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Introduction

Metal organic frameworks (MOFs) constructed from inor-
ganic metal centers and bridged organic ligands have 
attracted considerable attention in recent years.1–3 As a 
new porous material different from zeolites and molecular 
sieves, MOFs possess a high specific surface area, a large 
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aperture, structural functional diversity, and unsaturated 
metal sites.4–7 They offer opportunities for applications 
such as in gas storage and separation, in catalytic pro-
cesses, as fluorescent sensors, and in drug delivery.8–11 In 
terms of structural features, the design of functional MOFs 
is a prerequisite for many applications, which can be regu-
lated according to adjustable structures and modified 
skeletons.12–14

As is well known, heavy metal ions are harmful to 
humans and organisms, and thus finding sensitive and 
selective detection methods is an important scientific 
goal.15–17 At present, the most reported fluorescent MOF 
sensors, transition MOFs, and lanthanide MOFs contain 
important groups such as �SO3

−  or pyridyl nitrogen elec-
tron–deficient groups inside the pores or cavities as Lewis 
basic sites for convenient and fast sensing of metal 
ions.18–22

Herein, we have modified and synthesized the amino-
modified organic ligand 2′-amino-[1,1′:3′,1″-terphenyl]-
4,4″,5′-tricarboxylic acid (H3TTCA-NH2). Taking into 
consideration the luminescence performance of transition 
metal MOFs, an amino-functionalized cadmium (Cd)-
MOF, [Cd1.5(L)(DMF)]·2H2O (complex 1), was synthe-
sized by the solvothermal method. Interestingly, complex 
1 exhibits excellent luminous intensity. As a fluorescent 
sensor, complex 1 exhibits selectivity and sensitivity for 
Fe3+ in ethanol through fluorescence quenching with a 
high quenching efficiency of 3.340 × 103 M−1. Therefore, 
complex 1 is a promising sensor for identifying and detect-
ing Fe3+.

Results and discussion

The amino-functionalized H3TTCA-NH2 was synthesized 
according to a literature method, and the solvothermal reac-
tion of H3TTCA-NH2 and Cd(NO3)2 in DMF-EtOH-H2O 
(5/2/1, v/v/v) afforded light yellow, block-shaped crystals 
of complex 1.

Crystal structure

The crystallographic data of complex 1 are shown in Table 1. 
Single-crystal X-ray diffraction (SCXRD) analysis reveals that 
complex 1 crystallizes in the triclinic space group P-1. The 
asymmetric structural unit includes one deprotonated ligand 
(TTCA-NH2)

3−, one and a half Cd(II) atoms, and a coordinated 
dimethylformamide (DMF) molecule. The coordination envi-
ronment of the ligands is shown in Figure 1(a). The Cd(II) 
atoms take two coordination modes; Cd1 adopts the seven-
coordination mode to coordinate with six oxygen atoms of the 
carboxylic acids from four ligands and one µ2-oxygen atom 
from an H2O molecule. The average Cd1–O distance is 2.577 
Å. Cd2 is connected to four oxygen atoms of four ligands and 
two µ2-oxygen atoms from H2O molecules. The average Cd2–
O distance is 2.353 Å. Cd1 and Cd2 are connected by ligand 
bridging and chelation to form one-dimensional chain second-
ary building units (SBUs) (Figure 1(b)). The SBUs and ligands 
are connected to each other to form a three-dimensional (3D) 
framework structure with amino groups extending into the pore 
channels. (Figure 1(c) and (d)). The distance of the adjacent 
amino groups in the pore channel is 3.487 Å.

Table 1. Crystal data and structure refinement of complex 1.

