Synthesis of Pyrrolo[1,2-c]quinazoline Derivatives.

Egle M. Beccalli, Alessandro Marchesini*

Dipartimento di Chimica Organica e Industriale, Universita' degli Studi di Milano, via Golgi 19 - 20133 Milano- Italy

Tullio Pilati

CNR Centro Studio delle Relazioni tra Struttura e Reattivita' Chimica, via Golgi 19 - 20133 Milano - Italy

(Received in UK 13 April 1992)

Key Words: 2H-indol-2-ones; Δ2-pyrrolin-4-ones; pyrrolo[1,2-c]quinazolines

Abstract: Δ²-Pyrrolin-4-ones 12 and 13, prepared from 1-acyl-3-alkyl-1,3-dihydro-2H-indol-2-ones 1, via the corresponding 3-bromo-, 2 and 6, 3-azido, 7 and 8, and 3-iminophosphorane 9 and 10, were cyclized to the corresponding pyrrolo[1,2-c]quinazoline derivatives 14 and 15.

In recent years substituted pyrrolo[1,2-c]quinazoline derivatives have received, only limited attention¹. Recently a variety of pyrrolo[1,2-c]quinazolines were prepared by reacting the appropriate quinazolines or quinazolones with α -halopyruvates or α -haloketones²; dipolar cycloaddition reactions of quinazolinium yilids also gave pyrrolo[1,2-c]quinazoline derivatives³. We report a new synthesis of pyrrolo[1,2-c]quinazolin-1-ones **14** and (6*H*)pyrrolo[1,2-c]quinazolin-1,5-diones **15** starting, respectively, from 1-acetyl-3-alkyl-3-bromo-1,3-dihydro-2*H*-indol-2-ones **2** and 3-alkyl-3-bromo-1-ethoxycarbonyl-1,3-dihydro-2*H*-indol-2-ones **6**⁴. The reaction of 1-acetyl-3-alkyl-1,3-dihydro-2*H*-indol-2-ones **1** with bromine, in dichloromethane at r. t., gave the corresponding 3-bromoderivatives **2** in nearly quantitative yield (Scheme 1, Table 1).

The 3-alkyl-3-bromo-1-ethoxycarbonyl-1,3-dihydro-2*H*-indol-2-ones **6** were prepared as previously reported⁴. The 3-bromo-3-methyl-1-ethoxycarbonyl-1,3-dihydro-2*H*- indol-2-one **6d**, a compound for which the reported general synthesis⁴ is not applicable, was prepared from 3-(hydroxymethylene)indol-2-one **3**⁵ following scheme 2 (see Experimental).

Scheme 3

Scheme 4

When the bromoderivatives 2 and 6 were treated, at r. t., with sodium azide in dichloromethane-water and in the presence of tetrahexylammonium iodide (THAI), the corresponding 3-azido-2*H*-indol-2-ones 7 and 8 were formed in good yields.

These compounds proved to be very stable: they melt without decomposing and can be stored at room temperature for long times. Their reaction with triphenylphosphine in ether at r. t., resulted in the formation of the corresponding iminophosphoranes 9 and 10 which crystallized out, pure and in high yields, from the reaction mixture (Scheme 3, Table 1). The reaction, at 100-120 °C for 18 h in a closed vessel, of the iminophosphoranes 9 and 10 with an excess of an anhydrous ketone 11, resulted in the formation of the Δ^2 -pyrrolin-4-ones 12 and 13 (Scheme 4, Table 2). The formation of these compounds clearly involves the enamine tautomer of the first formed imine. Compounds 12, when heated under reflux in dioxane solution and in the presence of a catalytic amount of concentrated sulfuric acid, cyclize to the pyrrolo [1,2-c]quinazolin-1-ones 14 (Scheme 5, Table 3). No cyclization was observed with basic catalysis. Compound 12ca resulted in 14ca and another compound in equivalent amount. This last compound was tentatively assigned structure 16 on the basis of analytical and spectroscopic data.

Scheme 5

12 Ca

16

Instead, compounds **13**, in acidic conditions are very stable and cannot be cyclized in this way. However, when heated under reflux in ethanol solution and in the presence of a catalytic amount of EtONa, they cyclize to the (6*H*)pyrrolo[1,2-c]quinazolin-1,5-diones **15** (Scheme 6, Table 3); alkaline hydrolysis using KOH/H₂O, leads to the same result: also in this case only derivatives **15** were obtained. The structure of the new compounds was assigned on the basis of analytical and spectroscopic data (Table 4) as well as x-ray diffraction analysis⁶ for compounds **12ca**, **14ba** and **15da**. Figures 1, 2, 3 show an ORTEP view of the molecules with the atomic numbering scheme of heavy atoms; thermal ellipsoids of C, N, and O atoms are drawn at 20%

probability level. Bond distances and angles in all the structures are in the normal range. The five membered ring is planar in **12ca**, while it presents an envelope conformation in **14ba** $(q=0.123(1)Å^2$, following Cromer and Pople¹²); **15da** shows an intermediate situation $(q=0.0631(3) \text{ and } 0.034(3)Å^2$, respectively, for the two independent molecules). The N1, C2, N3, C7, C8, C13 hetero-ring present the same distorted boat conformation (^{1,4}B) both in **14ba** and in **15da**. No particularly relevant difference is found between equivalent geometrical parameters between the two independent molecules of **15da**: any difference can be due to packing forces. The packing of all three structures is essentially determined by a network of hydrogen bonds.

