Stereo- and Chemo-Selectivity in Reduction of α -[Phenyl(or Methyl)seleno]alkyl Aryl Ketones with Metal Hydrides

Ikuo Aoki, Yoshiaki Nishibayashi, and Sakae Uemura*

Division of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-01

(Received August 2, 1994)

Metal hydride reduction of a variety of α -[phenyl(or methyl)seleno]alkyl aryl ketones gives a mixture of threo- and erythro- β -aryl- β -hydroxyalkyl phenyl(or methyl)selenides by carbonyl reduction and 1-aryl-1-alkanol by the substitution of a phenyl(or methyl)seleno group with hydrogen. With all metal hydrides examined the formation of the threo-isomer always predominated. The addition of various metal chlorides in the reduction system did not affect the diastereoselectivity much, in a sharp contrast to the so-far known reduction of various α -heteroatom (N, P, O, S)-substituted ketones.

Studies on the diastereoselectivity in the metal hydride reduction of α -heteroatom-substituted acyclic ketones are of current interest.1) The usual threo-rich alcohol formation shifted to erythro-rich one by the use of Zn(BH₄)₂ or by addition of various metal halides, due to chelation of the metal between a heteroatom and a carbonyl oxygen. So-far studied heteroatoms (Z) are nitrogen (NR₂, NHR, triazolyl etc.),¹⁾ phosphorus (Ph₂P(O) etc.),¹⁾ oxygen (OH, OR, OSiR₃, epoxide etc.), 2-4 sulfur (SR, S(O)R, S(O)₂R etc.), 5,6 and bromine⁷⁾ (Scheme 1). Recently, one of us reported that the reduction of 1-(biphenyl-4-yl)-2-phenylseleno-1propanone with some reducing agents produced the corresponding 2-phenylseleno-1-propanol as the intermediate for the pharmaceutically important 2-arylpropanoic acids; the alcohol consisted of a threo-rich diastereomeric mixture.⁸⁾ Since there are no detailed and general data available on the diastereoselectivity of the reduction of α -selenium-substituted ketones,⁹⁾ we studied the metal hydride reduction in detail using various α -[phenyl(or methyl)seleno|propiophenones as substrates.

Results and Discussion

The α -(phenylseleno)alkyl aryl ketones (1a—1g) were prepared by treatment of alkyl aryl ketones with benzeneselenenyl chloride in ethyl acetate in 40—84% isolated yields by the reported method.¹⁰⁾ The α -(methylseleno)propiophenone (1h) was prepared by treatment of α -lithiopropiophenone with methaneselenenyl bromide in 62% isolated yield (See Experimental). Reduction of 1 with various metal hydrides afforded a mixture of threo- and erythro- β -aryl- β -hydroxyalkyl phenyl (or methyl) selenides (2) and 1-aryl-1-alkanol (3) (Scheme 2; Table 1). The diastereoselectivity of 2 was determined either by their stereospe-

cific transformation to 1-aryl-1-propenes (threo $\rightarrow cis$, $erythro \rightarrow trans$) according to a literature method¹¹⁾ or directly by ¹H NMR; results from the two methods were consistent. Direct determination by ¹H NMR showed the smaller (3.29—3.57 Hz) and larger (8.24—8.79 Hz) coupling constant $(J_{\text{Ha-Hb}})$ in 2; these can be assigned to erythro- and threo-alcohol, respectively, as has been generally accepted in similar sulfur compounds.^{5,12)} In all cases, the threo-isomer was produced predominantly. With $Zn(BH_4)_2$, the proportion of the *erythro*-isomer increased, and yet the three-isomer is major, in contrast to the reduction of α -thio ketones with $\text{Zn}(BH_4)_2$, where the erythro-isomer became major.⁵⁾ In the Zn(BH₄)₂ reduction of α-thio ketones⁵⁾ and the Bu₂SnClH reduction of α -hydroxy ketones, ^{4a)} diastereoselectivity depended much on the bulkiness of α -heteroatom-substituent, a smaller one favoring the formation of *erythro*-isomer. However, in our case, almost no change was observed in threo-rich diastereoselectivity with 1a—1g(PhSe) and 1h(MeSe). The compound 3, produced by substitution of a phenyl(or methyl)seleno group by a hydrogen, is always present as a side product, except the case of Kselectride (KBHB u^s_3) where 3 became the sole or main product. In order to know whether K-selectride works as a general deselenizing reagent, ¹³⁾ we attempted deselenation of 1-(phenylseleno)dodecane and 2-(phenylseleno)octane, prepared separately, 14) with K-selectride. Deseleration, however, did not occur at all, showing that the replacement with K-selectride is very substratedependent.

