

Bioorganic & Medicinal Chemistry Letters 10 (2000) 1109-1111

## Synthesis and Binding Affinities of 4-Diarylaminotropanes, a New Class of Delta Opioid Agonists

Robert E. Boyd, John R. Carson,\* Ellen E. Codd, A. Diane Gauthier, Lou Anne Neilson and Sui-Po Zhang

Drug Discovery, R. W. Johnson Pharmaceutical Research Institute, Spring House, Philadelphia, PA 19477, USA

Received 16 February 2000; accepted 14 March 2000

Abstract—A series of 4-diarylaminotropanes has been prepared. Both *endo* and *exo* diastereomeric forms bound to the delta opioid receptor but the *endo* isomers were more potent and selective versus the  $\mu$  opioid receptor than the *exo* isomers. The most potent delta opioid agonist (14) exhibited a delta opioid  $K_i$  of 0.2 nM and was 860-fold selective over mu. © 2000 Elsevier Science Ltd. All rights reserved.

A number of selective delta ( $\delta$ ) opioid agonists have been reported in the literature.<sup>1</sup> These compounds were pursued as potential analgesic agents with fewer side effects than classic mu ( $\mu$ ) opioid agonists. Many of these  $\delta$  agonists are piperazines or piperidines and resemble the earlier mu opioid agonists but incorporate an additional aromatic 'address functionality'.<sup>2</sup> A piperazine that has been widely studied as a  $\delta$  agonist is SNC 80 (1).<sup>3</sup> Transposition of nitrogen and carbon at the head of SNC 80 gives rise to diarylaminopiperidines (2), another class of compounds with  $\delta$  agonist activity.<sup>4–7</sup> We sought to investigate the role of stereochemistry in  $\delta$  agonists by preparing and evaluating a series of bridged compounds, the 4-diarylaminotropanes (3).



A synthetic pathway to compounds of type **3** is shown in Scheme 1. Tropinone (**4**) was subjected to reductive alkylation with aniline. The reducing agent employed determined the stereochemistry of the new bond formed. Sodium borohydride, sodium triacetoxyborohydride, or catalytic reduction gave exclusively the *endo* isomer (**5b**) while sodium metal in ethanol produced both isomers<sup>8</sup> (5a and 5b) which could be separated by flash chromatography.



**Scheme 1.** General synthesis of diarylaminotropanes. Reagents and conditions: (a) aniline, Na, EtOH; (b) *t*-butyl 4-bromobenzoate,  $Pd_2dba_3$ , (*t*-butyl)<sub>3</sub>P, NaO*t*Bu, toluene; (c) 6 N HCl; (d) HATU, HNR<sup>2</sup>R<sup>3</sup>; (e) 1-chloroethylchloroformate, DCE, reflux, 2 h; (f) MeOH, reflux; (g) carbonyl compound, NaBH(OAc)<sub>3</sub>, DCE.

Once separated, the individual isomers underwent arylation<sup>9</sup> with *t*-butyl 4-bromobenzoate to produce the 4-(diaryl)aminotropane (6). The ester was hydrolyzed with HCl and the resulting acid (7) was converted to the desired amide (8) by one of two ways. Coupling utilizing HATU (O-(7-azabenzotriazol-1-yl)-N,N',N'-tetramethyluronium hexafluorophosphate)<sup>10</sup> produced the desired

<sup>\*</sup>Corresponding author. Tel.: +1-215-628-5526; fax: +1-215-628-4985; e-mail: jcarson@prius.jnj.com

<sup>0960-894</sup>X/00/\$ - see front matter  $\odot$  2000 Elsevier Science Ltd. All rights reserved. PII: S0960-894X(00)00182-7

amides in quantitative yield. Conversion of the acid to the acid chloride followed by Schotten–Baumann reaction with the appropriate amine proved successful as well. Compounds (10) with different substituents on the tropane nitrogen were acquired by alkylation after demethylation of compound 9 with 1-chloroethylchloroformate.

Tropanes have been studied as  $\mu$  opioid agonists.<sup>11–14</sup> NMR studies indicated an axial phenyl in a chair configuration for the meperidine analogue (11)<sup>11,12</sup> while the bridged fentanyl analogue (12) adopted the equatorial boat configuration.<sup>14</sup> The lack of an NOE between the aromatic protons and the protons on the bridge indicate that *endo* diarylamino function of 13 is in the equatorial boat configuration analogous to 12.



