Chem. Pharm. Bull. 35(5)1953—1968(1987)

Synthesis of 2-Phenylthiazolidine Derivatives as Cardiotonic Agents. I. 2-Phenylthiazolidine-3-thiocarboxamides

Hiroyuki Nate," Yasuo Sekine," Yasushi Honma," Hideo Nakai, *." Hiroshi Wada," Mikio Takeda," Hideo Yabana," and Taku Nagao^b

Organic Chemistry Research Laboratory^a and Biological Research Laboratory,^b Tanabe Seiyaku Co., Ltd., 2–2–50, Kawagishi, Toda-shi, Saitama 335, Japan

(Received October 9, 1986)

A series of novel 2-phenylthiazolidine-3-thiocarboxamides (II) was synthesized and tested for positive inotropic activity in the isolated guinea pig heart and in anesthetized dogs. Reaction of the benzaldehydes (VI, XI, XIV and XV) with cysteamine followed by treatment with isothiocyanates readily gave II. Structure-activity relationships were investigated by varying the structural parameters. *N*-Methyl-2-phenylthiazolidine-3-thiocarboxamides having an *ortho* substituent such as a Me or OMe group exhibited significant positive inotropic action, which was not blocked by propranolol. Among the various *ortho*-alkoxyphenyl derivatives synthesized, the 2-(2-(3-(4phenylpiperazino)propoxy)phenyl) derivative (I₆₇) was found to exhibit more potent and longerlasting activity than amrinone without any significant effect on heart rate or blood pressure.

Keywords—2-phenylthiazolidine-3-thiocarboxamide; positive inotropic activity; structureactivity relationship; cardiotonic agent

Cardiac glycosides and sympathomimetic agents have been used for the treatment of congestive heart failure (CHF) for many years. Although cardiac glycosides such as digitoxin and digoxin have been the principal agents used for CHF, their use is limited by arrhythmogenic liability and very narrow therapeutic index. The use of sympathomimetic agents such as dobutamine and dopamine is also limited because of their chronotropic liability and oral ineffectiveness.^{1,2)} Thus, the absence of safe, orally effective, positive inotropic agents for the treatment of CHF has stimulated the development of several new nonglycoside, nonsympathomimetic, cardiotonic agents such as amrinone, milrinone, sulmazole, and fenoximone.³⁾

In the course of our studies on new antiulcer agents, 2-phenylthiazolidine-3thiocarboxamides (I), conformationally restricted analogues⁴ of metiamide, have been synthesized. Unexpectedly, in the isolated guinea pig heart, these compounds were found to display positive inotropic activity which was not blocked by propranolol. In view of the structural novelty of this class of compounds as cardiotonic agents, we have synthesized a large number of derivatives by varying the structural parameters. In this paper, we report the synthesis and cardiotonic activity of a series of new 2-phenylthiazolidines represented by the general formula II and related compounds.

Chemistry

Our chemical approach was to examine the effects of varying three structural parameters on the activity of I; (1) the position and nature of substituents on the phenyl ring, (2) the effect of substituents on nitrogen, and (3) modification of the thiazolidine ring. These thiazolidine derivatives could be readily obtained from substituted benzaldehydes. The requisite benzaldehydes were synthesized by diverse routes depending on the nature of the substituents (Chart 2) or by known procedures.

No. 5

Reaction of the oxazoline $(III)^{5a}$ with alkylmagnesium halides according to Meyers and Mihelich^{5b} effected the conversion of the methoxy group of III to various alkyl groups, giving the 2-(2-alkylphenyl)oxazolines (IV). Quaternization of IV with methyl iodide followed by reduction with NaBH₄⁶ gave, after acidic hydrolysis, various 2-alkylbenzaldehydes (VI) listed in Table I.

TABLE I.	2-Substituted	Benzaldehydes	(VI,	XI,	XIV,	XVI)
----------	---------------	---------------	------	-----	------	------

