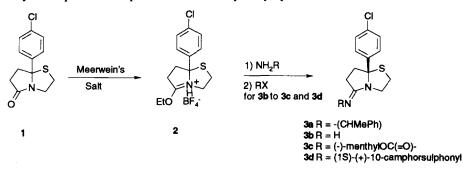


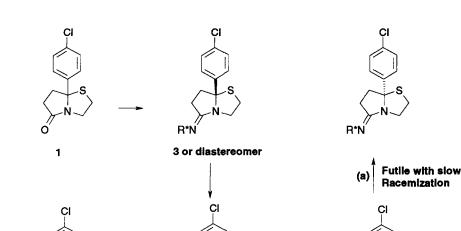
Tetrahedron Letters 39 (1998) 8579-8580

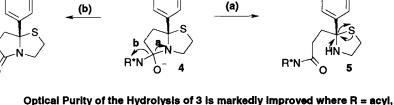
TETRAHEDRON LETTERS

Synthesis of Chiral Tetrahydropyrrolo[2,1-b]thiazol-5(6H)-ones¹


Thomas D. Aicher,* Douglas C. Knorr, Howard C. Smith

Metabolic & Cardiovascular Diseases, Novartis Institute for Biomedical Research, 556 Morris Avenue, Summit, New Jersey 07901


Received 28 July 1998; revised 3 September 1998; accepted 9 September 1998


Abstract: In our investigations of potential hypoglycemic agents,² it was desired to evaluate optically pure tetrahydropyrrolo[2,1- β]thiazol-5-ones. A novel, practical synthesis of each enantiomer of 1 via formation, separation, and hydrolysis of diastereomeric amidine derivatives is described. © 1998 Elsevier Science Ltd. All rights reserved.

In our investigations of hypoglycemic agents, it was desired to evaluate optically pure tetrahydropyrrolo[2,1-b]thiazol-5(6H)-ones.² Members of this class of compounds have displayed a number of diverse pharmacological activities including anti-HIV and anti-inflammatory activity.³ The racemate of 1 was readily synthesized via a condensation of 3-(4-chlorobenzoyl)-propionic acid and cysteamine in near quantitative yield. This desirable brief synthesis employed two achiral components and there is no obvious way to induce enantioselectivity. Since 1 is a neutral compound, formation of a salt is not feasible. While a derivative of 5 could potentially be resolved, the propensity of the asymmetric center to racemize in the free amine may fatally flaw this approach. Separation of similar HIV-1 reverse transcriptase inhibitors using a chiral stationary phase has been demonstrated by Mertens *et al.*³ The chromatography group of Novartis successfully developed such a separation of 1 for analytical purposes.

We investigated whether formation, separation, and hydrolysis of diastereomeric amidines 3 would afford access to the chiral enantiomers of 1. Although the two (E) amidines from (R)-(+)- α methylbenzylamine were readily separable via chromatography, a problem arose upon the attempted basic hydrolysis of this amidine to 1. From the transition state 4 of the hydrolysis, the reaction can proceed along

sulfonyl vs. alkyl since pathway (b) is favored over pathway (a).

two pathways. The desired pathway (b) leads to optically pure 1. The alternative pathway (a) is futile, yielding 3 with significant racemization of the asymmetric center.

By changing *RN to a better leaving group via modification of 3b (e.g. reaction with (1S)-(+)-10camphorsulfonyl chloride, (-)-menthyl chloroformate, etc.), the diastereomeric amidines were still readily separable, and upon hydrolysis with dilute sodium hydroxide in methanol pathway (b) was favored. This allowed a practical synthesis of each enantiomer of 1 with high retention (> 99%) of optical purity.⁴

REFERENCES AND NOTES

- 1. Presented in part at the 214th American Chemical Society Meeting, Las Vegas, NV, 1997; Abstr. 214 ORGN 214.
- Aicher, Thomas D.; Balkan, Bork; Bell, Phillip A.; Brand, Leonard J.; Cheon, Seung. H.; Deems, Rhonda O.; Fell, Jay B.; Fillers, William S.; Fraser, James D.; Gao, J.; Kahle, Gerald G.; Knorr, D. C.; Leone, Christina; Nadelson, Jeffrey; Simpson, Ronald J., Smith, Howard C. J. Med. Chem. In press.
- a) Mertens, A.; Zilch, H.; Konig, B.; Shafer, W.; Poll, T.; Kampe, W.; Seidel, H.; Leser, U.; Leinert, H. J. Med. Chem. 1993, 36, 2526-2535. b) Shafer, W.; Friebe, W.-G.; Leinert, H.; Mertens, A.; Poll, T.; Saal, W.; Zilch, H.; Nuber, B.; Ziegler, M. L. J. Med. Chem. 1993, 36, 726-732.
- Separation of the enantiomers of 1: a) Et₃OBF₄, CH₂Cl₂, 20 °C b) sat. NH₃, CH₂Cl₂, 20 °C c) (-)-menthyl chloroformate, Et₃N, CH₂Cl₂; 60% (30 % of each diastereomer) for 3 steps d) aq. 2N NaOH, methanol, 81%.

Entry	Overall Chemical yield (1 to 3*)	Purity of 3	Yield of 1 from 3	%ee of 1
3a	68	99	70	40
3c	60	99	81	99
3d	56	99	85	99