Since it has been reported¹⁾ that, in the reduction of various α -heteroatom-substituted ketones, the diastereoselectivity changed enormously by addition of some metal chlorides via chelation with a heteroatom and a carbonyl oxygen, we carried out the NaBH₄

Table 1. Reduction of α -Seleno Ketones with Various Reagents^{a)}

Ketone	Reducing agent	Solvent	Temp	Time	Products and GLC yield /%		
			$^{\circ}\mathrm{C}$	h	2	(threo: erythro) ^{b)}	3
1a	NaBH ₄	MeOH	0	1	62	(86:14)	23
$\mathbf{1a}^{\mathrm{c})}$	${ m NaBH_4}$	MeOH	0	1	41	(91:9)	30
$\mathbf{1a}^{\mathrm{d})}$	${ m NaBH_4}$	MeOH	0	1	78	(87:13)	14
1a	$NaBH_4$	MeOH	-78	1	66	(99:1)	18
1a	${ m LiAlH_4}$	${ m Et_2O}$	0	2	82	(87:13)	7
1a	$\mathrm{KBHBu}^s{}_3$	THF	0	3	Trace		88
1a	${ m Bu}^i{}_2{ m AlH}$	THF	$-78 \rightarrow 0$	24	79	(85:15)	10
1a	$\mathrm{Zn}(\mathrm{BH_4})_2$	$\mathrm{Et_2O}$	0	24	87	(78:22)	5
1a	$\mathrm{Bu_2SnHCl}$	THF	0	5	10	(100: 0)	$0^{\mathrm{e,f})}$
$\mathbf{1a}^{\mathbf{g})}$	Bu_2SnHCl	THF	0	5	5	(100: 0)	$0^{\mathrm{h,i})}$
$\mathbf{1a^{j)}}$	$\mathrm{Ph_2SiH_2}$	${ m Et_2O}$	25	15	0		$0^{\mathrm{k,l})}$
1b	${ m LiAlH_4}$	${ m Et_2O}$	0	2	89	(93:7)	8
1b	$\mathrm{NaBH_{4}}$	MeOH	0	1	79	(87:13)	17
$1\mathbf{c}^{ ext{d})}$	${ m NaBH_4}$	MeOH	0	1	76	(86:14)	10
1c	$\mathrm{Zn}(\mathrm{BH_4})_2$	$\mathrm{Et_2O}$	0	24	85	(76:24)	Trace
1d	${ m KBHBu}^s{}_3$	$_{ m THF}$	0	3	$16^{m)}$	(96:4)	$45^{\mathrm{m})}$
1e	${ m NaBH_4}$	MeOH	0	1	$70^{\mathrm{m})}$	(92:8)	$23^{\mathrm{m})}$
1f	$\mathrm{Zn}(\mathrm{BH_4})_2$	${ m Et_2O}$	0	24	$61^{m)}$	(69:31)	$13^{m)}$
1g	$\hat{ m LiAlH_4}$	${ m Et_2O}$	0	2	$85^{m)}$	(90:10)	$14^{\mathrm{m})}$
$1\dot{ m h}$	${ m NaBH_4}$	$\overline{\mathrm{MeOH}}$	0	1	14	(100 : 0)	61
${f 1h^{c)}}$	${ m NaBH_4}$	MeOH	0	1	23	(100:0)	56
1h	$\mathrm{Zn}(\mathrm{BH_4})_2$	${ m Et_2O}$	0	24	82	(85:15)	8

