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Abstract: A stereoisomerization at the angular position of N-
acylindoles during basic hydrolysis was discovered to give only the
syn-bicyclic pyroglutamic acid, proceeding through a transannular
[2+2] cycloaddition of a ketene–ketone intermediate generated by a
Grob fragmentation.
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The Ugi four-component condensation reaction repre-
sents a powerful method to quickly build in one-pot N-
acyl amino acid amides.1 Our lab has been interested in
applying this methodology to the synthesis of natural
products containing the pyroglutamic acid moiety, using
g-ketoacids. Salinosporamide A,2 lactacystin,3 and oxazo-
lomycin A4 incorporate this functional group and each
shows promising anticancer activity. Many convertible
isonitriles (isocyanides), which allow for mild hydrolysis
of the C-terminal amide of the Ugi adduct, are known.5

Unfortunately, it was not possible to hydrolyze sterically
hindered pyroglutamic acid amides in Ugi adducts
incorporating known isonitriles. We introduced a novel
convertible isonitrile, 1-isocyano-2-(2,2-dimethoxyeth-
yl)benzene (1).6 This so-called indole–isonitrile (1) is eas-
ily cleaved even in bulky substrates via an N-acylindole
intermediate (Scheme 1).

A key focus for our group has been to develop the Ugi
four-center, three-component reaction (4C-3CR)7 into a

diastereoselective one by use of a chiral g-ketoacid.8 We
recently reported a diastereoselective Ugi 4C-3CR in the
synthesis of omuralide.6a Herein we describe the synthesis
of a unique bicyclic pyroglutamic acid derivative which is
fully substituted at the angular positions. The synthesis
features quick access to the bicyclic pyroglutamic acid
core using the Ugi 4C-3CR, and an unexpected stereo-
isomerization at the angular positions of the bicyclic
structure from basic hydrolysis of the C-terminal amide to
give only the syn-pyroglutamic acid.

Scheme 2 Synthesis of precursor 7 to the Ugi and Passerini multi-
component condensation reactions. Reagents and conditions: (a) Zn
(4 equiv), CuCl (0.4 equiv), benzyl bromoacetate (1 equiv), THF,
95%; (b) CSA (4.5 equiv), PhH, reflux, 24 h, 79% (7:1 b,g:a,b); (c)
OsO4 (3 mol%), NMO (3 equiv), DABCO (5 mol%), THF–H2O
(10:1), 93% (11:1 b,g:a,b); (d) IBX (1.5 equiv), EtOAc, 90 °C, 6 h,
88%; (e) Pd–C, H2, MeOH, 23 °C, 5 h, quant.
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Scheme 1 Utility of indole–isonitrile (1) through derivatization of N-acylindole
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The synthesis of the Ugi precursor 7 began with the
Reformatsky reaction of benzyl 2-bromoacetate and cy-
clohexanone (2) as shown in Scheme 2.9 Acid-mediated
dehydration of the resulting tertiary alcohol 3 led to regio-
selective formation of the desired endo-olefin isomer 4 in
a 7:1 ratio over the exo-isomer. The exo-isomer may have
been predicted to be the thermodynamically favored prod-
uct due to conjugation of the double bond with the carbo-
nyl group.10 However, due to greater torsional strain
present in the exo-isomer from eclipsing C=C and C–H
bonds, as well as 1,3-allylic strain, we observe a prefer-
ence for the endo-isomer.11 Osmium tetroxide catalyzed
syn-dihydroxylation of 4 gave the diol 5 cleanly. We an-
ticipated that lactone formation via loss of benzyl alcohol
could be a problem; however, this side product was not
detected. Oxidation of 5 using IBX12 proceeded well and
it was at this stage that the minor regioisomer could be re-
moved, thanks to the relatively high polarity of the 1,2-di-
carbonyl compound. Simple catalytic hydrogenation of
benzyl ester 613 furnished the desired g-ketoacid 714 to be
exploited in the Ugi reaction.

Scheme 3 Stereoselectivity in the Ugi Reaction of g-ketoacid 7 with
indole–isonitrile 1

As shown in Scheme 3, the Ugi reaction was used with
g-ketoacid 7,15 indole–isonitrile 1 and PMB-NH2.

16 The
yield for the reaction was good; however, the diastereo-
meric ratio was only 3:2 and the two diastereomers of 8
were not easily separated by column chromatography. X-
ray crystallography of the less polar 8a17 (8a: Rf = 0.17,
8b: Rf = 0.12, SiO2, hexane–EtOAc, 1:2) showed that it
was the anti-Ugi adduct, as seen in Figure 2.18

With the Ugi product 8 in hand, we next subjected the in-
dole precursor to acidic conditions, which induced the cy-
clization–dehydration sequence to give N-acylindole 9ab
(9a:19 Rf = 0.35, 9b: Rf = 0.29, SiO2, hexane–EtOAc, 1:1)
(Scheme 4). Quantitative conversion was observed, but at
the expense of a significant amount of the syn-isomer 8b.
Two diastereomers of the propellane N,O-acetal 9cd
(9c:20 Rf = 0.24, 9d:21 Rf = 0.12, SiO2, hexane–EtOAc,
1:1) resulting from trapping by the tertiary alcohol of the
transient iminium species following dehydration were

isolated. 1D NOESY studies revealed a strong NOE effect
between the N,O-acetal hydrogen (9c: 5.60 ppm, 9d: 5.85
ppm) and the a-hydrogen (2.65 ppm) of the lactam of 9c
and the cyclohexyl hydrogen (2.04 ppm) of 9d, thus estab-
lishing the relative stereochemistry of each. It was ob-
served that the N,O-acetal was surprisingly stable to both
acidic and basic conditions, as we were not able to convert
it to the N-acylindole.

