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Metal hydride reduction of a variety of a-[phenyl(or methyl)selenolalkyl aryl ketones gives a mixture
of threo- and erythro-(3-aryl-3-hydroxyalkyl phenyl(or methyl)selenides by carbonyl reduction and 1-aryl-
1-alkanol by the substitution of a phenyl(or methyl)seleno group with hydrogen. With all metal hydrides
examined the formation of the threo-isomer always predominated. The addition of various metal chlorides
in the reduction system did not affect the diastereoselectivity much, in a sharp contrast to the so-far known
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reduction of various a-heteroatom (N, P, O, S)-substituted ketones.

Studies on the diastereoselectivity in the metal hy-
dride reduction of o-heteroatom-substituted acyclic ke-
tones are of current interest.! The usual threo-rich al-
cohol formation shifted to erythro-rich one by the use
of Zn(BHy)2 or by addition of various metal halides,
due to chelation of the metal between a heteroatom
and a carbonyl oxygen. So-far studied heteroatoms
(Z) are nitrogen (NRy, NHR, triazolyl etc.)," phospho-
rus (PhoP(O) ete.),V) oxygen (OH, OR, OSiR3, epox-
ide etc.),>~% sulfur (SR, S(O)R, S(O)2R etc.),>® and
bromine” (Scheme 1). Recently, one of us reported
that the reduction of 1-(biphenyl-4-yl)-2-phenylseleno-1-
- propanone with some reducing agents produced the cor-
responding 2-phenylseleno-1-propanol as the intermedi-
ate for the pharmaceutically important 2-arylpropanoic
acids; the alcohol consisted of a threo-rich diastereo-
meric mixture.®) Since there are no detailed and general
data available on the diastereoselectivity of the reduc-
tion of a-selenium-substituted ketones,? we studied the
metal hydride reduction in detail using various a-[phen-
yl(or methyl)seleno|propiophenones as substrates.

Results and Discussion

The «- (phenylseleno)alkyl aryl ketones (la—1g)
were prepared by treatment of alkyl aryl ketones with
benzeneselenenyl chloride in ethyl acetate in 40—84%
isolated yields by the reported method.'® The a-(meth-
ylseleno)propiophenone (1h) was prepared by treat-
ment of a-lithiopropiophenone with methaneselenenyl
bromide in 62% isolated yield (See Experimental). Re-
duction of 1 with various metal hydrides afforded a
mixture of threo- and erythro- B-aryl- 8- hydroxyalkyl
pheny! (or methyl) selenides (2) and 1-aryl-1-alka-
nol (3) (Scheme 2; Table 1). The diastereoselectiv-
ity of 2 was determined either by their stereospe-

cific transformation to 1-aryl-1-propenes (threo— cis,
erythro—trans) according to a literature method'" or
directly by 'H NMR,; results from the two methods were
consistent. Direct determination by *HNMR showed
the smaller (3.29—3.57 Hz) and larger (8.24—8.79 Hz)
coupling constant (Jga—pgp) in 2; these can be assigned
to erythro- and threo-alcohol, respectively, as has been
generally accepted in similar sulfur compounds.>!? In
all cases, the threo-isomer was produced predominantly.
With Zn(BH,)s, the proportion of the erythro-isomer
increased, and yet the threo-isomer is major, in contrast
to the reduction of a-thio ketones with Zn(BHy)2, where
the erythro-isomer became major.® In the Zn(BHy)s re-
duction of a-thio ketones® and the BuySnCIH reduction
of a-hydroxy ketones,*® diastereoselectivity depended
much on the bulkiness of a-heteroatom-substituent, a
smaller one favoring the formation of erythro-isomer.
However, in our case, almost no change was observed in
threo-rich diastereoselectivity with la—1g(PhSe) and
1h(MeSe). The compound 3, produced by substitution
of a phenyl(or methyl)seleno group by a hydrogen, is
always present as a side product, except the case of K-
selectride (KBHBu®3) where 3 became the sole or main
product. In order to know whether K-selectride works
as a general deselenizing reagent,'® we attempted dese-
lenation of 1-(phenylseleno)dodecane and 2-(phenylse-
leno)octane, prepared separately,'*) with K-selectride.
Deselenation, however, did not occur at all, showing
that the replacement with K-selectride is very substrate-
dependent.