EXPERIMENTAL

Melting points were determined on a Buchi apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 298 instrument, in nujol mull for solids and as liquid film for oils. ¹H-NMR were recorded on a Bruker AC 300 spectrometer in CDCl₃ solution unless otherwise stated.

Column chromatography was performed on Merck Kieselgel 60, 0.063 - 0.2 mm and on Florisil 0.150 - 0.250 mm. Evaporation was carried out under vacuum in a rotary evaporator.

Compounds 1a⁷ and 1b⁸ were prepared according to the literature procedure. Compounds 6a,b,e were prepared as previously reported ⁴.

Ethyl 1-Acetyl-1,3-dihydro-2H-Indol-2-one-3-acetate 1c.

E-Ethyl 1-Acetyl-2*H*-indol-2-one-3-ylidene acetate ⁹ (2.5 g, 10 mmol) was dissolved in EtOAc (60 mL), 10% Pd/C (200 mg) was added and the mixture hydrogenated at r. t. and atmospheric pressure; After 15 min the catalyst was filtered off and the solvent evaporated. Crystallization from Et_2O - hexane gaves pure 1c, 2.38 g (91 %), mp 79-80 °C.

1-Acetyl-3-Alkyl-3-Bromo-1,3-dihydro-2H-indol-2-ones 2; General Procedure:

The 1-acetyl-3-alkyl-1,3-dihydro-2*H*-indol-2-one **1** (20 mmol) was dissolved in CH_2Cl_2 (60 mL) and then Br_2 (21 mmol) in CH_2Cl_2 (20 mL) was added. After 5 min at r. t. the solution was evaporated and the residue crystallized (Table 1).

1-Carbethoxy-3-(ethoxycarbonyloxymethylene)indol-2-one 4.

Compound 3^5 (4.83 g, 30 mmol) was dissolved in CH₂Cl₂ (100 mL) and Et₃N (16.7 mL, 120 mmol) was added. The solution was cooled at 0-5 °C and ethyl chloroformate (8.6 mL, 90 mmol) in CH₂Cl₂ (25 mL) was added. After 20 min at r. t. the mixture was washed with water (2 x 60 mL). The organic layer was dried (Na₂SO₄), filtered and evaporated. The residue was crystallized from Et₂O to give pure compound 4, 7.24 g (79 %), mp 115 °C. Anal. calc. for C₁₅H₁₅NO₆: C 59.01, H 4.95, N 4.59. Found: C 58.95, H 5.01, N 4.62.

1-Carbethoxy-3-methyl-1,3-dihydro-2H-indol-2-one 5.

Compound 4 (6.1 g, 20 mmol) was dissolved in AcOEt (150 mL), 10 % Pd/C (300 mg) was added and the mixture hydrogenated at r. t. and atmospheric pressure. After 3 h the catalyst was filtered off, the solvent evaporated and the residue purified by column chromatography on silica gel (eluent: CH_2Cl_2) to give pure compound 5, 3.2 g (91 %), mp 75-76 °C from Et₂O-hexane. Anal. calc. for $C_{12}H_{13}NO_3$: C 65.74 , H 5.98 , N 6.39 . Found: C 65.68 , H 6.02 , N 6.43

3-Bromo-3-Methyl-1-Ethoxycarbonyl-1,3-dihydro-2H-indol-2-one 6d.

Compound 5 (3.5 g, 20 mmol) was dissolved in CH₂Cl₂ (80 mL) and then Br₂ (1.13 mL, 22 mmol) in CH₂Cl₂ (20 mL) was added under stirring at r. t.. After 10 min the solution was evaporated and the residue purified by column chromatography on Florisil (eluent: CH₂Cl₂ / Et₂O 40 : 1), mp 59-60 °C from hexane, 4.8 g (80 %). Anal. calc. for C₁₂H₁₂BrNO₃: C 48.34, H 4.06, N 4.69. Found: C 48.21, H 4.01, N 4.87.

1-Acetyl-3-Alkyl-3-Azido-1,3-dihydro-2H-indol-2-ones 7 and 3-Alkyl-3- Azido-1-carbethoxy-1,3dihydro-2H-indol-2-ones 8; General Procedure: Compound 2 or 6 (20 mmol) was dissolved in CH_2Cl_2 (50 mL) and then NaN₃ (6.5 g, 100 mmol) in H_2O (25 mL) and THAI (200 mg) were added. The mixture was stirred at room temperature for

18 h. The organic layer was washed with H_2O (40 mL), dried (Na₂SO₄), filtered and evaporated. The residue was purified by column chromatography on silica gel (eluent: CH_2Cl_2 / hexane 1 : 1) and crystallized (Table 1).

Iminophosphoranes 9 and 10; General Procedure:

Compound 7 or 8 (20 mmol) was dissolved in Et_2O (60 mL) and then Ph_3P (5.8 g, 22 mmol) in Et_2O (60 mL) was added under stirring at r. t.. N_2 was evolved and after 30 min crystallization occurs. After 3 h at r. t., the mixture was cooled at 0 °C for 2 h, filtered and washed with Et_2O (Table 1).