Compd. No.	R	Yield (%)	¹ H-NMR (CDCl ₃) δ ppm
VIa	C ₂ H ₅	63 ^{a)}	1.25 (3H, t, J=7.5 Hz), 3.06 (2H, q, J=7.5 Hz), 10.27 (1H, s)
VIb	C ₃ H ₇	61 ^{a)}	0.98 (3H, t, J=7.0 Hz), 1.51–1.78 (2H, m), 10.28 (1H, s)
VIc	iso-C ₃ H ₇	61^{a}	b)
VId	C_4H_9	57 ^a)	0.93 (3H, t, $J = 7.0$ Hz), 1.20–1.75 (4H, m), 10.28 (1H, s)
VIe	$C_{6}H_{13}$	69 ^{a)}	0.88 (3H, t, J = 6.0 Hz), 1.10 - 1.70 (8H, m), 10.29 (1H, s)
VIf ^{c)}	$CH_2N(CH_3)_2$	64	2.24 (6H, s), 3.75 (2H, s), 10.44 (1H, s)
VIg	(CH ₂) ₃ OCH ₃	28 ^{a)}	1.76–2.11 (2H, m), 3.38 (3H, s), 10.25 (1H, s)
XI ^d)a	N(CH ₃)(CH ₂) ₂ OCH ₃	55 ^{e)}	<i>b</i>)
XIb	$N(CH_3)(CH_2)_2N(CH_3)_2$	21 ^{e)}	2.34 (6H, s), 3.04 (3H, s), 10.39 (1H, s)
XIc	N(CH ₃)(CH ₂) ₂ SCH ₃	57 ^{e)}	2.07 (3H, s), 2.91 (3H, s), 10.29 (1H, s)
XId	$N(C_{2}H_{5}),$	66^{f}	1.05 (6H, t, $J = 7$ Hz), 3.18 (4H, q, $J = 7$ Hz), 10.33 (1H, s)
XIe	$N(C_{3}H_{7})_{2}$	62^{f}	0.84 (6H, t, J=7Hz), 1.20–1.90 (4H, m), 10.37 (1H, s)
XIf	$N(C_4H_9)_2$	55 ^f)	0.70-1.05 (6H, m), 1.10-1.90 (8H, m), 10.35 (1H, s)
XIV ^g)a	$S(CH_2)_2N$	79 ^h)	1.62–2.00 (4H, m), 2.45–3.26 (8H, m), 10.47 (1H, s)
XIVb	$S(CH_2)_2N$	34 ^{<i>h</i>})	1.30—1.75 (6H, m), 2.33—3.23 (8H, m), 10.42 (1H, s)
XIVc	S(CH ₂) ₂ N_N-CH ₃	34 ^{<i>h</i>})	<i>b</i>)
XIVd	S(CH ₂) ₃ N	84 ^{<i>h</i>})	1.30-2.08 (8H, m), 2.31-2.98 (8H, m), 10.40 (1H, s)
XVI ⁱ⁾ a	$O(CH_2)_2OCH_3$	82	<i>b</i>)
XVIb	O(CH ₂) ₂ SCH ₃	93	2.19 (3H, s), 2.91 (2H, t, $J = 6.5$ Hz), 10.44 (1H, s)
XVIc	$O(CH_2)_2SC_6H_5$	84	3.32 (2H, t, <i>J</i> =6.5 Hz), 4.25 (2H, t, <i>J</i> =6.5 Hz), 10.32 (1H, s)

a) Overall yield from III. b) See Experimental. c) This compound was prepared by reduction of 2-(dimethylaminocarbonyl)benzoic acid with B_2H_6 and subsequent oxidation with $BaMnO_4$. d) 2-Dimethylamino and 2-acetaminobenzaldehyde were prepared by the reported procedures. See reference 9. e) Overall yield from VII^e f) Overall yield from X. g) Other known 2-alkylthiobenzaldehydes were prepared by the reported procedures. See reference 10. h) Overall yield from XII. i) Other known 2-alkoxybenzaldehydes were prepared by the reported procedures. See reference 11.

2-Aminobenzaldehydes (XI) were prepared from 2-aminobenzylalcohol (VII). Two successive reductive alkylations of VII gave IX, which could also be obtained by diborane reduction of the *N*-acyl anthranilates (X). Oxidation of IX with $BaMnO_4^{7}$ in refluxing CHCl₃ readily gave various 2-aminobenzaldehydes (XI) (Table I). 2-Alkylthiobenzaldehydes (XIV, Table I) were prepared by alkylation of 2-mercaptobenzyl alcohol (XII)⁸⁾ followed by $BaMnO_4$ oxidation. Alkylation of salicylaldehyde (XV) with alkyl halides gave various 2-alkoxybenzaldehydes (XVI), listed in Table I.

Reaction of substituted benzaldehydes (VI, XI, XIV, and XVI) with cysteamine at room temperature gave the 2-phenylthiazolidines (XVII). Without isolation, the products (XVII) were allowed to react with methyl isothiocyanate (MeNCS) to give the *N*-methyl-thiocarboxamides (I) (Table II). Since the 2-methoxyphenyl derivative (I_{37}) exhibited sig-