a) Ketone (0.5 mmol), reducing agent (0.7—1.0 mmol), and solvent (3—6 ml) were used. b) Isomer ratio was determined by GLC after stereospecific transformation to alkenes (see Experimental part). c) $CaCl_2$ (1.0 mmol) was added. d) $CeCl_3$ (1.0 mmol) was added. e) Recovered $\mathbf{1a}$: 32%. f) Other product: propiophenone, 58%. g) p-Dinitrobenzene (0.05 mmol) was added. h) Recovered $\mathbf{1a}$: 91%. i) Other product: propiophenone, 4%. j) RhCl (PPh₃)₃ (5 mol%) was used as a catalyst. k) Recovered $\mathbf{1a}$: 50%. l) Other product: propiophenone, 50%. m) Isolated yield.

reduction in the presence of various metal chlorides, such as $CaCl_2$, $CeCl_3$, $SmCl_3$, $NiCl_2 \cdot 6H_2O$, $ZnCl_2$, and $CuCl_2$. Thus, a ketone and a metal chloride in MeOH

were stirred for 1 h, and then a MeOH solution of NaBH₄ was added to this mixture. For all metal chlorides examined, the diastereoselectivity did not change

much (threo:erythro=83—91:9—17), but was always threo-rich. The addition of $NiCl_2 \cdot 6H_2O$ resulted in a sole formation of 3 (73—85% yield). In the latter case, Ni_2B^{15} which was formed in situ worked as a reducing agent.

As shown in Chart 1, the *threo*-isomer may be formed by a hydride attack from the less hindered site of the more stable conformer 4 of Felkin model.^{1,16)} The conformer 5 is not favored because of the repulsive interaction between a carbonyl group and a bulky phenyl(or methyl)seleno group. Experimental results showed that chelation of various examined metals with a selenium and a carbonyl oxygen (conformer 5) did not occur appreciably. Unfavorable coordination with those metals is due to the intrinsic nature of a selenium atom.

Experimental

¹H (270 MHz) and ¹³C (67.8 MHz) NMR spectra were recorded with a JEOL GSX-270 spectrometer on solutions in CDCl₃; Me₄Si was used as an internal standard. Chemical shifts are reported in δ units downfield from Me₄Si. GLC analyses were carried out with a Shimadzu GC-14A instrument with flame ionization detectors equipped with a CBP10-S25-050 column (Shimadzu, fused silica capillary column, 0.33 mm×25 m, 0.5 µm film thickness) using nitrogen as carrier gas. GLC yields were determined using anthracene as an internal standard. Melting points were determined with a Yanaco MP-S3 micro melting point determination apparatus and were uncorrected. The isolation of pure products was carried out with column chromatography on SiO₂ (Wakogel C-200, 100—200 mesh, Wako Pure Chem. Ind. Ltd.) or with preparative thin-layer chromatography (Kieselgel 60 F₂₅₄, Merck, 20×20 cm silica gel plates).

Commercially available compounds were used without further purification except for the solvent, which was distilled by standard methods before use.

Preparation of α -[Phenyl(or Methyl)seleno]alkyl Aryl Ketones (1a—1h). α -(Phenylseleno)alkyl aryl ketones were prepared by benzeneselenenylation of alkyl aryl ketones according to the literature methods,^{8,10)} while α -(methylseleno)propiophenone (1h) was prepared from α -lithiopropiophenone and methaneselenenyl bromide. The compounds 1f, 1g, and 1h are new.

1-Phenyl-2-phenylseleno-1-propanone (1a): A yellow oil, 71% isolated yield; ${}^{1}\text{H NMR }\delta_{\text{H}} = 1.63$ (3H, d, J = 6.6 Hz), 4.67(1H, q, J = 6.6 Hz), and 6.9 - 7.7 (10H, m).

1-Phenyl-2-phenylseleno-1-butanone (1b): A yellow solid, mp 47 °C, 64% isolated yield; 1 H NMR $\delta_{\rm H}$ =1.05 (3H, t, J=7.2 Hz), 1.7—2.3 (2H, m), 4.30 (1H, t, J=7.2 Hz), and 7.2—8.0 (10H, m).