Δ^2 -Pyrrolin-4-ones 12 ánd 13; General Procedure:

A mixture of iminophosphorane 9 or 10 (3 mmol), appropriate anhydrous ketone 11 (4 mL) and activate molecular sieves (5 g, 4A, Aldrich) was placed in a closed steel vessel at 120 °C (100 °C for compounds 9b and 10b with 11c), for 18 h. After this time, the reaction mixture was diluted with CH_2Cl_2 (20 mL), filtered and the residue purified by column chromatography (Table 2).

Pyrrolo[1,2-c]quinazolin-1-ones 14; General Procedure:

A mixture of Δ^2 -pyrrolin-4-one 12 (1 mmol), dioxane (20 mL) and H₂SO₄ 97% (0.1 mL) was heated under reflux for 15'. After solvent evaporation, water was added (20 mL) and the residue extracted with CH₂Cl₂ (2 x 15 mL), dried (Na₂SO₄), filtered and evaporated. The crude mixture was purified by crystallization (Table 3).

(6H)-Pyrrolo[1,2-c]quinazolin-1,5-diones 15; General Procedure:

The Δ^2 -pyrrolin-4-one **13** (1 mmol) was dissolved in EtOH (30 mL) and a solution of EtONa in EtOH (5 mL, 3 mg/mL) was added. The mixture was heated under reflux for 30'. After solvent evaporation, water was added and the residue extracted with CH₂Cl₂ (2 x 15 mL). The organic layer was dried (Na₂SO₄), filtered and evaporated and then purified by crystallization (Table 3).

X-ray structure determination of 12ca, 14ba and 15da.

All single crystal X-ray measurements were performed on a *Nonius CAD-4* diffractometer, using graphite-monochromated Mok α radiation (λ =0.71073 Å). Data were corrected for Lorentz-polarization coefficient (Lp). The three structures were solved by direct methods (program MULTAN¹⁰); **15da** presented some problems because of the presence of 8 molecules in the unit-cell; despite the indications of the acentric group *Pca2*₁, given by statistic analysis, we attempted to solve the structure in the centrosymmetric space group *Pcam*. In fact no solution was obtained in the centrosymmetric group, while all C, N, O atoms of the two independent molecule were derived from the 'best' *E*-map in the acentric one; subsequent refinement has confirmed the acentric group. The refinements were made by minimizing the function $\Sigma w(F_o-k - F_c)^2$, with

weights $w=1/\sigma^2(F_o)$, where $\sigma^2(F_o)=[\sigma^2(I)+O.OOO9I^2]/(2F_oLp)^2$. Scattering factors were taken from Ref 11; C, N, and O atoms were refined anisotropically, H atoms isotropically. Final difference Fourier maps showed no particular feature. Crystal data and some details of the data collection and full-matrix least-squares refinement are given in table 5.

Starting Material	Product	R ¹	Yield (%)	mp (°C) (solvent) ^a
1a	2a	Bn	92	89-90 (Hx)
1b	2b	Et	97	79-80 (Hx-Et ₂ O)
1c	2c	CH ₂ COOEt	80	88-89 (Hx)
2a	7a	Bn	85	59-60 (Hx-Et ₂ O)
2b	7b	Et	94	19-20 (Hx)
2c	7c	CH ₂ COOEt	88	33-34 (Hx-Et ₂ O)
6a	8a	Bn	92	58-60 (Hx-Et ₂ O)
6b	8b	Et	97	45-46 (Hx)
6d	8d	Me	84	72-73 (Et ₂ O)
6e	8e	n-Pr	81	oil
7a	9a	Bn	91	166-168 (Et ₂ O)
7b	9b	Et	83	133-135 (Et ₂ O)
7c	9c	CH ₂ COOEt	94	174-176 (Et ₂ O)
8a	10a	Bn	70	183-185 (Et ₂ O)
8b	10b	Et	90	135-136 (Et ₂ O)
8d	10d	Me	88	175-176 (Et ₂ O)
8e	10e	n-Pr	67	117-118 (Et ₂ O)

Table 1. Compounds 2, 7, 8, 9, 10 Prepared.

a Hx: hexane.