Scheme 4 Attempted N-acylindole formation from 8 with acid

Although the separation of 8a and 8b was difficult, we
were able to isolate small amounts of the enriched sam-
ples, which were treated with the same acidic conditions
as above. It was found that 8a gave only anti-N-acylindole
9a, while 8b gave a 1:2 ratio of syn-N-acylindole 9b to
N,O-acetal (9c + 9d). This result was to be expected since
the anti-Ugi adduct 8a cannot give N,O-acetal and the
more polar 8b gave a majority of N,O-acetal.

Treatment of the 5:1 anti–syn mixture of 9ab with excess
Et3N in THF–H2O (3:1) at 70 °C gave the pyroglutamic
acid 1022 in quantitative yield and 56% over three steps
from 7 (Scheme 5). Surprisingly, 10 was isolated as a sin-
gle diastereomer which was clearly discernable by 1H
NMR. In order to explain this convergence to a single
isomer under basic conditions, we proposed a Grob
fragmentation23 followed by a  transannular ketene–
ketone [2+2] cycloaddition to give the b-lactone,24 which
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Figure 1 ORTEP representation of the anti-Ugi product 8a
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was then hydrolyzed to 10. As can be seen in the ORTEP
diagram in Figure 2, there is a good antiperiplanar rela-
tionship between the cleaved C–C angular bond and the
indole C–N amide bond for anti-N-acylindole 9a, allow-
ing for the Grob fragmentation to generate the ketene in-
termediate.25 To our knowledge, this is the first example
of a Grob fragmentation proceeding through a ketene
intermediate.

Figure 2 ORTEP representation of N-acylindole 9a

As shown in Figure 3, X-ray analysis of the pyroglutamic
acid 10 unambiguously assigned it as the syn-isomer.26

Thus, hydrolysis of the anti–syn mixture 9 gives only the
syn-isomer of pyroglutamic acid 10. This observation
could be useful in an enantioselective synthesis if a reso-
lution, via diastereomeric salt formation with a chiral
amine, could be performed on the racemic syn-acid 10.
One issue that remains to be addressed is suppression of
N,O-acetal formation from the syn-Ugi product 8b. We
envision that protection of the tertiary alcohol in g-keto-
acid 7 would serve that purpose as well as act as a possible
vehicle for diastereoselectivity in the Ugi reaction.

To explore the stereoselectivity of the related Passerini
reaction, g-ketoacid 7 was reacted with indole–isonitrile 1
to yield 11 in 74% yield as a 5.5:1 anti–syn mixture
(Scheme 6). Treatment of 11 with CSA led to a 79% yield
of a 17:2:1 mixture of anti-N-acylindole 12:N,O-acetal
12a (vide infra)27:syn-N-acylindole. Based on the low rel-
ative yield of the N,O-acetal, we concluded that the syn-
isomer was the minor product in the Passerini reaction.

Subsequent hydrolysis with excess Et3N in THF–H2O
(3:1) at 70 °C gave the 2-hydroxyglutaric acid g-lactone
13 in 67% yield as a 3:1 mixture of diastereomers (major
isomer unknown). Because of this partial stereoisomeriza-
tion (dr = 17:1 to 3:1), we can conclude that at least some
of the hydrolysis product 13 results from a similar mech-
anism to that for the pyroglutamic acid 10. However, this
result for the lactone 12 is in contrast to that for the lactam
9 which gave only the syn-isomer upon hydrolysis. The
chemoselectivity of the hydrolysis should be noted, as the
amide was hydrolyzed in the presence of the lactone.

Scheme 6 Stereoselectivity in the Passerini reaction of g-ketoacid 7
with indole–isonitrile 1

We have shown that ready access to bicyclic pyroglutamic
acid derivatives via the Ugi reaction is available with
indole–isonitrile 1 and g-ketoacid 7. Also, the related
Passerini reaction with 7 allows construction of a 2-hy-
droxyglutaric acid g-lactone with moderate diastereo-
selectivity. Interestingly, a Grob fragmentation followed
by transannular ketene–ketone [2+2] reaction proceeded
upon hydrolysis of N-acylindole compound 9a. This is un-
usual given that typically the Grob fragmentation is ob-
served when the displaced group has strong leaving group
ability (such as a tosylate), and indole does not fit into that
category. The pyroglutamic acid structures generated by
this strategy have possible applications as polydentate
ligands in asymmetric organometallic reactions.

Scheme 5 Grob fragmentation followed by transannular ketene
[2+2] under basic conditions
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c = 10.4743 (6) Å, a = 90°, b = 90°, g = 90°, V = 3057.6 (3) 
Å3, Z = 8, rcalc = 1.387 Mg/m3, F(000) = 1360, l = 1.54178 
Å, T = 100 (2) K, m(MoKa) = 0.846 mm–1. Of the 12336 
measured reflections, 2763 were independent 
[R(int) = 0.0266]. The final refinement converged at 
R1 = 0.0472 for I > 2s(I), wR2 = 0.1227 for all data. CCDC 
634647 contains the supplementary crystallographic data of 
10.

(27) A single diastereomer of the N,O-acetal 12a (Figure 5), the 
relative stereochemistry of which was not determined, was 
formed.
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