1-Phenyl-2-phenylseleno-1-pentanone (1c):

yellow solid, mp 55 °C, 61% isolated yield; ¹H NMR $\delta_{\rm H}$ =0.93 (3H, t, J=7.1 Hz), 1.4—2.1 (4H, m), 4.51 (1H, t, J=7.1 Hz), and 7.2—7.9 (10H, m).

1-(4-Methylphenyl)-2-phenylseleno-1-propanone (1d): A yellow oil, 71% isolated yield; 1 H NMR δ_{H} =1.54 (3H, d, J=6.9 Hz), 2.32 (3H, s), 4.59 (1H, q, J=6.9 Hz), and 7.1—7.8 (9H, m).

1- (Biphenyl- 4- yl)- 2- phenylseleno- 1- propanone (1e): A white solid, (recrystallized from hexane–CHCl₃ (3:1)), mp 123 °C, 84% isolated yield; ¹H NMR $\delta_{\rm H}$ =1.67 (3H, d, J=6.9 Hz), 4.72 (1H, q, J=6.9 Hz), and 7.2—8.1 (14H, m).

1-(4-Methoxyphenyl)-2-phenylseleno-1-propanone (1f): A yellow solid, mp 52 °C, 40% isolated yield; ¹H NMR $\delta_{\rm H}$ =1.63 (3H, d, J=6.9 Hz), 3.87 (3H, s), 4.66 (1H, q, J=6.9 Hz), and 6.9—7.9 (9H, m); ¹³C NMR $\delta_{\rm C}$ =17.5 (q), 39.6 (d), 55.5 (q), 113.7 (d), 127.3 (s), 128.5 (s), 128.8 (d), 129.0 (d), 130.1 (d), 136.5 (d), 163.4 (s), and 195.3 (s). (Found: C, 60.04; H, 5.13%. Calcd for C₁₆H₁₆O₂Se: C, 60.19; H, 5.05%).

1- (4- Fluorophenyl)- 2- phenylseleno- 1- propanone (1g): A yellow oil, 64% isolated yield; $^1{\rm H}$ NMR $\delta_{\rm H}$ =1.64 (3H, d, J=6.9 Hz), 4.63 (1H, q, J=6.9 Hz), and 7.0—7.9 (9H, m); $^{13}{\rm C}$ NMR $\delta_{\rm C}$ =17.2 (q), 39.6 (d), 115.5 (d, d_{CF}, $J_{\rm CF}$ =21.1 Hz), 126.9 (s), 129.1 (d), 131.0 (d, d_{CF}, $J_{\rm CF}$ =10.0 Hz), 132.2 (s, d_{CF}, $J_{\rm CF}$ =3.7 Hz), 136.6 (d), 165.5 (s, d_{CF}, $J_{\rm CF}$ =255.3 Hz), and 194.8 (s). (Found: C, 58.80; H, 4.24%. Calcd for C₁₅H₁₃FOSe: C, 58.64; H, 4.27%).

1-Phenyl-2-methylseleno-1-propanone (1h): To a solution of dimethyl diselenide (496 mg, 2.64 mmol) in benzene (5 ml) was added bromine (422 mg, 2.64 mmol) at $0~^{\circ}$ C under N₂. Separately, propiophenone (690 mg, 5.14 mmol) was dissolved in 5 ml tetrahydrofuran (THF) (distilled on LiAlH₄ under N₂) at -78 °C and a THF solution of lithium diisopropylamide (LDA) (5.09 mmol) was then added slowly at -78 °C; the resulting solution was stirred for 30 min. The above benzene solution of methaneselenenyl bromide was added slowly to this THF solution at -78 °C with a syringe, and then the mixture was warmed up to 0 °C and stirred for 1 h. It was treated with brine (200 ml) and extracted with $\mathrm{CH_2Cl_2}$ (3×50 ml), and then the extract was dried over MgSO₄. Removal of the solvent under reduced pressure left a yellow residue, which was subjected to column chromatography on SiO₂ (hexane, then 1% EtOAc/hexane), providing 1h as a yellow oil (720 mg, 3.16 mmol, 62%); ¹H NMR $\delta_{\rm H} = 1.65$ (3H, d, J = 6.8 Hz), 1.91 (3H, s), 4.46 (1H, q, J=6.8 Hz), 7.40-7.55 (3H, m), and 7.95-7.99 (2H, m)m); 13 C NMR $\delta_{\rm C}$ =2.1 (q), 15.9 (q), 33.2 (d), 128.2 (d), 128.4 (d), 132.7 (d), 135.6 (s), and 195.0 (s). (Found: C, 52.56; H, 5.31%. Calcd for $C_{10}H_{12}OSe: C$, 52.87; H, 5.32%).