Starting	Product	Eluent	Yield	mp (°C)
Material			%	(solvent) ^a
9a	12aa	CH ₂ Cl ₂ /Et ₂ O (3:1)	51	258-260 (CH ₃ COCH ₃)
9a	12ab	CH ₂ Cl ₂ /AcOEt (5:1)	75	221-222 (CH ₂ Cl ₂ -Et ₂ O)
9a	12ac	CH ₂ Cl ₂ /Et ₂ O (5:1)	70	216-218 (Et ₂ O)
9a	12ad	Hx/CH3COCH3 (2:1)	37	192-193 (Et ₂ O)
9a	12ae	CH ₂ Cl ₂ /AcOEt (3:1)	48	235-237 (CH ₂ Cl ₂ -Et ₂ O)
9b	12ba	CH ₂ Cl ₂ /MeOH (20:1)	64	227-229 (Et ₂ O)
9b	12bb	CH ₂ Cl ₂ /Et ₂ O (4:1)	60	128-130 (Et ₂ O)
9b	12bc	CH ₂ Cl ₂ /CH ₃ COCH ₃ (2:1)	65	234-236 (CH ₂ Cl ₂₋ Et ₂ O)
9c	12ca	CH ₂ Cl ₂ /Et ₂ O (4:1)	55	169-170 (CH ₂ Cl ₂ -Et ₂ O)
9c	12cb	CH ₂ Cl ₂ /AcOEt (2:1)	39	175-176 (CH ₂ Cl ₂ -Et ₂ O
10a	13aa	CH ₂ Cl ₂ /MeOH (80:1)	31	233-234 (Et ₂ O)
10a	13ab	CH2Cl2/Et2O (50:1)	47	163-165 (Hx-Et ₂ O)
10a	13ac	CH ₂ Cl ₂ /Et ₂ O (10:1)	50	200-202 (Et ₂ O)
10b	13bb	CH ₂ Cl ₂ /Et ₂ O (20:1)	39	151-152 (Et ₂ O)
10b	13bc	CH ₂ Cl ₂ /Et ₂ O (20:1)	48	205-207 (Et ₂ O)
10d	13da	CH ₂ Cl ₂ /CH ₃ COCH ₃ (20:1) 43	194-195 (CH ₂ Cl ₂ -Et ₂ O
10d	13db	CH2Cl2/Et2O (6:1)	27	158-160 (CH ₂ Cl ₂ -Et ₂ O
10e	13ea	CH ₂ Cl ₂ /Et ₂ O (5:1)	80	200-201 (Et ₂ O)
10e	13eb	CH2Cl2/Et2O (20:1)	53	147-148 (Hx-Et ₂ O)

Table 2. Δ^2 -Pyrrolin-4-ones **12** and **13** Prepared.

a Hx: hexane.

Table 3. Pyrrolo[1,2-c]quinazolin-1-ones 14 and (6H)Pyrrolo[1,2-c]-

quinazolin-1,5- diones 15 Prepared.

Starting	Product	Yield	mp (°C)
material		%	(solvent) ^a
1288	1 4aa	54	243-245 (Hx-Et ₂ O)
12ab	14ab	78	214-216 (CH ₂ Cl ₂ -Et ₂ O)
12ac	14ac	75	191-192 (Et ₂ O)
12ad	14ad	79	95-96 (Et ₂ O)
12ae	14ae	43	119-120 (Hx-Et ₂ O)
12ba	14ba	63	97-98 (Hx-Et ₂ O)
12bb	1 4bb	75	168-169 (Et ₂ O)
12bc	14bc	45	114-115 (Hx)
12ca	14ca	27	oil
12ca	16	27	210-212 (Et ₂ O)
12cb	14cb	42	91-92 (Hx-Et ₂ O)
13aa	15aa	94	237-239 (CH ₂ Cl ₂ -Et ₂ O)
13ab	15ab	97	198-200 (CH ₂ Cl ₂ -Et ₂ O)
13ac	15ac	95	221-223 (Et ₂ O)
13bb	15bb	96	213-215 (Hx-Et ₂ O)
13bc	15bc	97	168-170 (Et ₂ O)
13da	15da	70	223-224 (CH ₂ Cl ₂ -Et ₂ O)
13db	15db	78	163-165 (Hx-Et ₂ O)
13ea	15ea	83	182-184 (Et ₂ O)
13eb	15eb	94	204-206 (Et ₂ O)

a Hx: hexane.