**Table 1.** Binding affinity of the *endo* isomers to  $\delta$  and  $\mu$  opioid receptor

A summary of biological data is listed in Tables 1 and 2. The  $\delta$  opioid receptor affinity was calculated from the inhibition of <sup>3</sup>H-DPDPE binding to  $\delta$  opioid receptors from rat brain membranes. The  $\mu$  opioid receptor affinity was calculated from the inhibition of <sup>3</sup>H-DAMGO binding to  $\mu$  opioid receptors from rat brain membranes.<sup>15</sup> The binding affinities of morphine<sup>16</sup> and SNC 80 are listed as  $\mu$  and  $\delta$  agonist representatives.

This new class of compounds can exhibit low nanomolar binding affinity for the  $\delta$  opioid receptor. Some of the *endo* isomers (Table 1) are among the most potent and selective nonpeptidic  $\delta$  agonists to be published to date. Compounds **14**, **15** and **16** are more potent and selective than SNC 80. The *endo* tropanes are, in general, more potent and selective than their nonbridged counterparts, the piperidines (**16** vs **34**).<sup>6</sup>

The structure–activity relationships of this class parallel the SAR of previously published  $\delta$  opioid agonists.<sup>17–21</sup> The small 'R' groups on nitrogen, H (**15**), allyl (**16**), methyl (**19**), and propyl (**20**), typical of  $\delta$  agonists analogous to SNC 80, elicit high  $\delta$  receptor affinity. The

| Compound | R                    | Х                | Y                | δ K <sub>I</sub> nm | $\mu K_{\rm I}  {\rm nm}$ | $\mu/\delta$ ratio |
|----------|----------------------|------------------|------------------|---------------------|---------------------------|--------------------|
| Morphine |                      |                  |                  | 90                  | 1.8                       | 0.02               |
| SNC 80   |                      |                  |                  | 1.7                 | 1300                      | 760                |
| 14       | 3,4-Methylenedioxybz | NEt <sub>2</sub> | Н                | 0.2                 | 172                       | 860                |
| 15       | H                    | $NEt_2$          | Н                | 0.4                 | 5040                      | 14000              |
| 16       | Allyl                | NEt <sub>2</sub> | Н                | 0.5                 | 1820                      | 3640               |
| 17       | Ċy                   | $NEt_2$          | Н                | 2                   | 817                       | 355                |
| 18       | Phenethyl            | NEt(2-Me)allyl   | Н                | 2                   | 1185                      | 546                |
| 19       | Me                   | NEt(2-Me)allyl   | Н                | 2                   | 2555                      | 1122               |
| 20       | Pr                   | NEt <sub>2</sub> | Н                | 3                   | 5790                      | 1776               |
| 21       | Phenethyl            | NMePr            | Н                | 4                   | 293                       | 75                 |
| 22       | Phenethyl            | NMePr            | Н                | 4                   | 308                       | 77                 |
| 23       | Phenethyl            | NPr <sub>2</sub> | Н                | 4                   | 818                       | 200                |
| 24       | Phenethyl            | NMeĒt            | Н                | 5                   | 113                       | 24                 |
| 25       | Phenethyl            | NEtBu            | Н                | 5                   | 244                       | 50                 |
| 26       | Me                   | NMePh            | Н                | 6                   | 2773                      | 473                |
| 13       | Me                   | NEt <sub>2</sub> | Н                | 7                   | 4830                      | 733                |
| 27       | Phenethyl            | $NEt_2$          | Н                | 8                   | 124                       | 16                 |
| 28       | Me                   | NPrBu            | Н                | 8                   | 1725                      | 220                |
| 29       | Me                   | $NEt_2$          | SCH <sub>3</sub> | 9                   | 2770                      | 235                |
| 30       | Me                   | NEt(4-Me)Bn      | Н                | 10                  | 1205                      | 119                |
| 31       | Me                   | NMeEt            | Н                | 18                  | 4346                      | 240                |
| 32       | Me                   | NPr <sub>2</sub> | Н                | 18                  | Inact.                    | Inact.             |
| 33       | Me                   | NEt <sub>2</sub> | OCH <sub>3</sub> | 21                  | 3700                      | 180                |
| 34       |                      |                  |                  | 24                  | 1155                      | 481                |
| 35       | Phenethyl            | NMe <sub>2</sub> | Н                | 30                  | 128                       | 4.3                |
| 36       | Me                   | 1-pyrrolidinyl   | Н                | 34                  | 1400                      | 41                 |
| 37       | Me                   | NMe <sub>2</sub> | Н                | 53                  | 3018                      | 57                 |
| 38       | Phenethyl            | 1-pyrrolidinyl   | Н                | 93                  | 1343                      | 14                 |
| 39       | Phenethyl            | OH               | Н                | 356                 | 249                       | 0.7                |
| 40       | Me                   | OH               | Н                | 363                 | 7500                      | 21                 |
| 41       | Me                   | Ot-butyl         | Н                | 2260                | Inact.                    | Inact.             |