Ξ
es
Pi
E
ха
8
arl
ö
į
Ŧ
5
Ĕ.
рi
0
ia2
ťÞ
Ľ
ţ
ŭ
Ŋ
A.
ς.
Ξ
щ
BI
Γ_{Λ}

S → NHMe	Myocardial contractility	mp Recrystn. ^b) Calcd (Found) Anesthetized dog ^c) Isolated guinea	(°C) solvent $ Dose LVdP/dt_{max}$. Duration MED^{e_1} $Mg/kg LVdP/dt_{max}$. Duration MED^{e_1} MED^{e_1} MED^{e_1} μ_2 /heart i.v.	$\begin{array}{ccccccc} C_{11}H_{14}N_2S & & \\ I_{08}-169 & A & 55.45 & 5.92 & 11.76 & 1 & 7 & <10 & 3 \\ & & (55.52 & 5.92 & 11.74) & & \end{array}$	$\begin{array}{ccccc} C_{11}H_{13}CIN_2S_2 & & \\ 204-205 & \mathbf{B} & 48.43 & 4.80 & 10.27 & 1 & 9.5 & <10 & 10 \\ & (48.29 & 4.83 & 10.29) & & \\ \end{array}$	$\begin{array}{cccccc} C_{11}H_{13}CIN_2 S_2 & & \\ I28-I30 & C & 48.43 & 4.80 & 10.27 & 1 & 8.5 & 3 & 30 \\ & (48.42 & 4.85 & 10.15) & & \\ \end{array}$	$\begin{array}{ccccc} C_{11}H_{13}CIN_2S_2 & & \\ 141.5-144 & C & 48.43 & 4.80 & 10.27 & 1 & 12 & 6 & 30 \\ & (48.61 & 4.91 & 10.02) & & \\ \end{array}$	$\begin{array}{ccccc} C_{12}H_{16}N_2S_2 & & \\ & C & 57.10 & 6.39 & 11.10 & 1 & 40 & 10 & 3 \\ & (57.04 & 6.39 & 11.12) & & \end{array}$	$\begin{array}{cccccc} C_{12}H_{16}N_2S_2 \\ 131-133 & A & 57.10 & 6.39 & 11.10 & 1 & 4.5 & 3 & 30 \\ (57.21 & 6.46 & 11.15) & & & & \end{array}$	$\begin{array}{cccccc} C_{12}H_{16}N_2S_2 & & \\ 134-135 & A & 57.10 & 6.39 & 11.10 & 1 & 6.8 & 3 & 30 \\ & (57.07 & 6.40 & 11.11) & & \\ \end{array}$	$\begin{array}{cccccc} C_{13}H_{18}N_2S_2 & & \\ I57-I59 & A & 58.6I & 6.8I & 10.52 & I & 23 & I5 & I0 \\ & (58.49 & 6.89 & 10.56) & & \\ \end{array}$
łMe		Analysis (%) Calcd (Found)	C H C	C ₁₁ H ₁₄ N ₂ S 55.45 5.92 11.76 (55.52 5.92 11.74)	C ₁₁ H ₁₃ ClN ₂ S ₂ 48.43 4.80 10.27 (48.29 4.83 10.29)	C ₁₁ H ₁₃ CIN ₂ S ₂ 48.43 4.80 10.27 (48.42 4.85 10.15)	C ₁₁ H ₁₃ ClN ₂ S ₂ 48.43 4.80 10.27 (48.61 4.91 10.02)	C ₁₂ H ₁₆ N ₂ S ₂ 57.10 6.39 11.10 (57.04 6.39 11.12)	C ₁₂ H ₁₆ N ₂ S ₂ 57.10 6.39 11.10 (57.21 6.46 11.15)	$\begin{array}{c} C_{12}H_{16}N_2S_2\\ 57.10 6.39 11.10\\ (57.07 6.40 11.11) \end{array}$	C ₁₃ H ₁₈ N ₂ S ₂ 58.61 6.81 10.52 (58.49 6.89 10.56)
S NII		Recrystn. ^{h)}	solvent —	¥	æ	U	U	U	¥	A	V
		du	Û	168—169	204205	128—130	141.5—144	183—184	131-133	134—135	157—159
		Salt ^{a)}	3		-				and the second se		
		Yield	(%)	16	06	57	57	58	60	52	68
		~	:	H	2-CI	3-CI	4-Cl	2-CH ₃	3-CH ₃	4-CH ₃	2-C ₂ H ₅
		Compd.	No.	-	2	3	4	ŝ	6	٢	œ