Reduction of 1 with Various Reducing Agents. Reduction was carried out as described before. The products were isolated by preparative thin-layer chromatography;⁸⁾ among them, the compounds 2c, 2f, and 2g are new.

threo-1-Phenyl-2-phenylseleno-1-propanol (2a): 1 H NMR $\delta_{\rm H}$ =1.21 (3H, d, J=7.1 Hz), 3.21 (1H, d, J=2.2 Hz), 3.41 (1H, dq, J=8.8 and 7.1 Hz), 4.39 (1H, dd, J=8.8 and 2.2 Hz), and 7.2—7.6 (10H, m).

erythro-Alcohol (2a): ${}^{1}\text{H NMR }\delta_{\text{H}}\!=\!1.24$ (3H, d, $J\!=\!7.2$ Hz), 2.68 (1H, bs), 3.63 (1H, qd, $J\!=\!7.2$ and 3.3 Hz), 4.78 (1H, d, $J\!=\!3.3$ Hz), and 7.2—7.6 (10H, m).

1-Phenyl-2-phenylseleno-1-butanol: threo-(2b), a

yellow oil; ¹H NMR $\delta_{\rm H}$ = 1.02 (3H, t, J = 7.1 Hz), 1.3—1.6 (2H, m), 3.19 (1H, ddd, J = 9.2, 8.5, and 4.1 Hz), 3.36 (1H, bs), 4.46 (1H, d, J = 8.5 Hz), and 7.2—7.6 (10H, m).

erythro-(**2b**), a yellow oil; 1 H NMR $δ_{\rm H}$ =1.01 (3H, t, J=7.1 Hz), 1.3—1.6 (2H, m), 2.76 (1H, bs), 3.42 (1H, dt, J=9.9 and 3.6 Hz), 4.81 (1H, d, J=3.6 Hz), and 7.2—7.6 (10H, m).

1-Phenyl-2-phenylseleno-1-pentanol: threo-(2c), a yellow oil; ¹H NMR $\delta_{\rm H}$ =0.77 (3H, t, J=7.1 Hz), 1.3—1.7 (4H, m), 3.20—3.29 (1H, m), 3.40 (1H, bs), 4.44 (1H, d, J=8.2 Hz), and 7.2—7.5 (10H, m); ¹³C NMR $\delta_{\rm C}$ =13.8 (q), 21.4 (t), 33.9 (t), 58.3 (d), 76.0 (d), 126.1 (s), 127.0 (d), 127.9 (d), 128.0 (d), 128.3 (d), 129.0 (d), 135.6 (d), and 141.3 (s).

erythro-(**2c**), a yellow oil; 1 H NMR δ_{H} =0.77 (3H, t), 1.3—1.7 (4H, m), 2.76 (1H, bs), 3.47 (1H, m), 4.78 (1H, d, J=3.1 Hz), and 7.2—7.5 (10H, m).

Elemental analysis of a mixture of threo- and erythro-2c. Found: C, 63.66; H, 6.34%. Calcd for $C_{17}H_{20}OSe$: C, 63.95; H, 6.31%.

