10 ml) were added slowly pieces of dry ice at 10 °C. The mixture was filtered and extracted with $CHCl_3$. The organic layer was dried over $MgSO_4$ and concentrated <u>in vacuo</u>. The crude chloride 2 was stirred in 50% aq. dimethylamine (50 ml) and ethanol (17 ml) at room temperature for 3-5 d. The reaction mixture was evaporated off to give crude product, which was purified by column chromatography on silica gel (elution with 10-50% AcOEt/n-C₆H₁₄) to provide the corresponding allylamine 3 in good yield. In case of the chlorination of geraniol (1d) the use of CH_2Cl_2 —sat. aq Na₂SO₄ (Method B) as the solvent in stead of $CH_2Cl_2-H_2O$ (Method A) des-

cribed in the original paper³⁾ led to fewer amount of by-products, hence resulted in higher yield of 3d.

Subsequent [2,3]-sigmatropic rearrangement⁴⁾ was carried out by oxidation of allylamines **3** with peracetic acid followed by heating the crude allylamine oxides **4**. Peracetic acid (40%; 1.0 g; 5.5 mmol) was added dropwise to a mixture of **3** (5.0 mmol) and solid Na₂CO₃ (0.6 g; 5.5 mmol) in CH₂Cl₂ (50 ml) at -50 °C with vigorous stirring. After 30 min the mixture was warmed to room temperature, poured into half-saturated brine and extracted with AcOEt. The combined organic layer was warmed at 40-50 °C for 30 min. The solvent was removed <u>in vacuo</u>, and the residue was chromatographed on silica gel (elution with 5-20% AcOEt/n-C₆H₁₄) to provide <u>trans</u>-allyloxy amines **5**, which was not contaminated by the <u>cis</u>-isomer as evidenced by NMR analysis.

The attempted cleavage of nitrogen-oxygen bond of allyloxy amines 5 by LiAlH₄ in refluxing THF (24 h)⁵⁾ afforded only a trace of product (as judged by TLC), however, treatment of 5 with excess of zinc dust⁶⁾ cleanly afforded terminal <u>trans</u>-allylic alcohols 6. A mixture of 5 (1.0 mmol) and Zn dust (0.3 g) in AcOH-H₂O (1:1; 6 ml) was stirred vigorously at room temperature for 1-2 d. The mixture was filtered and extracted with Et₂O. The combined organic layer was washed with saturated aqueous Na₂CO₃ several times, dried over MgSO₄, and concentrated to give the pure alcohol 6 in quantitative yield.

Recently A. Liguori and co-workers reported a ring-opening elimination of isoxazolidines to α,β -enones using trimethyl phosphate.⁷⁾ Therefore, we investigated the <u>N</u>-alkylation of allyloxy amines 5 and the subsequent Hofmannlike elimination of the resulting quaternary ammonium salts 8 to prepare terminal <u>trans</u>- α,β unsaturated aldehydes 7. The results are shown in Table 1.

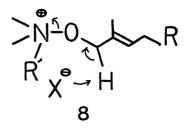


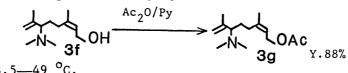
Table 1. Transformation of allyloxy amines 5 to terminal $\underline{\text{trans}}-\alpha,\beta-unsaturated$ aldehydes 7

Reagent	gent Conditions			
(MeO) ₃ PO	diglyme, refl.	trace		
MeI	CHCl ₃ , refl., 3 h	quant.		
CH ₂ =CHCH ₂ Br	CHC1 ₃ , ref1., 3 h	trace		
	TBAI(5 mol%), CHCl ₃ , refl., 4 h	quant.		
PhCH ₂ C1	TBAI(5 mol%), CHCl ₃ , refl., 4 h	0		
-	TBAI(5 mo1%), DMF, 100 ^o C , 4 h	70		

>NO	&~OBn	>	0⇒	\frown	∽OBn
-----	-------	---	----	----------	------

Table 2. Transformation of isoprenoids 1 to allylamines 3, allyloxy amines 5, terminal trans-allylic alcohols 6, and trans- α , β -un-saturated aldehydes 7