Since it has been reported” that, in the reduc-
tion of various a-heteroatom-substituted ketones, the
diastereoselectivity changed enormously by addition of
some metal chlorides via chelation with a heteroatom
and a carbonyl oxygen, we carried out the NaBHy
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Table 1. Reduction of a-Seleno Ketones with Various Reagentsa)
Ketone  Reducing agent  Solvent Temp Time Products and GLC yield /%
°C h 2 (threo : erythro)b) 3
1a NaBH, MeOH 0 1 62 (86 : 14) 23
1a® NaBH,4 MeOH 0 1 41 (91: 9) 30
1a? NaBH, MeOH 0 1 78 (87:13) 14
1la NaBH, MeOH  -78 1 66 (99: 1) 18
la LiAlH, Et20 0 2 82 ( 87:13) 7
la KBHBu®; THF 0 3 Trace 88
1a Bu',AlH THF —78—0 24 79 ( 85: 15) 10
la Zn(BH,)2 Et20 0 24 87 (78 :22) 5
la Bu2SnHCI THF 0 5 10 (100 :  0) 0P
1a® Bu;SnHClI THF 0 5 5 (100 : 0) oD
1a¥ Ph,SiH, Et20 25 15 0 (I
1b LiAlH, Et20 0 2 89 (93: 7) 8
1b NaBH4 MeOH 0 1 79 ( 87:13) 17
1c? NaBH4 MeOH 0 1 76 ( 86 : 14) 10
1c Zn(BHa)2 Et20 0 24 85 (76 : 24) Trace
1d KBHBu®3 THF 0 3 16™ (96: 4) 45™)
le NaBH,4 MeOH 0 1 70™) (92: 8) 23™)
1f Zn(BHy), Et20 0 24 61™) ( 69 :31) 13™
1g LiAlH, Et20 0 2 85™) ( 90 : 10) 14™)
1h NaBH, MeOH 0 1 14 (100 : 0) 61
1ho NaBH,4 MeOH 0 1 23 (100 : 0) 56
1h Zn(BHy)2 Et20 0 24 82 ( 85: 15) 8

a) Ketone (0.5 mmol), reducing agent (0.7—1.0 mmol), and solvent (3—6 ml) were used. b) Isomer ratio
was determined by GLC after stereospecific transformation to alkenes (see Experimental part). c¢) CaCl,
(1.0 mmol) was added. d) CeClz (1.0 mmol) was added. e) Recovered 1la: 32%. f) Other product:
propiophenone, 58%. g) p-Dinitrobenzene (0.05 mmol) was added. h) Recovered la: 91%. i) Other
product: propiophenone, 4%. j) RhCl (PPh3)s (5 mol%) was used as a catalyst. k) Recovered 1a: 50%.
1) Other product: propiophenone, 50%. m) Isolated yield.

reduction in the presence of various metal chlorides, were stirred for 1 h, and then a MeOH solution of
such as CaCls, CeCls, SmCl;3, NiCly-6H20, ZnCl,, and  NaBH, was added to this mixture. For all metal chlo-
CuCly. Thus, a ketone and a metal chloride in MeOH  rides examined, the diastereoselectivity did not change
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much (threo: erythro=83—91:9—17), but was always
threo-rich. The addition of NiCly-6H50 resulted in a
sole formation of 3 (73—85% yield). In the latter case,
NizB'® which was formed in situ worked as a reducing
agent.

As shown in Chart 1, the threo-isomer may be formed
by a hydride attack from the less hindered site of the
more stable conformer 4 of Felkin model.}'® The con-
former 5 is not favored because of the repulsive inter-
action between a carbonyl group and a bulky phenyl(or
methyl)seleno group. Experimental results showed that
chelation of various examined metals with a selenium
and a carbonyl oxygen (conformer 5) did not occur ap-
preciably. Unfavorable coordination with those metals
is due to the intrinsic nature of a selenium atom.

Experimental

'H (270 MHz) and !3C (67.8 MHz) NMR spectra were
recorded with a JEOL GSX-270 spectrometer on solutions
in CDCl3; MesSi was used as an internal standard. Chem-
ical shifts are reported in 6 units downfield from Me,Si.
GLC analyses were carried out with a Shimadzu GC-14A
instrument with flame ionization detectors equipped with
a CBP10-S25-050 column (Shimadzu, fused silica capillary
column, 0.33 mmx25 m, 0.5 um film thickness) using ni-
trogen as carrier gas. GLC yields were determined using
anthracene as an internal standard. Melting points were
determined with a Yanaco MP-S3 micro melting point de-
termination apparatus and were uncorrected. The isolation
of pure products was carried out with column chromatogra-
phy on SiO2 (Wakogel C-200, 100—200 mesh, Wako Pure
Chem. Ind. Ltd.) or with preparative thin-layer chromatog-
raphy (Kieselgel 60 F2s4, Merck, 2020 cm silica gel plates).