()	100	10	100	100	10	C)	б	100	C/	ñ	10	30
19	Ξ	20	39	Н	20	0	10	0	0	10	8.5	10
20	14	34	48	9	33	0	33	0	0	46	20	16
1	-	-	1	Г	Η	-	-	_	_	0.3	0.3	0.3
$\begin{array}{c} C_{14}H_{20}N_2S_2\\ 59.96 7.19 9.99\\ (60.26 7.29 9.96) \end{array}$	$\begin{array}{c} C_{14}H_{20}N_2S_2\\ 59.96 7.19 9.99\\ (59.69 7.13 9.89)\end{array}$	C ₁₅ H ₂₂ N ₂ S ₂ 61.18 7.53 9.51 (61.38 7.59 9.50)	$\begin{array}{c} C_{17}H_{26}N_{2}S_{2}\\ 63.33& 8.09& 8.69\\ (63.06& 8.19& 8.87)\\ \hline \end{array}$	$C_{14}H_{21}N_{3}S_{2}$ ·HCl 50.66 6.68 12.66 (50.48 6.71 12.56)	C ₁₅ H ₂₂ N ₂ OS ₂ 58.03 7.14 9.02 (58.24 7.20 8.98)	$\begin{array}{ccc} C_{12}H_{14}N_2O_2S_2\\ 51.04 & 5.00 & 9.92\\ (50.94 & 4.98 & 9.80)\end{array}$	C ₁₃ H ₁₆ N ₂ O ₂ S ₂ 52.68 5.44 9.45 (52.94 5.58 9.20	C ₁₁ H ₁₅ N ₅ S ₂ 52.14 5.97 16.58 (52.15 6.14 16.29)	C ₁₃ H ₁₇ N ₃ OS ₂ 52.85 5.80 14.22 (52.89 5.82 14.18)	$\begin{array}{c} C_{13}H_{19}N_{3}S_{2}\cdot H_{2}SO_{4}\\ 41.13 5.58 11.07\\ (41.26 5.70 10.95)\\ \end{array}$	$\begin{array}{cccc} C_{15}H_{23}V_{3}S_2^{-1}H_2^{-2}SQ_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^{-1}O_4^{-1}/2H_2^$	С, П, 1, 2, 1, 2, 2, 1,
¥	¥	A	¥	D	Y	ы	C	A	Y	ц	Ľ.	(III,
156—159	184—186	137—139	106—108	193—197 (dec.)	116—119	202203	172—175	159—161	191—193	141—142.5 (dec.)	114—118 (dec.)	143—146 (dec.)
				HCI				1		H_2SO_4	H_2SO_4	H ₂ SO ₄
88	58	81	73	88	71	51	78	27	61	70	84	32
2-C ₃ H ₇	2 -iso- C_3H_7	2-C ₄ H ₉	2-C ₆ H ₁₃	2-CH ₂ N(CH ₃) ₂	2-(CH ₂) ₃ OCH ₃	2-CO ₂ H	2-CO ₂ CH ₃	2-NH ₂ ⁹⁾	2-NHCOCH ₃	2-N(CH ₃) ₂	2-N(C ₂ H ₅) ₂	$2-N(C_3H_7)_2$
6	10	11	12	13	14	15	16	17	18	19	20	21

(continued)
П.
TABLE

Isolated guinea pig heart^{d)} MED^{e)} μg/heart 10 00 001 00 30 ς 5 5 Myocardial contractility LVdP/dtmax Duration 17.5 11.5 8.5 min 9 10 25 Ś 22 27 Anesthetized dog^{c)} $^{\circ}V$ 213 60 2 43 30 \mathbf{c} 16 26 Ξ 19 Dose mg/kg i.v. $\begin{array}{ccccc} (47.47 & 6.56 & 10.95) \\ C_{15}H_{23}N_3S_2\cdot HCI\cdot H_2O \\ 47.41 & 6.89 & 11.06 \end{array}$ $\begin{array}{ccc} C_{16}H_{26}N_4S_2 \cdot 2HBr\\ 38.41 & 5.64 & 11.20\\ (38.63 & 5.72 & 11.40) \end{array}$ $\begin{array}{c} C_{12}H_{16}N_2S_3\\ 50.69 \quad 5.67 \quad 9.85\\ (50.65 \quad 5.70 \quad 9.68) \end{array}$ $\begin{array}{c} C_{12}H_{16}N_2O_2S_3\\ 45.55 & 5.10 & 8.85\\ (45.67 & 5.19 & 8.84) \end{array}$ 9.03) 9.32) 8.98) 9.39 8.32) $\begin{array}{c} C_{15}H_{23}N_{3}S_{3}\cdot HCl \\ 47.66 \quad 6.40 \quad 11.12 \end{array}$ (47.50 6.82 10.80) 8.96 10.40 10.19) $\begin{array}{cc} C_{19}H_{31}\,N_3S_2\cdot H_2SO_4\\ 49.22 & 7.17 & 9.06 \end{array}$ C₁₅H₂₂N₂S₃ 55.17 6.79 8.58 $C_{17}H_{25}N_3S_2\cdot HCl$ C₁₃H₁₈N₂S₃ 52.31 6.08 9.3 Z Calcd (Found) C₁₄H₂₀N₂S₃ 53.81 6.45 8.9 Analysis (%) (52.35 6.11 (54.00 6.55 7.29 50.68 6.70 50.53 6.49 (55.06 6.81 Η (49.41 C Recrystn.h) solvent Щ C Ċ Ω ĹĽ Ц ſĽ, < < < 237-238.5 161.5-163.5 05-110 143--145 22-128 80-182 143.5-145 193-195 162-164 (dec.) (dec.) (dec.) (dec.) du C H_2SO_4 Salt^{a)} 2HBr HCI HCI HCI 1 Yield (%) 55 43 76 81 59 81 62 75 77 81 2-N(CH₂)₂N(CH₃)₂ 2-N(CH₂)₂OCH₃ 2-N(CH2)2SCH3 $2-S(CH_2)_2$ 2-N(C₄H₉)₂ 2-SO₂CH₃ 2-SC₂H₅ 2-SC₃H₇ 2-SC₄H₉ 2-SCH₃ ĊН₃ ĊН₃ ĊH3 ۲ Compd. No. ដ 24 25 28 29 33 26 27 30 31

