A FACILE SYNTHESIS OF ω -SUBSTITUTED CONJUGATED POLYENONES VIA ARSONIUM SALT AND ITS APPLICATION TOWARDS THE SYNTHESIS OF NAVENONE A¹

Lilan Shi, Wenjuan Xia, Jianhua Yang, Xueqing Wen, Y.Z. Huang* Shanghai Institute of Organic Chemistry, Academia Sinica 345 Lingling Lu, Shanghai, China

Abstract: In the presence of K_2CO_3 , a variety of aldehydes condensed with the arsonium bromide 8 at 0-3°C to give exclusively ω -substituted polyenones 1 in good yields, and the synthesis of navenone A was achieved by this procedure.

The synthesis of $\boldsymbol{\omega}$ -substituted conjugated polyenones 1, such as naturally occurring navenones,² a trail-breaking alarm pheromone of sea slug, has attracted considerable attention of synthetic organic chemists. The Wittig or Wittig-Horner reaction is the most general approach towards the synthesis of olefins. However, it has been shown that the triphenylphosphine reacts with 5-bromo-3-penten-2-one to give a mixture of bromides which, in turn, on treating with potassium t-butoxide reacts with benzaldehyde to give a mixture of desired (3E, 5E)-6-phenyl-3,5-hexadien-2-one 2 and undesired 3-benzylidene-4-penten-2-one 3 in very low yield.³

$$\begin{array}{c} CH_2 = CHCCOCH_3 \\ II \\ CH = CH \right)_n COCH_3 \\ PhCH = CH - CH = CHCOCH_3 \\ CHPh \\ 1 \\ 2 \\ 3 \end{array}$$

The abnormal Arbuzov reaction of y-halogeno- α , β -unsaturated ketone prevents the preparation of corresponding phosphonate **4**.³ Phosphorane **5** or phosphonate **6** with a masked carbonyl group reacted with aldehydes to give a mixture of E and Z olefination products. The subsequent hydrolysis of the resulting dioxalane products should be carried out for several days and the overall yield was very low. Furthermore, the starting material (E)-5-bromo-3-penten-2-one ethylene acetal was rather difficult to prepare.⁴

$$(cH_{3}O)_{2}^{P}CH_{2}CH=CHCOCH_{3}$$

$$Ph_{3}P=CH-CH=CH-C-CH_{3}$$

$$(CH_{3}O)_{2}^{P}CH_{2}CH=CH-C-CH_{3}$$

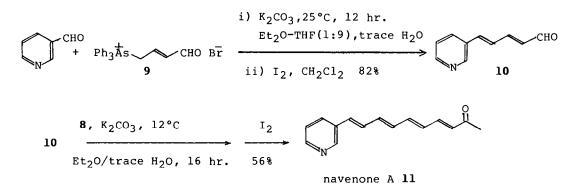
$$(CH_{3}O)_{2}^{P}CH_{2}CH=CH-C-CH_{3}$$

In contrast to triphenylphosphine, we found that triphenylarsine reacted with 5-bromo-3-penten-2-one smoothly to give a pure arsonium bromide 8, which was confirmed by ${}^{1}\text{H}$ NMR.⁵ Herein we wish to describe a facile synthesis of $\boldsymbol{\omega}$ -

substituted polyenones 1 featured by the direct use of arsonium bromide 8 in the presence of K_2CO_3 at low temperature in good yields.

 $R(CH=CH)_{n}CHO + [Ph_{3}ASCH_{2}CH=CHCOCH_{3}]B\vec{r} \xrightarrow{K_{2}CO_{3}, Et_{2}O(trace H_{2}O)}{R(CH=CH)_{n+2}COCH_{3}} R(CH=CH)_{n+2}COCH_{3}$ $n=0,1 \qquad 0-3°C, -Ph_{3}ASO \qquad n=0,1$ **7 8 1**

The results are shown in the following Table.


Entry	RCHO 7	Temp.(°C)/Time(h)	Yield of l (%)	(3E,5E):(3E,5Z)
1	с ₆ н ₅ сно	0-3/36	81	77:23
2 p-	-0 ₂ N-С ₆ н ₄ Сно	0-3/8	91	74:26
3 p-	-с1-с ₆ н ₄ сно	25/16	87	84:16
4 c ₆	,н ₅ сн=снсно	0-3/28	84	85:15
5 n-	-с ₅ н ₁₁ сно	0-3/20	56	78:22
6 n-	-С ₈ Н ₁₇ СНО	0-3/6.5	67	79:21
7	СНО	0-3/19	71	74:26

Reaction conditions: The solvent used was $Et_2O(trace H_2O)$ except Et_2O/THF (1:1)-trace H₂O in **Entry 3.** All compounds were characterized by elemental analysis (except for the known compounds in **Entry 1,3,4**), MS, IR and ¹H NMR. The ratio of the isomers was estimated by GC or TLC scanning and ¹H NMR.