Identification code Complex 1

CCDC No. 1988988
Empirical formula C48H38Cd3N4O14

Formula weight 1232.02
Temperature (K) 150.00(10)
Crystal system Triclinic
Space group P-1
a (Å) 10.2760(10)
b (Å) 10.5841(6)
c (Å) 13.2275(5)
A (°) 104.266(6)
B (°) 93.267(7)
γ/° 94.605(6)
Volume (Å3) 1385.38(19)
Z 1
ρcalc (mg/mm3) 1.477
μ (mm−1) 1.202
F(000) 610.0
2θ range for data collection 3.188–50
Reflections collected 9569
Independent reflections 4827 (Rint = 0.0695, Rsigma =0.1163)
Data/restraints/parameters 4827/49/345
Goodness-of-fit on F2 0.908
Final R indexes (I ⩾ 2σ (I)) R1 = 0.0512, wR2 = 0.1052
Final R indexes (all data) R1 = 0.0866, wR2 = 0.1211
Largest difference in peak/hole (e Å−3) 1.21/−0.77
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Figure 1. (a) The coordination environment of the ligand (TTCA-NH2)
3−. (b) The one-dimensional chain SBUs. (c, d) The three-

dimensional framework structure viewed from the b and c axes.

Characterization of powder diffraction, 
thermogravimetry, and surface area

The purity of the synthesized complex was evaluated by 
powder X-ray diffraction (PXRD). The PXRD figure shows 
that the as-synthesized crystal pattern is consistent with that 
simulated from SCXRD data (Figure 2(a)), indicating the 
pure phase of complex 1. At the same time, the thermal 
stability of complex 1 was tested by thermogravimetry 
analysis (TGA) measurements under an N2 atmosphere in 
the temperature range of 40 °C–900 °C (Figure 2(b)). 
Complex 1 lost a weight of 2.31% at 100 °C, which can be 
attributed to the loss of water molecules. Then, complex 1 
lost the weight of 19.9% at 240 °C; this part corresponds to 
the loss of N,N-DMF from the framework. A relatively sta-
ble platform exists from 240 °C to 400 °C. The framework 
of complex 1 finally collapsed at 400 °C, illustrating that 
complex 1 has excellent thermal stability. The permanent 
porosity of complex 1 is confirmed by N2 adsorption–des-
orption isotherms at 77 K (see Figure S2 in the Supporting 
Information), which show a type IV isotherm with a maxi-
mum uptake of 54.9 cm3·g−1. The Brunauer–Emmett–Teller 
(BET) surface area is estimated to be 14.5 m2·g−1 and the 
pore volume is calculated as 0.076 cm3·g−1.

Fluorescence studies

Transition-metal MOFs have specific luminescence advan-
tages; therefore, solid state fluorescence and liquid fluores-
cence tests were performed using a Hitachi F-7000 
fluorescence spectrophotometer. When the excitation 
wavelength was 330 nm, complex 1 exhibited a clear 

emission at λmax = 455 nm (EXslit = 2.5 nm, EMslit = 1.0 
nm), which has a blue shift of 20 nm compared to the ligand 
at λmax = 475 nm. Obviously, the fluorescence intensity of 
complex 1 is higher than that of the organic ligand 
(H3TTCA-NH2) (Figure 3(a)). Simultaneously, lumines-
cence in different solvents was measured. As Figure 3(b) 
shows, the fluorescence intensities in DMF and ethanol 
were relatively high and stable. Considering the green cre-
dentials of ethanol, fluorescence detection studies were 
subsequently carried out in this solvent. After adding eight 
different metal ions (Ag+, Li+, Ba2+, Pd2+, Hg2+, Cr3+, Al3+, 
Fe3+; c = 1 mmol·L−1), the relative intensities of fluores-
cence changes are shown in Figure 4(a). Surprisingly, Fe3+ 
significantly quenched the fluorescence intensity of com-
plex 1. The corresponding fluorescence spectra after add-
ing Fe3+ ions are shown in Figure 4(b). In order to further 
prove the quenching efficiency of complex 1 for Fe3+, we 
calculated the quenching constant (Ksv) using the Stern–
Volmer (SV) equation: (I0/I) = 1 + Ksv [A].23 Here, I0/I 
represents the initial fluorescence intensity over the lumi-
nescence intensity after addition of the analyte, and [A] is 
the molar concentration of the analyte. The Ksv value of 
complex 1 was calculated to be 3.340 × 103 M−1 toward 
Fe3+, which is comparable to or higher than those of some 
other reported MOFs in the literature (see Supplemental 
Table S1). The limit of detection (LOD) was calculated to 
be 0.01 mM according to the equation: LOD = 3s/k. The 
quenching fluorescence of complex 1 by Fe3+ can be attrib-
uted to the relatively small radius of Fe3+ and the strong 
electron attraction of the nitrogen atom in the NH2 group of 
the ligand.
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Figure 2. (a, b) The PXRD and TGA patterns of complex 1.