Ş		ç		001 701	:	$C_{18}H_{27}N_3S_3 \cdot HCl$	-	74	¢,	001
32	$2-3(CH_2)_2N$	9C	НСІ	180—189 (dec.)	E	(51.66 6.86 9.84)		64	04	100
	(C ₁₇ H ₂₅ N ₃ OS ₃ ·HCl				
33	$2-S(CH_2)_2 N$ O	84	HCI	204-206	Ι	48.61 6.24 10.00	-	37	10	ę
)			(dec.)		(48.70 6.48 9.69) CHN.S.· 2HCI-1/2 H.O				
¥	$2-S(CH_2)_2N$ N-CH ₃	79	2HCI	209—211	Ъ	45.18 6.53 11.71	_	12	17.5	<i>()</i>
				(dec.)		(45.37 6.60 11.44)				
	(C ₁₉ H ₂₉ N ₃ S ₃ ·HCl				
35	$2-S(CH_2)_3N$	69	HCI	216218	ĹL.	52.81 7.00 9.72	-	15	37	(<i>y</i>
]			(dec.)		(52.67 7.04 9.59)				
						$C_{11}H_{14}N_2OS_2$				
36	2-OH	37	11 CONTRACTOR OF THE OWNER	177-178	A	51.94 5.55 11.01	_	2	I	J)
						(51.87 5.50 11.18)				
						C ₁₂ H ₁₆ N ₂ OS ₂				
37	2-OCH ₃	80		153-154	A	53.70 6.01 10.44	-	30	10	3
						$(53.69 ext{ } 6.03 ext{ } 10.41)$				
						$C_{12}H_{16}N_2OS_2$				
38	3-OCH ₃	86		8182	D	53.70 6.01 10.44		LZ		5
						(53.55 5.99 10.28)				
						$C_{12}H_{16}N_2OS_2$				
39	4-OCH ₃	90		104-105	D	53.70 6.01 10.44		L		<i>f</i>)
						(53.75 6.14 10.41)				
						$C_{13}H_{18}N_2O_2S_2$				
4	2,4-(OCH ₃) ₂	54	I	119.5121	ſ	52.32 6.08 9.39	_	4.5	<10	e
						(52.23 6.13 9.34)				
						$C_{13}H_{18}N_2O_2S_2$				
41	2,5-(OCH ₃) ₂	84	MMM AV	178—180	×	52.32 6.08 9.39		ΕZ		S
						(52.21 6.04 9.35)				
						$C_{13}H_{18}N_2OS_2$				
42	2-OC ₂ H ₅	78	1	169.5-171.5	×	55.29 6.42 9.92	Ι	28	10	10
						(55.21 6.38 9.76)				
						$C_{14}H_{20}N_2OS_2$				
43	$2-OC_3H_7$	89		149—152	A	56.72 6.80 9.45		21	20	30
						(56.68 6.83 9.39)				
					1	$C_{15}H_{22}N_2OS_2$				
4	$2-0C_4H_9$	60	-	138—140	Г	58.03 7.14 9.02		39	30	30
						(58.09 7.21 9.01)				