E-5-Bromo-3-penten-2-one³ reacted with triphenylarsine without solvent at 50 °C for 4 hrs to form arsonium bromide 8 in 43% yield.⁵

The typical procedure for the synthesis of polyenones: 8 (2.4 mmol), $C_{6}H_{5}CHO(2 \text{ mmol})$, $K_{2}CO_{3}(2.4 \text{ mmol})$ and $Et_{2}O(12 \text{ ml})/\text{trace }H_{2}O(60\,\mu\text{l})$ were mixed under N_{2} and stirred at 0-3°C. After the reaction was complete (monitored by G.C.), most of triphenylarsine oxide was removed by a short silica gel column chromatography. The crude product was shown by GC to be a mixture of two isomers (77:23). The pure E,E- , E,Z-isomers and a mixture of two isomers were obtained in 56%, 18% and 7% yields respectively by flash chromatography. They were characterized by ¹H NMR according to the data reported in literature⁶ and mass spectra. The (3E,5Z) isomer was isomerized to (3E,5E) isomer on treating with I_{2} under daylight.

The synthesis of navenone A^2 11 was conveniently achieved by utilizing this reaction. Condensation of 3-pyridinecarbaldehyde with formylallyltriphenylarsonium bromide⁷ 9 in Et₂O-THF(1:9)-trace H₂O in the presence of potassium carbonate at 25°C for 12 h gave a mixture of (2E,4E)- and (2E,4Z)- 5-(3-pyridyl)pentadienal and the (2E,4Z) isomer was isomerized to the desired (2E,4E) isomer 10 on treating with I₂ under daylight. The yield of 10 was 82%. 10 reacted with 8 to afford a mixture of two isomers (9:1) in favor of the desired all trans isomer 11, which was obtained in 56% yield by flash chromatography and identified as navenone A by its spectra.⁸ The undesired isomer could be isomerized to 11 by treating with I₂ under daylight. It is noteworthy 11 has been synthesized by Sakakibara et al.² by a seven step reaction in 1% overall yield.

Thanks are due to the Science Foundation of Academia Sinica for the partial financial support. We are grateful to Tokyo Kasei Kogyo Company for sending us 3-pyridinecarboxaldehyde.

Referances and Notes:

- This paper is the 55th report on the application of elemento-organic compounds of fifth and sixth groups in organic syntheses.
- (2) M. Sakakibara, M. Matsui, Agric. Biol. Chem., <u>43</u> 117(1979).
- (3) J. Font, P.de March, Tetrahedron, <u>37</u>, 2391(1981).
- (4) J.Camps, J.Font, P.de March, Tetrahedron, <u>37</u>, 2493(1981).

- (5) The reagent 8 gave satisfactory elemental analysis (Found: C% 58.78, H% 4.59, Br% 17.10; Calc.: C% 58.87, H% 4.72, Br% 17.03). m.p. 127-128°C.
 ¹H NMR (60 MHz TMS/ CDCl₃ \$): 2.10(s, 3H), 5.20(d, 2H), 6.68(m, 2H), 7.70(m, 15H); IR: 1620, 1670, 1695cm⁻¹,
- (6) A.F. Kluge, C.P Lillya, J.Org.Chem., <u>36</u>, 1971(1977).
- (7) Y.Z. Huang, L.L. Shi and J.H. Yang, Facile Formyl-enyl-olefination of Aldehydes by Means of Arsonium Salt, to be published.
- (8) Navenone A: mp 138-140°C, UV λ_{max}^{MeOH} 367 nm(£ 59,930) and 378 nm(£ 58,003),

IR $\gamma_{\text{max}}^{\text{KCl}}$ 1675(C=0),1570(C=C) cm⁻¹; ¹H NMR(CDCl₃, 200 MHz, δ): 2.28(s, 3H),

6.18(d,J=15Hz lH for 3-H), 6.36-7.17(m,7H), 7.26(lH, for 5'-H), 7.72(lH for 4'-H), 8.45(lH, for 6'-H), 8.62(lH, for 2'-H); MS (m/e): $225(M^+)$, 210 (M⁺-Me), 182(M⁺-Ac).

(Received in Japan 24 January 1987)