Product	IR (Nujol or	¹ H - NMR
	film) v cm ⁻¹	δ, J (Hz)
10	1758, 1728, 1702	1.13 (t, 3H, 7.0), 2.67 (s, 3H), 3.03 (2H, m), 3.90(1H, t, 5.5), 4.06 (2H, q, 7.0), 7.22 (3H, m), 8.20 (1H, d, 8.0)
2 a	1760, 1712	2.65 (3H. s), 3.82 and 3.86 (2H, AB, 15), 7.13 (7H. m). 7.50 (1H. m), 8.05 (1H, m)
26	1775, 1731	0.79 (3H, t, 7.0), 2.50 (2H, m), 2.71 (3H, s), 7.27 (1H, dt, 7.5 and 0.9), 7.36 (1H, dd, 8.0 and 1.5), 7.43 (1H, dt, 8.0 and 1.5), 8.22 (1H, d, 8.0)
2c	1777, 1730	1.00 (3H, t, 7.0), 2.72 (3H, s), 3.57 and 3.72 (2H, AB, 17), 3.90 (2H, m), 7.20 (1H, d, 7.3), 7.37 (2H, m), 8.23 (1H, d, 8.0)
4	1785, 1738, 1688	1.44 (3H, t, 7.0), 1.46 (3H, t, 7.0), 4.46 (2H, q, 7.0), 4.51 (2H, q, 7.0), 7.26 (1H, m), 7.40 (1H, m), 7.85 (1H, d, 8.0), 7.98 (1H, d, 8.0), 8.38 (1H, s)
5	1772, 1736	1.45 (3H, t, 7.0), 1.53 (3H, d, 7.5), 3.59 (1H, q, 7.5), 4.47 (2H, q, 7.0), 7.18 (2H, m), 7.30 (1H, m), 7.80 (1H, d, 8.0)
6 d	1789, 1750, 1615	1.47 (3H, t, 7.0), 1.54 (3H, s), 4.49 (2H, q, 7.0), 7.23 (1H, m), 7.39 (1H, m), 7.48 (1H, d, 7.5), 7.91 (1H, d, 8.2)
7 a	2105, 1760, 1720	2.72 (3H, s), 3.43 (2H, s), 6.90 (2H, m), 7.22 (6H, m), 8.08 (1H, d, 8.0)
7 b	2120, 1770, 1730	0.78 (3H, t, 7.5), 2.15 (2H, m), 2.70 (3H, s), 7.30 (2H, m), 7.40 (1H, m), 8.25 (1H, d, 8.0)
7 c	2103, 1770,1738, 1720	1.04 (3H, t, 7.0), 2.78 (3H, s), 3.22 and 3.40 (2H, AB, 17), 3.98 (2H, q, 7.0), 7.35 (3H, m), 8.30 (1H, d, 8.0)
8 a	2118, 2080, 1768, 1735	1.41 (3H, t, 7.1), 3.31 and 3.35 (2H, AB, 13), 4.41 (2H, q, 7.1), 6.89 (2H, m), 7.15 (5H, m), 7.32 (1H, m), 7.73 (1H, d, 8.1)
8 b	2118, 2100, 1771, 1750	0.78 (3H, t, 7.5), 1.44 (3H, t, 7.2), 2.14 (2H, m), 4.77 (2H, q, 7.2), 7.25 (2H, m), 7.39 (1H, m), 7.93 (1H, d, 8.3)
8 d	2130, 2080, 1779, 1750	1.47 (3H, t, 7.0), 1.73 (3H, s), 4.48 (2H, q, 7.0), 7.23 (1H, m), 7.34 (1H, m), 7.39 (1H, m), 7.93 (1H, d, 8.2)
8 e	2100, 1775, 1740	0.85 (3H, t, 7.2), 1.10 (2H, m), 1.42 (3H, t, 7.1), 2.08 (2H, m), 4.45 (2H, q, 7.1), 7.30 (3H, m), 7.92 (1H, d, 8.2)
9 a	1752, 1704	2.18 (3H, s), 3.40 (2H, bs), 6.75-7.75 (24H, m)
9 b	1770, 1710	0.68 (3H, t, 7.5), 2.12 (2H, m), 2.25 (3H, s), 6.98 (1H, m), 7.09 (1H, m), 7.26-7.58 (15H, m), 7.66 (1H, m), 7.89 (1H, d, 8.0)
9 c	1761, 1721, 1700	0.73(3H, t, 7.5), 2.32 (3H, s), 3.20 and 3.37 (2H, AB, 15), 3.73 (2H, q, 7.5), 6.90-7.70 (18H, m), 7.91 (1H, d, 8.0)
10a	1765, 1718	1.26 (3H, t, 7.1), 3.34 (2H, m), 4.18 (2H, q, 7.1), 6.89 (3H, m), 7.02 (4H,