Commercially available compounds were used without
further purification except for the solvent, which was dis-
tilled by standard methods before use.

Preparation of a-[Phenyl(or Methyl)seleno]alkyl
Aryl Ketones (la—1h). «-(Phenylseleno)alkyl aryl ke-
tones were prepared by benzeneselenenylation of alkyl aryl
ketones according to the literature methods,®'? while a-
(methylseleno)propiophenone (1h) was prepared from a-
lithiopropiophenone and methaneselenenyl bromide. The
compounds 1f, 1g, and 1h are new.

1-Phenyl-2-phenylseleno- 1-propanone (1a): A
yellow oil, 71% isolated yield; '"HNMR ég=1.63 (3H, d,
J=6.6 Hz), 4.67(1H, q, J=6.6 Hz), and 6.9—7.7 (10H, m).

1-Phenyl-2-phenylseleno-1-butanone (1b): A yel-
low solid, mp 47 °C, 64% isolated yield; 'HNMR 65=1.05
(3H, t, J=7.2 Hz), 1.7—2.3 (2H, m), 4.30 (1H, t, J=7.2
Hz), and 7.2—8.0 (10H, m).

1-Phenyl-2-phenylseleno- 1-pentanone (1c): A
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yellow solid, mp 55 °C, 61% isolated yield; 'H NMR 6 =0.93
(3H, t, J=7.1 Hz), 1.4—2.1 (4H, m), 4.51 (1H, t, J=7.1 Hz),
and 7.2—7.9 (10H, m).

1- (4- Methylphenyl)- 2- phenylseleno- 1- propanone
(1d): A yellow oil, 71% isolated yield; 'HNMR énz=1.54
(3H, d, J=6.9 Hz), 2.32 (3H, s), 4.59 (1H, q, J=6.9 Hz),
and 7.1—7.8 (9H, m).

1- (Biphenyl- 4- yl)- 2- phenylseleno- 1- propanone
(le): A white solid, (recrystallized from hexane—CHCl;
(3:1)), mp 123 °C, 84% isolated yield; 'HNMR 6y =1.67
(3H, d, J=6.9 Hz), 4.72 (1H, q, J=6.9 Hz), and 7.2—8.1
(14H, m). '

1-(4-Methoxyphenyl)-2-phenylseleno-1-propanone
(1f): A yellow solid, mp 52 °C, 40% isolated yield; ' HNMR
6u=1.63 (3H, d, J=6.9 Hz), 3.87 (3H, s), 4.66 (1H, q, J=6.9
Hz), and 6.9—7.9 (9H, m); *CNMR 6c=17.5 (q), 39.6 (d),
55.5 (q), 113.7 (d), 127.3 (s), 128.5 (s), 128.8 (d), 129.0
(d), 130.1 (d), 136.5 (d), 163.4 (s), and 195.3 (s). (Found:
C, 6004, H, 513% Caled for C16H1602Sel C, 60.19; H,
5.05%).

1- (4- Fluorophenyl)- 2- phenylseleno- 1- propanone
(1g): A yellow oil, 64% isolated yield; 'HNMR 6y =1.64
(3H, d, J=6.9 Hz), 4.63 (1H, q, J=6.9 Hz), and 7.0—7.9
(9H, m); *CNMR 6c=17.2 (q), 39.6 (d), 115.5 (d, dcr,
Jor=21.1 Hz), 126.9 (s), 129.1 (d), 131.0 (d, dcr, Jer=10.0
Hz), 132.2 (s, dor, Jor=3.7 Hz), 136.6 (d), 165.5 (s, dcr,
Jor=255.3 Hz), and 194.8 (s). (Found: C, 58.80; H, 4.24%.
Calcd for C15H13FOSe: C, 58.64; H, 4.27%).