(continued)	
II.	
TABLE	

Isolated guinea pig heart^{d)} MED^{e)} $\mu g/heart$ 100 100 100 001 30 S 5 5 S ς S Myocardial contractility Duration 26.5 min 6 0 2 3 12 Ś ∞ 4 Anesthetized dog^{c)} LVdP/dt_{max} 32.5 Ł % V9 29 0 ∞ 2 15 25 -5 mg/kg Dose i.v. $\begin{array}{c} C_{14}^{*}H_{20}^{*}N_{2}O_{2}S_{2}^{*}\\ 53.89 & 6.45 & 9.00\\ (53.79 & 6.44 & 9.02)\\ C_{14}H_{20}N_{2}OS_{3}\\ 51.19 & 6.14 & 8.53\\ 51.19 & 6.14 & 8.53\\ 51.49 & 6.20S_{3}\\ 51.49 & 5.0S_{3}\\ 51.49 & 5.0S_{3}\\ 51.8.73 & 5.75 & 7.15 \\ (58.73 & 5.75 & 7.15) \end{array}$ C₂₃H₃₈N₂OS₂ 67.35 9.06 6.63 (67.08 9.10 6.78) C₁₇H₁₈N₂OS₂ 61.79 5.49 8.48 (61.82 5.47 8.45) $\begin{array}{c} C_{18}H_{20}N_2OS_2 \\ 62.76 & 5.85 & 8.13 \\ (62.59 & 5.95 & 8.10) \end{array}$ $\begin{array}{c} C_{13}H_{16}N_2O_3S_2\\ 49.98 \quad 5.16 \quad 8.97\\ (49.96 \quad 5.21 \quad 8.88) \end{array}$ $\begin{array}{c} C_{16}H_{2\star}N_2OS_2\\ 59.22 \quad 7.45 \quad 8.63\\ (59.32 \quad 7.51 \quad 8.60)\\ C_{17}H_{26}N_2OS_2 \end{array}$ $\begin{array}{c} C_{14}H_{18}N_2O_3S_2\\ 51.52 & 5.55 & 8.58\\ (51.47 & 5.62 & 8.44) \end{array}$ 8.28 8.20) 8.44) 11.61 11.66) C₁₅H₂₃N₃OS₂·HCl Z Calcd (Found) Analysis (%) 6.68 6.68 7.74 7.51 Η 60.30 (60.01 49.78 (49.77 υ Recrystn.b) solvent Σ C C C C Ξ \mathbf{X} í۲. ¥ < < 39.5-140.5 209—212 (dec.) 117-119 115--118 09-112 160-162 184--185 142---144 153-155 77.5-181 du () Salt^{a)} HCI Yield (%) 80 86 52 60 62 37 80 68 83 61 75 2-O(CH₂)₂N(CH₃)₂ 2-O(CH₂)₂SC₆H₅ 2-OCH2CO2CH3 2-O(CH₂)₂OCH₃ 2-O(CH₂)₂SCH₃ 2-OCH2CO2H¹) 2-OCH2C6H5 2-OC122H25 2-OC₆H₅ 2-OC₅H₁₁ 2-OC₆H₁₃ ¥ Compd. No. \$ \$ 4 **8** 6 20 51 23 53 2 55

с —	£	(<i>1</i>	12.5 100	5 1)	(<u>_</u>	£] h)	£	IS 5	ری _ 1	60 10	25 10
-	S	20	9	-25	- 23	- 12	2	-4	19	7	68	25
-	-	0.3	_		_	_	-	_	-	-	0.3	0.3
52.36 7.24 10.77 (52.12 7.26 10.72 (52.12 N.26 10.72)	$\begin{array}{c} -17135(13)(32) - 2172(17)(21)(21)(21)(21)(21)(21)(21)(21)(21)(21$	C ₁₈ H ₂₇ N ₃ OS ₂ HCl 53.78 7.02 10.45 53.65 7.02 10.49)	C ₁₇ H ₂₅ N ₃ O ₂ S ₂ ·HCl 50.34 6.49 10.40 (50.52 6.48 10.42)	C ₁₆ H ₃₅ N ₃ OS ₂ ·HCl 51.11 6.97 11.18 (50.96 6.96 11.09)	C ₁₈ H ₂₉ N ₃ O ₅ ·HCl 53.51 7.48 10.40 53.57 7.53 10.35) 7 1 N.5 10.35)	C20H33N3O52 HCI 55.60 7.93 9.73 (55.73 7.94 9.76)	C ₁₈ H ₂₇ N ₃ OS ₂ ·2HCI·H ₂ O 47.36 6.85 9.21 (47.64 7.04 9.27)	C ₁₉ H ₂₉ N ₃ OS ₂ ·2HCl·H ₂ O 48.50 7.07 8.93 (48.48 7.37 8.91)	$\begin{array}{cc} C_{18}H_{27}N_{3}O_{2}S_{2}\cdot2HCl\\ 47.57 & 6.43 & 9.25\\ (47.29 & 6.51 & 9.08) \end{array}$	C ₁₉ H ₃₀ N ₄ OS ₂ , 2HCl·H ₂ O 47.00 7.06 11.54 (47.18 6.95 11.57)	C ₂₄ H ₃₂ N ₄ OS ₂ ·C ₄ H ₄ O ₄ 58.72 6.34 9.78 (58.28 6.31 9.68)	
ц	D	щ	D	ĹĹ,	Ц	Ц	D	D	D	D	D	
210—211 (dec.)	140—145	209—211 (dec.)	207208	213—215 (dec.)	195—196 (dec.)	192—194 (dec.)	122—125	129—133	160165	195—198 (dec.)	125—128	
HCI	2HCI	HCI	HCI	HCI	HCI	HCI	2HCI	2HCI	2HCI	2HCI	Fum	
61	81	41	16	73	54	87	11	55	72	86	63	
$2 - O(CH_2)_2 N(C_2H_5)_2$	$2-O(CH_2)_2N$	2-0(CH ₂) ₂ N	$2-O(CH_2)_2NO$	2-O(CH ₂) ₃ N(CH ₃) ₂	2-0(CH ₂) ₃ N(C ₂ H ₅) ₂	2-0(CH ₂) ₃ N(C ₃ H ₇) ₂	2-O(CH ₂) ₃ N	2-0(CH ₂) ₃ N	2-0(CH ₂) ₃ NO	2-0(CH ₂) ₃ N_N-CH ₃	$2-O(CH_2)_3N N N-C_6H_5$	Amrinone
56	57	58	59	60	61	62	63	64	65	99	67	