1-(4-Methylphenyl)-2-phenylseleno-1-propanol: threo-(**2d**), a yellow oil; ${}^{1}\text{H NMR }\delta_{\text{H}}\!=\!1.19$ (3H, d, $J\!=\!7.2$ Hz), 2.32 (3H, s), 3.17 (1H, bs), 3.40 (1H, dq, $J\!=\!8.8$ and 7.2 Hz), 4.36 (1H, d, $J\!=\!8.8$ Hz), and 7.1—7.6 (9H, m).

erythro-(2d), a yellow oil; ${}^{1}\text{H NMR }\delta_{\text{H}}=1.24$ (3H, d, J=7.2 Hz), 2.33 (3H, s), 2.65 (1H, bs), 3.60 (1H, qd, J=7.2 and 3.3 Hz), 4.74 (1H, d, J=3.3 Hz), and 7.1—7.6 (9H, m).

1-(Biphenyl-4-yl)-2-phenylseleno-1-propanol: threo-(**2e**), a yellow oil; 1 H NMR $\delta_{\rm H}$ =1.26 (3H, d, J=7.1 Hz), 3.24 (1H, bs), 3.45 (1H, dq, J=8.6 and 7.1 Hz), 4.44 (1H, d, J=8.6 Hz), and 7.2—7.6 (14H, m).

erythro-(2e), a yellow oil; 1 H NMR δ_{H} =1.29 (3H, d, J=7.1 Hz), 2.78 (1H, bs), 3.66 (1H, qd, J=7.1 and 3.3 Hz), 4.81 (1H, d, J=3.3 Hz), and 7.2—7.6 (14H, m).

1-(4-Methoxyphenyl)-2-phenylseleno-1-propanol: threo-(**2f**), a yellow oil; 1 H NMR $\delta_{\rm H}$ =1.19 (3H, d, J=7.1 Hz), 3.16 (1H, bs), 3.39 (1H, dq, J=8.8 and 7.1 Hz), 3.79 (3H, s), 4.36 (1H, d, J=8.8 Hz), and 6.8—7.6 (9H, m); 13 C NMR $\delta_{\rm C}$ =19.2 (q), 49.4 (d), 55.2 (q), 76.8 (d), 113.7 (d), 126.8 (s), 127.2 (d), 128.0 (d), 129.0 (d), 133.0 (s), 136.0 (d), and 159.4 (s).

erythro-(2f), a yellow oil; $^1{\rm H}$ NMR $\delta_{\rm H}$ =1.26 (3H, d, J=7.1 Hz), 2.59 (1H, bs), 3.59 (1H, qd, J=7.1 and 3.6 Hz), 3.80 (3H, s), 4.74 (1H, d, J=3.6 Hz), and 6.8—7.6 (9H, m).

Elemental analysis of a mixture of threo- and erythro-2f. Found: C, 59.89; H, 5.62%. Calcd for $C_{16}H_{18}O_2Se$: C, 59.82; H, 5.65%.

1- (4- Fluorophenyl)- 2- phenylseleno- 1- propanol: threo-(2g), a yellow oil; 1 H NMR $\delta_{\rm H}$ =1.21 (3H, d, J=7.1 Hz), 3.26 (1H, bs), 3.35 (1H, dq, J=8.8 and 7.1 Hz), 4.37 (1H, d, J=8.8 Hz), and 6.9—7.6 (9H, m); 13 C NMR $\delta_{\rm C}$ =19.1 (q), 49.4 (d), 76.5 (d), 115.2 (d, d_{CF}, $J_{\rm CF}$ =21.2 Hz), 126.4 (s), 128.4 (d, d_{CF}, $J_{\rm CF}$ =7.5 Hz), 128.5 (d), 129.1 (d), 136.1 (d), 136.5 (s, d_{CF}, $J_{\rm CF}$ =2.5 Hz), and 162.4 (s, d_{CF}, $J_{\rm CF}$ =246.6 Hz).

erythro-(2g), a yellow oil; 1 H NMR δ_{H} =1.22 (3H, d, J=7.1 Hz), 2.68 (1H, bs), 3.58 (1H, qd, J=7.1 and 3.3 Hz), 4.73 (1H, d, J=3.3 Hz), and 7.0—7.6 (9H, m).