Table 4. Spectral Data of New Compounds

		m), 7.12 (1H, m), 7.28 (8H, m), 7.39 (2H, m), 7.57 (6H, m)
10b	1776, 1730 (CCl ₄)	0.69 (3H, t, 7.4), 1.33 (3H, t, 7.1), 2.11 (2H, m), 4.26 (2H, q, 7.1), 6.94
		(1H, m), 7.06 (1H, m), 7.30 (7H, m), 7.40 (4H, m), 7.55 (6H, m)
10d	1765, 1728	1.33 (3H, t, 7.0), 1.64 (3H, s), 4.27 (2H, q, 7.0), 6.97 (1H, m), 7.08 (1H,
		m), 7.45 (17H, m)
10e	1765, 1725	0.76 (3H, t, 7.2), 1.10 (2H, m), 1.34 (3H, t, 7.5), 2.05 (2H, m), 4.25 (2H, q,
		7.5), 6.94 (1H, m), 7.06 (1H, m), 7.26-7.59 (17H, m)
12aa	3190, 1690, 1619	DMSO: 2.15 (3H, s), 2.35 (3H, s), 3.40 and 3.51 (2H, AB, 15), 4.67 (1H,
		d, 1.5, s after D ₂ O), 7.14 (8H, m), 8.00 (1H, d, 8.0), 8.83 (1H, bs) ^a , 12.5
		(1H, bs) ^a
12ab	3240, 1667, 1632	2.21 (3H, s), 2.31 (3H, s), 3.45 and 3.56 (2H, AB, 13.5), 6.21 (1H, bs) ^a ,
		7.00 (4H, m), 7.22 (9H, m), 8.03 (1H, d, 8.0), 12.05 (1H. bs) ^a
12ac	3280, 1677, 1647	1.20-1.80 (8H, m), 2.21 (2H, m), 2.33 (3H, s), 2.55 (2H, m), 3.30 and
		3.57 (2H, AB, 13.5), 5.51 (1H, bs) ^a , 6.92 (3H, m), 7.15 (4H, m), 7.27 (1H,
		m), 8.03 (1H, d, 8.0), 12.3 (1H, bs) ^a
12ad	3258, 1679, 1648	1.13 (3H, t, 7.5), 1.61 (3H, s), 2.34 (3H, s), 2.47 (2H, q, 7.5), 3.20 (1H, d,
		14),3.66 (1H, d, 14), 5.35 (1H, bs) ^a , 6.90 (3H, m), 7.13 (4H, m), 7.28
		(1H, m), 8.03 (1H, d, 8.0), 12.15 (1H, bs) ^a
1280	3280, 1666, 1641	2.33 (3H, s), 3.27 (1H, d, 13.3), 3.88 (1H, d, 13.3), 5.45 (1H, d, 1.5, s
		after D ₂ O), 5.94 (1H, bs) ^a , 6.90 (3H, m), 7.20 (4H, m), 7.60 (6H, m), 8.06
		(1H, d, 8.3), 11.90 (1H, bs) ^a
12ba	3190, 1695, 1622	0.71 (3H, t, 7.0), 2.10 (2H, m), 2.21 (3H, s), 2.29 (3H, s), 4.94 (1H, s),
		6.43 (1H, bs) ^a , 6.97 (1H, t, 7.5), 7.21 (2H, m), 7.91 (1H, d, 8.0), 11.73
4066		(1H, DS) ^a
1200	3230, 1675, 1648	0.77 (3H, H), 2.10 (2H, H), 2.24 (3H, S), 2.43 (3H, S), 0.37 (1H, 0S) ⁻ , 7.01 (1H, m), 7.21 (2H, m), 7.35 (5H, m), 7.01 (1H, m), 11.78 (1H, hs) ³
1260	3262 1673 1662	$0.76 (3H \pm 7.0) 1.45 (6H m) 1.90 (2H m) 2.10 (2H m) 2.25 (3H s)$
1200	0202, 1070, 1002	2.30 (2H m) 2.68 (2H m) 5.95 (1H bs) ^a 7.00 (1H m) 7.30 (2H m).
		7.97 (1H. d. 8.0), 11.96 (1H. bs) ^a
12ca	3300, 1732, 1675, 1640	1.05 (3H, t, 7.0), 2.32 (3H, s), 2.38 (3H, s), 2.73 (1H, d, 17), 3.66 (1H, d,
		17), 3.95 (2H, q, 7.0), 5.00 (1H, d, 1.5, s after D ₂ O), 6.95-7.42 (4H, m,
		3H after DoO) 8 00 (1H d, 8 0) 11 50 (1H bs) ^a
12ah	2220 1765 1605 1640	1 12 (21 + 7 1) 2 26 (31 c) 2 34 (31 c) 2 69 (11 d 16 5) 3 14 (11
1200	3220, 1703, 1093, 1049	(31, 3), (31, 7, 7), (220, (31, 3), (234, (31, 3), (203, (11, 4, 10.3), (31, 4, 10.3)))
		7 25-7 45 (5H m) 7 90 (1H d 82) 9 68 (1H bs) ^a
1388	3150 3050 1728 1618	1.33 (3H t 7.0), 2.16 (3H, s), 3.41 and 3.51 (2H, AB, 13), 4.25 (2H, q,
	2.20, 0000, 1720, 1010	7.0), 4.75 (1H, d, 1.5, s after D ₂ O), 7.03-7.28 (8H, m), 7.67 (1H, bs) ^a ,
		$791 (1H d 80) 1150 (1H bs)^{a}$
13ab	3280br 1740 1613	1 29 (3H, t. 7.0), 2.20 (3H, s), 3.47 and 3.64 (2H, AB, 13), 4.22 (2H, m),
		5.89 (1H, bs) ^a , 6.92 (3H, m), 7.05-7.38 (10H, m), 7.93 (1H, d, 8.0), 11.17
		(1H, bs) ^a