iso-Pr₂O, J = EtOH-iso-Pr₂O, K = AcOEt, L = iso-PrOH, M = THF. c) For methodology, see reference 14. d) For methodology, see reference 2a. e) Minimum effective dose (minimum dose required to cause an increase in contractile force of more than 0.3 g). f) Ineffective at 100 μ g/heart. g) Prepared from the N-acetate (1₁₈) by alkaline hydrolysis. h) Caused a decrease in contractile force. i) This compound was prepared by alkaline hydrolysis of the ester (1₅₀). NT = not tested.

	ity	Isolated guinea	pig heart ^{c)} MED ⁴⁾ μg/heart	G	<i>C</i>	G	J
	l contractil	(4)	Duration min			-	_
	Myocardia	esthetized dog	LVd <i>P/</i> dt _{max} $\varDelta\%^{0}$	- . .	L —	2.3	3.5
		An	Dose mg/kg i.v.	_	-	-	_
] NRıR2		Analysis (%) Calcd (Found)	C H C	C ₁₁ H ₁₄ N ₂ OS ₂ 51.94 5.55 11.01 (51.96 5.57 10.96)	C ₁₃ H ₁₈ N ₂ OS ₂ 55.29 6.42 9.92 (55.49 6.47 9.91)	C ₁₅ H ₂₂ N ₂ OS ₂ 58.03 7.14 9.02 (58.14 7.20 9.21)	$\begin{array}{c} C_{17}H_{18}N_2OS_2 \\ 61.79 5.49 8.48 \\ (61.63 5.52 8.46) \end{array}$
		Recrystn.")	solvent	z	D	Н	C
		du) (C)	182.5—184.5	131.5—134	86—91	142—144
		Salt					
		Yield	(%)	52")	64	55	64
		ž	7	н	C ₂ H ₅	iso-C ₄ H ₉	C ₆ H ₅
		ä	Ī	н	Н	Н	н
		Compd.	No.	_	7	e	4

ſ,	S	C,	S	C	S	S	e N-acetate
							ysis of th
	0	0	-	0	0	l	ine hydrol
-6	0	0	1.4	0	0	- 2	ed by alkal
1	-	_	-	-	_	-	e) Prepare
C _{1.8} H _{2.9} N ₃ OS ₂ ·HCl 49.78 6.68 11.61 (49.50 6.83 11.56)	C ₁₅ H ₂₀ N ₂ O ₃ S ₂ 52.92 5.92 8.23 (52.81 5.75 8.11)	C ₁₃ H ₁₆ N ₂ O ₃ S ₂ 49.98 5.16 8.97 (50.15 5.18 8.95)	C ₁₄ H ₁₈ N ₂ O ₃ S ₂ 51.51 5.56 8.58 (51.44 5.54 8.58)	C ₁₃ H ₁₆ N ₂ O ₂ S ₂ 52.68 5.44 9.45 (52.48 5.51 9.32)	C ₁₈ H ₁₈ N ₂ O ₂ S ₂ 60.31 5.06 7.81 (60.25 4.92 7.74)	C ₁₃ H ₁₈ N ₂ OS ₂ 5529 6.42 9.92 (55.49 6.55 9.81)	c-e in Table II, respectively.
¥	Ţ	0	Z	Х	C	C	d) See footnotes
182—185 (dec.)	79—83	145—146 (dec.)	139—141.5	143—146	142—144.5	170173	in Table II. b-
HCI	1	I	l		l,	. 1	ootnote b
82	89	809)	89	28	78	7	ee also fc
(CH ₂) ₂ N(CH ₃) ₂	CH ₂ CO ₂ C ₂ H ₅	CH2CO2H	CO ₂ C ₂ H ₅	coch,	COC ₆ H5	CH ₃	O = AcOEt-benzene. S
Н	Н	Н	Н	Н	Н	CH3	= MeOH, 4
Ś	ę	r	8	6	10	11	a) N=

nificant cardiotonic activity (see below), the effect of varying the substituents on the thiocarboxamide group was examined with this compound. Reaction of XVII (R = 2-OMe) with various isothiocyanates or dimethylthiocarbamoyl chloride gave the *N*-substituted thiocarboxamides (XVIII) listed in Table III.

With regard to modification of the thiazolidine ring, reaction of 2-methoxybenzaldehyde with 2-aminomethyl-2-propanethiol¹²⁾ and 3-amino-1-propanethiol followed by treatment with MeNCS gave the *gem*-dimethyl derivative (XIXa) and the 1,3-thiazine derivative (XIXb), respectively (Chart 3). The oxazolidine analogue (XIXc) was prepared by reaction of 2-methoxybenzaldehyde with ethanolamine¹³⁾ followed by treatment with MeNCS. The benzothiazoline derivative (XX) was prepared in a similar manner by the use of 2-aminothiophenol. Physical properties of XIX and XX are summarized in Table IV.