1-Phenyl-2-methylseleno-1-propanone (1h): Toa
solution of dimethyl diselenide (496 mg, 2.64 mmol) in ben-
zene (5 ml) was added bromine (422 mg, 2.64 mmol) at 0 °C
under N2. Separately, propiophenone (690 mg, 5.14 mmol)
was dissolved in 5 ml tetrahydrofuran (THF) (distilled on
LiAlH4 under N2) at —78 °C and a THF solution of lithium
diisopropylamide (LDA) (5.09 mmol) was then added slowly
at —78 °C; the resulting solution was stirred for 30 min.
The above benzene solution of methaneselenenyl bromide
was added slowly to this THF solution at —78 °C with a
syringe, and then the mixture was warmed up to 0 °C and
stirred for 1 h. It was treated with brine (200 ml) and
extracted with CH2Cly (3%50 ml), and then the extract was
dried over MgSO4. Removal of the solvent under reduced
pressure left a yellow residue, which was subjected to column
chromatography on SiO2 (hexane, then 1% EtOAc/hexane),
providing 1h as a yellow oil (720 mg, 3.16 mmol, 62%);
'HNMR éu=1.65 (3H, d, J=6.8 Hz), 1.91 (3H, s), 4.46
(1H, q, J=6.8 Hz), 7.40—7.55 (3H, m), and 7.95—7.99 (2H,
m); ¥CNMR 6c=2.1 (q), 15.9 (q), 33.2 (d), 128.2 (d), 128.4
(d), 132.7 (d), 135.6 (s), and 195.0 (s). (Found: C, 52.56;
H, 5.31%. Calcd for C10H1208e: C, 52.87; H, 5.32%).

Reduction of 1 with Various Reducing Agents.
Reduction was carried out as described before. The products
were isolated by preparative thin-layer chromatography;®
among them, the compounds 2c¢, 2f, and 2g are new.

threo- 1- Phenyl- 2- phenylseleno- 1- propanol (2a):
ITHNMR éy=1.21 (3H, d, J="7.1 Hz), 3.21 (1H, d, J=2.2
Hz), 3.41 (1H, dq, J=8.8 and 7.1 Hz), 4.39 (1H, dd, /=8.8
and 2.2 Hz), and 7.2—7.6 (10H, m).

erythro-Alcohol (2a): 'HNMR 6y=1.24 (3H, d, J=
7.2 Hz), 2.68 (1H, bs), 3.63 (1H, qd, J=7.2 and 3.3 Hz),
4.78 (1H, d, J=3.3 Hz), and 7.2—7.6 (10H, m).

1-Phenyl-2-phenylseleno-1-butanol:  threo-(2b), a
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vellow oil; "HNMR 6y=1.02 (3H, t, J=7.1 Hz), 1.3—1.6
(2H, m), 3.19 (1H, ddd, J=9.2, 8.5, and 4.1 Hz), 3.36 (1H,
bs), 4.46 (1H, d, J=8.5 Hz), and 7.2—7.6 (10H, m).

erythro-(2b), a yellow oil; "HNMR. 6g=1.01 (3H, t, J=7.1
Hz), 1.3—1.6 (2H, m), 2.76 (1H, bs), 3.42 (1H, dt, J=9.9
and 3.6 Hz), 4.81 (1H, d, J=3.6 Hz), and 7.2—7.6 (10H,
m).
1-Phenyl-2-phenylseleno-1-pentanol: threo-(2c),
a yellow oil; "HNMR 6y=0.77 (3H, t, J=7.1 Hz), 1.3—
1.7 (4H, m), 3.20—3.29 (1H, m), 3.40 (1H, bs), 4.44 (1H,
d, J=8.2 Hz), and 7.2—7.5 (10H, m); **CNMR 6c=13.8
(q), 21.4 (t), 33.9 (t), 58.3 (d), 76.0 (d), 126.1 (s), 127.0
(d), 127.9 (d), 128.0 (d), 128.3 (d), 129.0 (d), 135.6 (d), and
141.3 (s).

erythro-(2c), a yellow oil; "H NMR 65=0.77 (3H, t), 1.3—
1.7 (4H, m), 2.76 (1H, bs), 3.47 (1H, m), 4.78 (1H, d, J=3.1
Hz), and 7.2—7.5 (10H, m).

Elemental analysis of a mixture of threo- and erythro-2c.
Found: C, 63.66; H, 6.34%. Calcd for Cy17H200Se: C, 63.95;
H, 6.31%.

