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Abstract: The key synthons 2 and 3 [with suitable protecting groups] of the erythronolide A 
seco acid (1) have been prepared in an enantiomerically pure form, utilizing a stereoselective 
osmylation of chiral hydroxy (Z,E)-diene ester 6a and subsequent hydrogenation. 

Recent interest in macrolide and ionophore antibiotics has stimulated the development of 

efficient methods for the stereocontrolled synthesis of densely functionalized acyclic or 

tetrahydrofuran or -pyran molecules [e.g., erythronolide A seco acid (l)].l-3 As a part of our 

research objectives directed at the total synthesis of these polyoxygenated natural products 

(Scheme I), we previously reported an efficient, enantio- and stereoselective preparation of a 

highly substituted tetrahydrofuran 5 through the use of a “butenolide” template.4 As outlined in 

Scheme II, the pivotal step involves a highly regio- and stereoselective osmylation of a chiral 

diene ester 6.5 It appeared to us that this butenolide protocol would also be very useful for the 

preparation of other polyoxygenated acyclic compounds. For example, the stereoselective 

hydrogenation of 7 might be accomplished by taking advantage of the bulky side chain, and 

would thus provide an efficient assembly of four contiguous stereocenters with the appendage 

suitable for further elaboration. Herein we describe successful realization of this osmylation- 

based strategy in an expeditious synthesis of two key fragments 2 and 3 (i.e., Cl-C7 and C7-Cl3 

with their protecting groups) of the erythronolide A seco acid via the common synthon 4.2~3 
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Also included in Scheme I is the correlation of the seco acid of 9(S)-9-dihydro- 

erythronolide A via these two key subunits with lactone 4, containing the four contiguous 

stereocenters in their correct absolute configurations. We envisaged a one-carbon oxidative 

degradation of the lactone moiety in the latter compound, followed by a well-established 

asymmetric aldol methodology.6 

We felt that our starting (Z,E)-diene ester 6a would be readily prepared by asymmetric 

reduction of the prochiral ketone 8a, which in turn might be readily available in one pot by a 

Wittig olefination. Consequently, the readily available y-hydroxybutenolide 97 was condensed 

with 2-triphenyphosphoranylidene-3-pentanones in refluxing benzene to afford adduct 10a as a 

diastereomeric mixture (Scheme III).9 Subsequent elimination (DBU, CHCl$, followed by in situ 

methylation (CH31) gave the required (Z,E)-diene keto ester 8a exclusively in -50% overall 

yield.lo With an efficient, stereoselective preparation of (Z,E)-diene 8a in hand, the application of 

the Itsuno procedure [2 equiv BH3, (S)-2-amino-3-methyl-l,l-diphenylbutan-l-01, THF, -23’C, 3 

hrlll afforded the desired alcohol 6a, [a124 D = -49O (c 1.05, CHC13), in 88% yield and 2 95% 

enantiomeric excess.12 The Os04-catalyzed hydroxylation (0.02 equiv. OsO4,1.2 equiv. NMO,13 21 

THF-H20, RT) of 6a then provided a single butenolide 7a, mp 93-95” C, [a]: = +58’ (C 1.01, 

CHC13) [IR (CHC13) 3416, 1726, 1637 cm-l] in 53% yield. None of the other possible regio- and 

stereoisomers was found. The stereochemical assignment of the osmylation product was initially 

made in analogy to that of homolog 7b, [I$ = -15.0° (c 0.8, CHC131.4 
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Not surprisingly, subsequent hydrogenation (1 atm HL 10% Pd/C) suffered from a poor 

stereoselectivity. However, removal of the polar hydroxy group by initial acetonide formation 

(2,2-dimethoxypropane, pTsOH, 94%) and su 
9 

uent hydrogenation (5% Rh/AlzO$ afforded a 

major product 4 IR = C(CH&l [mp 94 - %O C, [aID = -21° (c 1.01, CHCl3)l with an excellent (1151) 

diastereoselectivity. Because of the expected syn addition from the less hindered side and also in 

accord with similar literature precedents, 14 the stereochemistry of lactone 4 was tentatively 

assigned and subsequently secured by X-ray aystallography.~5 

With 4 available in multi-gram quantities, the one-carbon oxidative degradation was then 

accomplished by L.iAlti reduction, subsequent application of the Sharpless - Grieco protocol,16 

and protection with the BOM fbenzyloxymethyl) group to afford olefin 14, [al: = +48’ (c 0.83, 

CHC13) in 61% overall yield from lactone 4 (Scheme IV). Finally, ozonolysis of 14, followed by 

the asymmetric aldol reaction of Evans6 afforded a suitably protected left-hand subunit 2 of 

erythronolide A seco acid in 46% yield. The other fragment 3 was also prepared readily (in 53% 

yield) by utilizing a different oxazolidinone-derived chiral auxiliary. 

Scheme IV 
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a. LiAlH,, THF, -5oC; b. nBusP, (&N02)CBH&eCN, THF, -23°C; 
c. ClCH&CH2Ph, iPrzNEt, CHsCN, reflux; d. 30% H202, THF, FIT; 
8. 03, CH&I,, -76C followed by PhsP and ref. 6. 

In summary, we have developed an expeditious route to the two key synthons of the 

carbocyclic backbone of erythronolide A, utilizing a stereoselective osmylation-based 

“butenolide” formation and subsequent hydrogenation, starting from the readily available 

homochiral hydroxy (Z,E)-diene ester 61. The final coupling of these two subunits to 
erythronolide A seco acid is currently in progress. Further synthetic applications of the strategy 

delineated above to other polyoxygenated natural products will be reported in due course.17 
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