13ac	3280 br, 1699, 1615	1.20-1.40 (9H, m), 1.70 (2H, m), 2.20 (2H, m), 2.54 (2H, m), 3.31 and
		3.65 (2H, AB, 13.7), 4.24 (2H, m), 5.35 (1H, bs) ^a , 6.92 (3H, m), 7.16 (4H,
		m), 7.25 (1H, m), 7.95 (1H, d, 8.0), 11.48 (1H, bs) ^a
1366	3250, 1730, 1695, 1642	0.82 (3H, t, 7.4), 1.29 (3H, t, 7.1), 2.22 (1H, m), 2.38 (1H, m), 2.42 (3H,
		s), 4.21 (2H, m), 5.89 (1H, bs) ^a , 7.01 (1H, m), 7.18-7.38 (7H, m), 7.80
		(1H, d, 8.1), 10.84 (1H, bs) ^a
13bc	3320, 1736, 1705, 1649	0.77 (3H, t, 7.4), 1.32 (3H, t, 7.1), 1.50 (6H, m), 1.85 (2H, m), 2.10 (1H,
		m), 2.27 (2H, m), 2.32 (1H, m), 2.66 (2H, t, 6.4), 4.21 (2H, m), 5.50 (1H,
		bs) ^a , 6.96 (1H, m), 7.23 (1H, m), 7.32 (1H, m), 7.89 (1H, d, 8.0), 11.13
		(1H, bs)a
13da	3190, 3080, 1737, 1628	1.31 (3H, t, 7.0), 1.74 (3H, s), 2.26 (3H, s), 4.21 (2H, g, 7.0), 4.94 (1H, s),
		5.97 (1H, bs) ^a , 6.98 (1H, m), 7.28 (2H, m), 7.81 (1H, d, 8.0), 11.30 (1H,
		bs)a
13db	3260 br, 1740, 1688	1.29 (2H, t, 7.0), 1.83 (3H, s), 2.40 (3H, s), 4.21 (2H, g, 7.0), 5.89 (1H,
		bs) ^a , 7.02 (1H, m), 7.24-7.55 (7H, m), 7.94 (1H, d, 8.0), 10.34 (1H, bs) ^a
13ea	3190, 3090, 1728, 1629	0.90 (3H, m), 1.19 (2H, m), 1.34 (3H, t, 7.0), 2.15 (2H, m), 2.31 (3H, s),
		4.22 (2H, q, 7.0), 4.93 (1H, s), 5.87 (1H, bs) ^a , 6.95-7.35 (3H, m), 7.79
		(1H, m), 10.70 (1H, bs) ^a
13eb	3280, 3240, 1729, 1698	0.90 (3H, m), 1.32 (2H, m), 1.34 (3H, t, 7.0), 2.17 (2H, m), 2.42 (3H, s),
		4.23 (2H, g, 7.0), 6.02 (1H, bs) ^a , 6.98-7.41 (8H, m), 7.86 (1H, m), 10.70
		(1H, bs) ^a
14aa	1698	2.14 (3H, s), 2.48 (3H, s), 2.98 and 3.20 (2H, AB, 13.5), 4.97 (1H, s),
		7.04 (2H, m), 7.22 (5H, m), 7.32 (1H, m), 7.86 (1H, d, 7.5)
14ab	1678	2.12 (3H, s), 2.57 (3H, s), 3.07 and 3.28 (2H, AB, 13.3), 6.94 (2H. m),
		7.07 (2H, m), 7.20-7.40 (9H, m), 8.08 (1H, d, 7.5)
14ac	1675	0.45-1.80 (8H, m), 2.40-2.60 (4H, m), 2.57 (3H, s), 2.98 and 3.23 (2H,
		AB, 13.4), 7.07 (2H, m), 7.17-7.34 (6H, m), 7.94 (1H, dd, 8 and 1)
14ad	1680	0.80 (3H, t, 7.5), 1.51 (3H, s), 2.42 (2H, m), 2.50 (3H, s), 2.99 and 3.21
		(2H, AB, 13.5), 7.02 (2H, m), 7.25 (6H, m), 7.96 (1H, d. 7.5)
14ae	1694	1.76 (3H, s), 3.05 (1H, d, 13.5), 3.32 (1H, d, 13.5), 5.03 (1H, s), 6.86 (2H,
		m), 7.12 (2H, m), 7.30 (9H, m), 8.04 (1H, d, 7.5)
14ba	1697	0.77 (3H, t, 7.5), 1.86 (2H, m), 2.40 (3H, s), 2.51 (3H, s), 5.18 (1H, s).
		7.20 (3H, m), 7.80 (1H, d, 7.5)
1466	1670	0.83 (3H, t, 7.5), 1.94 (2H, m), 2.48 (3H, s), 2.60 (3H, s), 7.19 (1H, m),
		7.28 (5H, m), 7.40 (2H, m), 7.90 (1H, d, 7.5)
14bc	1680	0.74 (3H, t, 7.5), 1.50 (6H, m), 1.86 (4H, m), 2.18 (1H, m), 2.42 (1H, m),
		2.54 (3H, s), 2.83 (2H, m), 7.18 (3H, m), 7.77 (1H, d, 7.4)
14ca	1740, 1690	1.15 (3H, t, 7.2), 2.35 (3H, s), 2.50 (3H, s), 2.75 and 2.85 (2H, AB, 14.3),
		4.02 (2H, q, 7.2), 5.23 (1H, s), 7.21 (3H, m), 7.76 (1H, d, 7.5)
14cb	1731, 1678	1.13 (3H, t, 7.1), 2.44 (3H, s), 2.60 (3H, s), 2.84 and 2.96 (2H, AB, 14.4),
		4.03 (2H, q, 7.1), 7.20-7.40 (8H, m), 7.85 (1H, d. 7.7)

15aa	3190, 1719, 1668	2.35 (3H, s), 3.16 (2H, s), 5.07 (1H, s), 6.79 (1H, d, 8.0), 7.00-7.30 (7H,
		m), 7.67 (1H, bs) ^a , 8.08 (1H, d 8.0)
15ab	3220, 1701, 1683	2.36 (3H, s), 3.24 (2H, s), 6.88 (3H, m), 7.00-7.30 (10H, m), 7.40 (1H,
		bs) ^a , 8.17 (1H, m)
15ac	3200, 1692, 1678	0.25 (1H, m), 1.05 (3H, m), 1.50 (1H, m), 1.65 (3H, m), 1.90 (1H, m),
		2.40 (1H, m), 2.70 (1H, m), 3.08 (1H, m), 3.16 and 3.22 (2H, AB, 13.3),
		6.83 (1H, d, 7.8), 7.10 (3H, m), 7.19 (3H, m), 7.27 (1H, m), 7.86 (1H,
		bs) ^a , 8.02 (1H. d, 7.6)
15 bb	3200, 1695, 1679	0.90 (3H, t, 7.4), 2.08 (2H, m), 2.72 (3H, s), 6.85 (1H, d, 7.8). 7.08 (1H,
		m), 7.26 (1H, m), 7.32 (3H, m), 7.42 (2H, m), 8.00 (1H, d, 7.7), 8.05 (1H,
		bs)a
15bc	3220, 1700, 1681	0.80 (3H, t, 7.3), 1.50 (6H, m), 1.98 (4H, m), 2.21 (1H, m), 2.43 (1H, m),
		3.15 (2H, m), 6.78 (1H, d, 7.7), 7.02 (1H, m), 7.21 (1H, m), 7.80 (1H,
		bs) ^a , 7.89 (1H, d, 7.8)
15da	3190, 1720, 1668	1.60 (3H, s), 2.60 (3H, s), 5.36 (1H, s), 6.81 (1H, d, 8.0), 7.06 (1H, m),
		7.22 (1H, m), 7.68 (1H, bs) ^a , 7.93 (1H, d, 8.0)
15db	3220, 1715, 1694	1.68 (3H, s), 2.72 (3H, s), 6.90-7.60 (8H, m), 8.01 (1H, d, 8.0), 8.32 (1H,
		bs) ^a
15ea	3240, 1700, 1668	0.82 (3H, t, 7.0), 1.30 (2H, m), 1.91 (2H, m), 2.60 (3H, s), 5.36 (1H, s),
		6.81 (1H, d, 8.0), 7.05 (1H, m), 7.24 (1H, m), 7.76 (1H, bs) ^a , 7.91 (1H, d,
		8.0)
15eb	3220, 1692, 1604	0.85 (3H, t, 7.0), 1.36 (2H, m), 2.04 (2H, m), 2.69 (3H, s), 6.81 (1H, m),
		7.00-7.38 (7H, m), 7.84 (1H, bs) ^a , 8.01 (1H, m)
16	1798, 1688, 1652	2.07 (3H, s), 2.42 (3H, s), 3.11 and 3.14 (2H, AB, 18.6), 3.35 and 3.52
		(2H, AB, 18.6), 7.15 (1H, m), 7.32 (1H, m), 7.44 (1H, d, 7.3), 8.19 (1H,
		m)