Table 2.Binding affinity of the exo isomers to  $\delta$  and  $\mu$  opioid receptor



| Compound | R                        | Х                | δ K <sub>I</sub><br>nm | μ <i>K</i> I<br>nm | μ/δ<br>ratio |
|----------|--------------------------|------------------|------------------------|--------------------|--------------|
| SNC 80   |                          |                  | 1.7                    | 1300               | 760          |
| Morphine |                          |                  | 90                     | 1.8                | 0.02         |
| 41       | PhenylPr                 | NEt <sub>2</sub> | 4                      | 23                 | 6.3          |
| 42       | 3,4-Methylene dioxybz    | NEt <sub>2</sub> | 4                      | 704                | 186          |
| 43       | 2-Furylmethyl            | NEt <sub>2</sub> | 6                      | 845                | 136          |
| 44       | 3,4-Dimethoxy- phenethyl | NEt <sub>2</sub> | 9                      | 350                | 39           |
| 45       | 3,3-Dimethallyl          | NEt <sub>2</sub> | 12                     | 94                 | 8            |
| 46       | Н                        | NEt <sub>2</sub> | 19                     | 1590               | 85           |
| 47       | 4-Fluoro phenethyl       | NEt <sub>2</sub> | 24                     | 311                | 13           |
| 48       | Hexyl                    | NEt <sub>2</sub> | 33                     | 130                | 4            |
| 49       | 2-EtBu                   | NEt <sub>2</sub> | 42                     | 975                | 23           |
| 50       | Phenethyl                | NPr <sub>2</sub> | 61                     | 370                | 6            |
| 51       | Phenethyl                | NEt <sub>2</sub> | 72                     | 13                 | 0.2          |
| 52       | Cyclohexyl-methyl        | NEt <sub>2</sub> | 77                     | 371                | 5            |
| 53       | Н                        | NPr <sub>2</sub> | 131                    | 2950               | 23           |
| 54       | Pr                       | NEt <sub>2</sub> | 151                    | 1850               | 12           |
| 55       | Me                       | NEt <sub>2</sub> | 305                    | 6350               | 21           |
| 56       | 2,2-Diphenyl ethyl       | $NEt_2$          | 550                    | 1420               | 3            |

3,4-methylenedioxy substituent<sup>22</sup> imparts very good potency. Compounds with an *N*-phenethyl substituent are, in general, less selective. The C=O(X) functionality associated with the address<sup>2</sup> portion of the molecule is optimally a tertiary amide. Optimal activity and selectivity are achieved with the diethylamide. Activity and selectivity are lost when the amide is *N*,*N*-dimethyl (**37**) or CO-pyrrolidinyl (**36**). Activity is greatly diminished when the C=O(X) substituent is ester or acid.

The *exo* isomers (Table 2) are less potent and less selective for the  $\delta$  opioid receptor. The structure–activity relationship of this set of compounds is quite different from the *endo* isomer. Small alkyl 'R' groups on the tropane nitrogen result in a loss of activity (**45**, **47**, and **49**).

In summary, the generation of this class of compounds has developed a greater understanding of the spacial relationships between the  $\delta$  opioid receptor and its agonists. The binding site of the receptor is highly influenced by the stereochemistry of the agonist. These findings indicate that investigation into steric barriers designed into the framework of the molecule is likely to lead to additional potent and selective  $\delta$  opioid agonists.