Elemental analysis of a mixture of threo- and erythro-2g. Found: C, 58.01; H, 4.89%. Calcd for $C_{15}H_{15}FOSe$: C, 58.26; H, 4.89%.

1- Phenyl- 2- methylseleno- 1- propanol: threo-(2h), ¹⁷⁾ a yellow oil; ¹H NMR $\delta_{\rm H}$ =1.28 (3H, d, J=7.0 Hz), 1.91 (3H, s), 2.9—3.1 (2H, m and bs; O<u>H</u> and MeSeC<u>H</u>CH₃), 4.41 (1H, d, J=8.6 Hz; PhC<u>H</u>(OH)-), and 7.2—7.6 (5H, m). erythro-(2h)¹⁷⁾ [obtained as a mixture with threo-(2h)], ¹H NMR $\delta_{\rm H}$ =4.82 (1H, d, J=4.2 Hz; PhC<u>H</u>(OH)-).

References

- 1) N. Greeves, "Comprehensive Organic Synthesis," ed by B. M. Trost and I. Fleming, Pergamon Press, Oxford (1991), Vol. 8, Chap. 1.1.
- 2) T. Nakata, T. Tanaka, and T. Oishi, *Tetrahedron Lett.*, **22**, 4723 (1981); T. Oishi and T. Nakata, *Acc. Chem. Res.*, **17**, 338 (1984).
- 3) H. Fujii, K. Oshima, and K. Utimoto, Chem. Lett., 1992, 967.
- 4) a) I. Shibata, T. Yoshida, T. Kawakami, A. Baba, and H. Matsuda, *J. Org. Chem.*, **57**, 4049 (1992); b) T. Kawakami, I. Shibata, A. Baba, and H. Matsuda, *J. Org. Chem.*, **58**, 7608 (1993).
- M. Shimagaki, Y. Matsuzaki, I. Hori, T. Nakata, and T. Oishi, Tetrahedron Lett., 25, 4775 (1984).
- 6) K. Ogura, M. Ishida, N. Saitoh, T. Inaba, and K. Takahashi, "The 15th Symposium on Organic Sulfur and Phosphorus Chemistry," Tokyo, January 1988, Abstr., pp. 157—160.
- 7) I. Shibata, K. Nakamura, A. Baba, and H. Matsuda, *Tetrahedron*, **31**, 6381 (1990).
- 8) S. Uemura, K. Ohe, T. Yamauchi, S. Mizutaki, and K. Tamaki, J. Chem. Soc., Perkin Trans. 1, 1990, 907.
- 9) Other than the examples of Ref. 8, Krief et al. reported two examples of LiAlH₄ reduction of α -phenylseleno ketones where *threo*-rich diastereoselectivity was also observed: A. M. Léonard-Coppens and A. Krief, *Tetrahedron Lett.*, **1976**, 3227.
- 10) K. B. Sharpless, R. F. Lauer, and A. Teranishi, *J. Am. Chem. Soc.*, **95**, 6137 (1973).
- 11) J. Rémion and A. Krief, Tetrahedron Lett., 1976, 3743.
- 12) D. J. Pasto, C. C. Cumbo, and J. Fraser, *J. Am. Chem. Soc.*, **88**, 2194 (1966); W. H. Pirkle and P. L. Rinaldi, *J. Org. Chem.*, **43**, 3803 (1978).
- 13) For example: T. G. Back, "The Chemistry of Organic Selenium and Tellurium Compounds," ed by S. Patai, John Wiley, Chichester (1987), Vol. 2, p. 174.
- 14) S. Uemura and S. Fukuzawa, J. Chem. Soc., Perkin Trans. 1, 1985, 471.
- 15) T. G. Back, K. Yang, and H. R. Krouse, *J. Org. Chem.*, **57**, 1986 (1992).
- 16) M. Chérest, H. Felkin, and N. Prudent, *Tetrahedron Lett.*, **1968**, 2199.
- 17) A. Krief, W. Dumont, M. Clarembeau, G. Bernard, and E. Badaoui, *Tetrahedron*, **45**, 2005 (1989).