Isoprenoid 1	Method of	Yield/% ^{b)}			
R	Chlorination ^{a)}	3	5	6	7
OBn (1a)	A	77	93	quant.	quant.
OAc (1b)	-		86 ^{c)}	quant.	quant.
OPh (1c)	А	80	92	quant.	quant.
t h	Α	57			
OH (1d)	В	73			
OAc (1e)	-	d)	86 ^{e)}	quant.	quant.
€ OH (1f)	В	75			
	-	d)	83 ^{f)}	quant.	quant.
OBn (1h)	A	70	80	quant.	quant.
- OBn (11)	A	74	71	quant.	quant.
SO2TOI (1j)	A	64 ^{g)}	89	quant.	quant.


a) Method A: $Ca(OCl)_2$ —dry ice, CH_2Cl_2 — H_2O , 10 ^OC. Method B: $Ca(OCl)_2$ —dry ice, CH_2Cl_2 — H_2O saturated with Na_2SO_4 , 10 ^OC. b) All compounds gave satisfactory spectral data. c) Yield from 3b which was prepared as follows;

$$N = 3a^{2} Ac_2^{0/Py} N = 3b^{2.83\%}$$

d) When acetates 2e and 2g were used in amination, deacetylated products 3d and 3f, respectively, were obtained. e) Yield from 3e which was prepared as follows;

$$\frac{1}{N} \frac{Ac_2^{O/Py}}{3d} \xrightarrow{Ac_2^{O/Py}} \frac{1}{N} \frac{OAc}{3e}$$

f) Yield from 3g which was prepared as follows;

g) mp 48.5—49 ^oC.

Treatment of allyloxy amines 5 with <u>N</u>-alkylating reagents such as iodomethane alone or allyl bromide in the presence of tetrabutylammonium iodide (TBAI) cleanly gave the desired aldehydes 7. A solution of 5 (1.0 mmol) and iodomethane (3 ml) in CHCl_3 (6 ml) was refluxed for 3 h. The mixture was poured into water and extracted with Et_2 O. The combined organic layer was washed with water, dried over MgSO_4 , and concentrated to give the pure aldehyde 7 quantita-tively.

The versatility of the method for the terminal allylic oxidations mentioned above was demonstrated on the various isoprenoids 1 and results are summarized in Table 2.

We are currently investigating the application to the synthesis of natural products.

References

- D. A. Evans, G. C. Andrews, T. T. Fujimoto, and D. Wells, Tetrahedron Lett., <u>1973</u>, 1385; T. Nakai, H. Shino, and M. Okawara, Chem. Lett., <u>1975</u>, 249; M. A. Umbreit and K. B. Sharpless, J. Am. Chem. Soc., <u>99</u>, 5526 (1977); Y. Masaki, K. Hashimoto, and K. Kaji, Tetrahedron <u>40</u>, 3481 (1975); J. E. McMurry and
 - P. Kocovsky, Tetrahedron Lett., 25, 4187 (1984).
- 2) A. J. Mura, Jr., D. A. Bennett, and T. Cohen, Tetrahedron Lett., <u>1975</u>, 4433;
 B. Chabaud and K. B. Sharpless, J. Org. Chem., <u>44</u>, 4202 (1979); S. Torii,
 K. Ueneyama, T. Nakai, and T. Yasuda, Tetrahedron Lett., <u>22</u>, 2291 (1981);
 L. W. Hertel and L. A. Paquette, J. Am. Chem. Soc., <u>101</u>, 7620 (1979); W. Sato,
 N. Ikeda, and H. Yamamoto, Chem. Lett., <u>1982</u>, 141; S. Torii, H. Tanaka, N.
 Tada, S. Nagao, and M. Sasaoka, ibid., 1984, 877.
- S. G. Hegde, M. K. Vogel, J. Saddler, T. Hrinyo, N. Rockwell, R. Haynes, M. Oliver, and J. Wolinsky, Tetrahedron Lett., 21, 441 (1980).
- 4) A. C. Cope and P. H. Towle, J. Am. Chem. Soc., 71, 3423 (1949).
- 5) A. E. Walts and W. R. Roush, Tetrahedron, 41, 3463 (1985).
- 6) R. Huisgen, R. Grashey, H. Hauck, and H. Seidl, Chem. Ber., 101, 2548 (1968).
- 7) A. Liguori, G. Sindona, and N. Uccella, Tetrahedron, 40, 1901 (1984).

(Received September 10, 1986)