a Exchange with D₂O.

Table 5. Details of crystallographic data, data collection and structure refinement

System	12ca monoclinic	14ba monoclinic	15da orthorombic
space group	P21/n	P2 ₁ /n	Pca2 ₁
a, Å	9.033(2)	7.870(1)	15.926(3)
ь, А	14.153(3)	19.033(1)	6.936(1)
c, Å	12.974(4)	7.730(1)	23.230(2)
β, deg	93.42(2)	107.51(1)	
Volume, Å ⁻³	1655.7(7)	1104.2(2)	2566.1(7)
Z	4	4	8

	12ca	14ba	15da	
D _x , g. cm ⁻³	1.269	1.373	1.244	
ϑ_{max} of data collection, deg	25.0	27.5	25.0	
No. unique reflections collected	2912	2520	2318	
No. observed reflections $[I > \sigma(I)]$	1793	2243	2017	
R	0.039	0.043	0.044	
R _w	0.038	0.042	0.039	
$(\Delta/\sigma)_{max}$ in the last least-square cycle	0.07	0.01	0.01	
maximum residue in Δ map, e/Å ⁻³	0.21	0.18	0.20	

Table 5. Details of crystallographic data, data collection and structure refinement

This investigation was supported by CNR, Piano Finalizzato Chimica Fine II.

REFERENCES

- Aiello, E. Atti Accad. Sci., Lett. Arti Palermo, Parte 1 1969-1970, 30, 237.
 Beveridge, S.; Huppatz, J.L. Aust. J. Chem. 1970, 23, 781.
 Lown, J.W.; Matsumoto, K. Can. J. Chem 1971, 49, 1165.
 Smith, J.G.; Sheepy, J.M.; Levi, E.M. J. Org. Chem. 1976, 41, 497.
- 2. Bandurco, V.T.; Wong, E.M.; Levine, S.D.; Hajos, Z.G. J. Med. Chem. 1981, 24, 1455.
- Georgescu, E.I.; Georgescu, F.; Gheorghiu, M.; Georgescu, E.G.; Petrovanu, M. *Rev. Roum.* 1985, 611.

Georgescu, E.I.; Georgescu, F.; Gheorghiu, M.D.; Filip, P.; Petrovanu, M. *Rev. Roum. Chim.* **1986**, 365.

- 4. Beccalli, E.M.; Marchesini, A. Synthesis 1992, 265.
- 5. Wenkert, E.; Bhattacharyya, N.K.; Reid, T.L.; Stevens, T.E. J. Am. Chem. Soc. 1956, 78, 797.
- 6. Crystallographic details have been deposited with Cambridge Crystallographic Data Centre, Lensfield, Cambridge CB 2 1EW, England.
- 7. Tacconi, G.; Marinone, F. Ric. Scient. 1968, 1239.
- 8. Kato, T.; Ichikawa, H.; Okita, M. Yakugaku Zasshi 1967, 87, 986.
- 9. Long, D.R.; Richards, C.G.; Ross, M.S.F. J. Het. Chem. 1978, 633
- Main, P., Fiske, S., Hull, S.E., Lessinger, L., Germain, G., Declerq, J.-P., Woolfson, M.M., (1980).MULTAN II/82. A System of Coputer Programs for Automatic Solution of Crystal Structures from X-Ray Diffraction Data. Univ. of York, England and Louvain, Belgium.
- Cromer, D.T., Waber, J.T. (1974). International; Tables for X-ray Crystallography, Vol. IV, Table 2.2.B. Birmingham: Kynoch Press. (present distributor Kluwer Academic Publishers, Dordrecht.)
- 12. Cromer, D., Pople, J.A. J. Am. Chem. Soc. 1975, 97, 1354.