1-(4-Methylphenyl)-2-phenylseleno-1-propanol:
threo-(2d), a yellow oil; 'HNMR éy=1.19 (3H, d, J=7.2
Hz), 2.32 (3H, s), 3.17 (1H, bs), 3.40 (1H, dq, J=8.8 and
7.2 Hz), 4.36 (1H, d, J=8.8 Hz), and 7.1-~7.6 (9H, m).

erythro-(2d), a yellow oil; *HNMR ég=1.24 (3H, d, J=
7.2 Hz), 2.33 (3H, s), 2.65 (1H, bs), 3.60 (1H, qd, J=7.2 and
3.3 Hz), 4.74 (1H, d, J=3.3 Hz), and 7.1—7.6 (9H, m).

1-(Biphenyl-4-yl)-2-phenylseleno-1-propanol:
threo-(2e), a yellow oil; ‘HNMR 6y=1.26 (3H, d, J=7.1
Hz), 3.24 (1H, bs), 3.45 (1H, dq, J=8.6 and 7.1 Hz), 4.44
(1H, d, /=8.6 Hz), and 7.2—7.6 (14H, m).

erythro-(2e), a yellow oil; 'HNMR. 6g=1.29 (3H, d, J=7.1
Hz), 2.78 (1H, bs), 3.66 (1H, qd, J=7.1 and 3.3 Hz), 4.81
(1H, d, J=3.3 Hz), and 7.2—7.6 (14H, m).

1-(4-Methoxyphenyl)-2-phenylseleno-1-propanol:
threo-(2f), a yellow oil; 'HNMR 6g=1.19 (3H, d, J=7.1 Hz),
3.16 (1H, bs), 3.39 (1H, dq, J=8.8 and 7.1 Hz), 3.79 (3H,
s), 4.36 (1H, d, J=8.8 Hz), and 6.8—7.6 (9H, m); *C NMR
6c=19.2 (q), 49.4 (d), 55.2 (q), 76.8 (d), 113.7 (d), 126.8
(s), 127.2 (d), 128.0 (d), 129.0 (d), 133.0 (s), 136.0 (d), and
159.4 (s).

erythro-(2f), a yellow oil; 'H NMR 6g=1.26 (3H, d, J=7.1
Hz), 2.59 (1H, bs), 3.59 (1H, qd, J=7.1 and 3.6 Hz), 3.80
(3H, s), 4.74 (1H, d, J=3.6 Hz), and 6.8—7.6 (9H, m).

Elemental analysis of a mixture of threo- and erythro-
2f. Found: C, 59.89; H, 5.62%. Calcd for C16H15028Se:
C, 59.82; H, 5.65%. ;

1- (4- Fluorophenyl)- 2- phenylseleno- 1- propanol:
threo-(2g), a yellow oil; *HNMR éy=1.21 (3H, d, J=7.1
Hz), 3.26 (1H, bs), 3.35 (1H, dq, /=8.8 and 7.1 Hz), 4.37
(1H, d, J=8.8 Hz), and 6.9—7.6 (9H, m); *CNMR bc=
19.1 (q), 49.4 (d), 76.5 (d), 115.2 (d, dor, Jer=21.2 Hz),
126.4 (s), 128.4 (d, der, Jop=7.5 Hz), 128.5 (d), 129.1 (d),
136.1 (d), 136.5 (s, dor, Jor=2.5 Hz), and 162.4 (s, dcr,
Jor=246.6 Hz).

erythro-(2g), a yellow oil; 1H NMR 6g=1.22 (3H, d, J=T7.1
Hz), 2.68 (1H, bs), 3.58 (1H, qd, J=7.1 and 3.3 Hz), 4.73
(1H, d, J=3.3 Hz), and 7.0—7.6 (9H, m).

Reduction of a-Selenium-Substituted Ketones

Elemental analysis of a mixture of threo- and erythro-2g.
Found: C, 58.01; H, 4.89%. Calcd for C15H15FOSe: C,
58.26; H, 4.89%.

1- Phenyl- 2- methylseleno- 1- propanol: threo-
(2h),}7 a yellow oil; ‘HNMR 65 =1.28 (3H, d, J=7.0 Hz),
1.91 (3H, s), 2.9—3.1 (2H, m and bs; OH and MeSeCHCH3s),
441 (1H, d, J=8.6 Hz; PhCH(OH)-), and 7.2—7.6 (5H, m).

erythro-(2h)'™ [obtained as a mixture with threo-(2h)],
'HNMR 6y =4.82 (1H, d, J=4.2 Hz; PhCH(OH)-).
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