## References

1. Williams, M.; Kowaluk, E. A.; Arneric, S. P. J. Med. Chem. **1999**, 42, 1481.

- 2. Portoghese, P. S.; Sultana, M.; Takemori, A. E. J. Med. Chem. 1990, 33, 1714.
- 3. Calderone, S. N.; Rice, K. C.; Rothman, R. B.; Porreca, F.; Flippen-Anderson, J. L.; Kayakiri, H.; Xu, H.; Becketts, K.; Smith, L. E.; Bilsky, E. J.; Davis, P.; Horvath, R. J. Med. Chem. **1997**, 40, 695.
- 4. Pelcman, B.; Roberts, E. World Patent Application WO 98/ 28270, 1998; Chem. Abstr. 1998, 129, 108996.
- 5. Carson, J. R.; Carmosin, R. J.; Fitzpatrick, L. J.; Reitz, A. B.; Jetter, M. C. World Patent Application WO 99/33806, 1999; *Chem. Abstr.* **1999**, *131*, 460403.
- 6. Podlogar, B. L.; Poda, G. I.; Demeter, D. A.; Zhang, S.-P.; Carson, J. R.; Neilson, L. A.; Reitz, A. B.; Ferguson, D. M. *Drug Des. Disc.* In press.
- 7. Thomas, J. B.; Herault, X. M.; Rothman, R. B.; Burgess, J. P.; Mascarella, S. W.; Xu, H.; Horel, R. B.; Dersh, C. M.; Carroll, F. I. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 3053.
- Bagley, J. R.; Riley, T. N. J. Heterocycl. Chem. 1977, 14, 599.
  Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcazar-Roman, L. M. J. Org. Chem. 1999, 64, 5575– 5580
- 10. Downing, S. V.; Aguilar, E.; Meyers, A. I. J. Org. Chem. **1999**, 64, 826–831.
- 11. Bell, M. R.; Archer, S. J. Am. Chem. Soc. 1960, 82, 151.
- 12. Casy, A. F.; Coates, J. E. Org. Magn. Reson. 1974, 6, 441. 13. Casy, A. F.; Dewer, G. H.; Pascoe, R. A. J. Pharm. Pha-
- *macol.* **1992**, *44*, 787.
- 14. Riley, T. N.; Bagley, J. R. J. Med. Chem. 1979, 22, 1167.
- 15. Codd, E. E.; Shank, R. P.; Schupsky, J. J.; Raffa, R. B. J. *Pharmacol. Exp. Ther.* **1995**, *274*, 1263.
- 16. Aldrich, J. V. In *Burger's Medicinal Chemistry and Drug Discovery*; Wolff, M. E., Ed.; John Wiley and Sons, 1996, Vol. 3, pp 338.
- 17. Giulio, D.; Ronzoni, S.; Petrillo, P. Exp. Opin. Ther. Patents 1999, 9, 353.
- 18. Alfaro-Lopez, J.; Okayama, T.; Hosohata, K.; Davis, P.; Porreca, F.; Yamamura, H. I.; Hruby, V. J. *J. Med. Chem.* **1999**, *42*, 5359.
- 19. Quock, R. M.; Burkey, T. H.; Varga, E.; Hosohata, Y.; Hosohata, K.; Cowell, S. M.; Slate, C. A.; Ehlert, F. J.; Roeske, W. R.; Yamamura, H. I. *Pharmacol. Rev.* **1999**, *51*, 503.
- 20. Thomas, J. B.; Atkinson, R. N.; Herault, X. M.; Rothman, R. B.; Mascarella, S. W.; Dersch, C. M.; Xu, H.; Horel, R. B.; Carroll, F. I. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 3347.
- 21. Zhang, X.; Rice, K. C.; Calderon, S. N.; Kayakiri, H.;
- Smith, L.; Coop, A.; Jacobson, A. E.; Rothman, R. B.; Davis,
- P.; Dersch, C. M.; Porecca, F. J. Med. Chem. 1999, 42, 5455.
- 22. Barn, D. R.; Bom, A.; Cottney, J.; Caulfield, W. L.; Morphy, J. R. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1329.