Figure 3. (a) The solid state fluorescence spectra of complex 1. (b) Fluorescence spectra of complex 1 in different solvents.

Figure 4. (a) The relative fluorescence intensity after adding eight different metal ions relative to complex 1. (b) The fluorescence 
spectra after adding Fe3+ ions (insert: Stern–Volmer plot of I0/I versus the Fe3+ concentration in ethanol solution).
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Conclusion

In summary, on the basis of designing the amino functional 
group–modified organic ligand (H3TTCA-NH2), an amino-
functionalized 3D Cd-MOF (complex 1) was successfully 
synthesized via the solvothermal method. At the same time, 
complex 1 was characterized by PXRD, infrared spectrom-
etry (IR), and TGA. Interestingly, it was found by fluores-
cence experiments that complex 1 exhibits favorable 
luminescence properties and excellent fluorescence sensing 
performance. To our surprise, complex 1 can rapidly detect 
Fe3+ through fluorescence quenching with high quenching 
efficiency. The Ksv value of complex 1 reaches up to 3.340 
× 103 M−1, demonstrating that complex 1 can be used as a 
fluorescent sensor with useful prospects for identifying 
metal ions.

Experimental section

Materials and method

All chemical reagents were purchased from chemical ven-
dors and were used without further purification. The PXRD 
diffractograms were obtained on a PANalytical X-Pert PRO 
diffractometer with Cu-Kα radiation. Elemental analyses 
(C, H, N) were performed using a CE instruments EA 1110 
elemental analyzer. IR was accomplished on a Nicolet 330 
FTIR Spectrometer within the 4000–400 cm−1 region. TGA 
measurements were carried out on a Mettler Toledo TGA 
instrument under an N2 atmosphere with a heating rate of 
10 °C/min in the range of 40 °C–900 °C. Fluorescence 
spectra were recorded with a Hitachi F-7000 Fluorescence 
Spectrophotometer.

Synthesis of 2′-amino-[1,1′:3′,1″-terphenyl]-
4,4″,5′-tricarboxylic acid

The synthesis procedure of the H3TTCA-NH2 ligand is 
shown in Scheme 1, according to the literature method.24

Synthesis of [Cd1.5(L)(DMF)]·2H2O 
(complex 1)

Cd(NO3)2·6H2O (0.096 g, 0.28 mmol) and H3TTCA-NH2 
(0.05 g, 0.13 mmol) in 10 mL of DMF-EtOH-H2O (v/v/v = 
5:2:1) were sealed in a 10-mL Teflon reactor and heated to 
100 °C over 40 min. The mixture was then heated at 100 °C 
for 3000 min and cooled to room temperature slowly at a 
rate of 0.1 °C/min. Light yellow, block-shaped crystals 
were obtained and washed with DMF and dried in the air 
(yield: 85% based on cadmium). Elemental analysis calcd 
(%) for complex 1 (C24H19Cd1.5N2O7): C, 40.51; H, 3.66; N, 

3.94; found: C, 40.42; H, 3.50; N, 3.89. IR (KBr, cm-1): 
3472 (s), 1660 (s), 1102 (s), 3923(m), 794(m), 731(m), 
2527 (w), 570(w).
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