Pharmacology and Structure–Activity Relationships

The positive inotropic activities of the novel 2-phenylthiazolidine derivatives were determined in the isolated guinea pig heart by measuring the increase in cardiac contractile force^{2a)} and also in anesthetized dogs by measuring percent increase in maximum dP/dt of left ventricular pressure¹⁴⁾ after i.v. administration by the method reported previously. The results are listed in Tables II—IV together with comparative data for amrinone.

Effects of the substituents on the benzene ring of N-methyl-2-phenylthiazolidine-3thiocarboxamides (I) were examined first (Table II). The presence of substituents such as Me (I_5) and OMe (I_{37}) at the ortho position to the thiazolidine group conferred potent positive inotropic activity, which was not blocked by propranolol. Substitution at any other position was ineffective, as exemplified by the corresponding *meta* and *para* isomers ($I_{6,7}$ and $I_{38,39}$). The 2-dimethylamino (I_{19}) , 2-methoxycarbonyl (I_{16}) , and 2-methylthio (I_{26}) derivatives also exhibited potent activity. On the other hand, introduction of hydrophilic substituents such as OH (I_{36}) , NH₂ (I_{17}) , NHAc (I_{18}) , and CO₂H (I_{15}) at the ortho position resulted in disappearance of the activity. In a series of *ortho*-alkoxyphenyl derivatives (I_{37}, I_{42-47}) , the duration of action in anesthetized dogs tends to increase with increasing length of the alkylene chain, the butoxy derivative (I_{44}) exhibiting the most prolonged activity. However, lengthening of the alkylene chain in this series caused a major decrease in in vitro activity. Similar results were generally observed in the 2-alkyl and 2-alkylthio series. The activity of 2dialkylaminophenyl derivatives decreased with increasing bulkiness of the N-alkyl group. Thus, a change from methyl to butyl $(I_{19}-I_{22})$ resulted in gradual decrease in both *in vitro* and in vivo activities. The positive inotropic activity of these 2-aminophenyl derivatives was invariably accompanied by significant elevation of blood pressure. This was also the case for the 2-((2-methylthio)ethylamino)phenyl derivative (I_{24}), one of the most potent compounds in this series. After examination of a number of ortho-alkoxy and -alkylthio derivatives having a hetero atom in the alkylene chain, the phenylpiperazinopropoxy derivative (I_{67}) was found to exhibit more potent and longer-lasting positive inotropic activity than amrinone with only small effects on both heart rate and blood pressure.

The effects of *N*-substituents on the thiocarboxamide group on the activity were examined in a series of 2-methoxyphenyl derivatives (XVIII), listed in Table III. Replacement of the methyl group of I_{37} by hydrogen, a larger alkyl group, or an acyl group all resulted in disappearance of the activity. The *N*-dimethyl derivative (XVIII₁₁) was also ineffective. The effect of modifying the thiazolidine moiety was also examined in a series of 2-methoxyphenyl derivatives (Table IV). Introduction of a geminal dimethyl group at C₅ of the thiazolidine ring (XIXa) and conversion of thiazolidine to the 1,3-thiazine (XIXb), oxazolidine (XIXc), or benzothiazoline (XX) all resulted in a marked fall in activity. Finally, conversion of the *N*-methylthiocarboxamide (I₃₇) to the corresponding carboxamide (XIXd) also conferred reduced activity.

		ity	Isolated guinea	pig heart ^{c)} MED ^{d)} μg/heart		100			e)		30		30			(<i>ə</i>		
		al contractili)g ^{b)}	Duration min		0										0		
		Myocardial c	Anesthetized do	$LVdP/dt_{max}$ A%		0		L N	-6.0		LZ		LΝ			0		
(XX)	XX			Dose mg/kg i.v.		I			_							1		
dizine Analogues (XIX and	S S S S S S S S S S S S S S S S S S S		Analysis (%) Calcd (Found)	C H C	$C_{14}H_{20}N_2OS_2$	56.72 6.80 9.45	(56.78 6.86 9.39)	C ₁₃ H ₁₈ N ₂ OS ₂	55.29 6.42 9.92 (55.41 6.49 9.95)	C ₁₂ H ₁₆ N ₂ O ₂ S	57.12 6.39 11.10	(57.10 6.38 11.03) C H N O S	57.12 6.39 11.10	(57.39 6.31 11.09)	C ₁₆ H ₁₆ N ₂ OS ₂	60.73 5.10 8.85	(66.77 5.04 8.78)	= not tested.
Modified Thiazo	de K→−R V-(CH ₂) _n NHMe XIX		Yield mp Recrystn. ⁴⁾ (%) (°C) solvent			С			V		۷		D			C		I, respectively. NT =
TABLE IV.						139—140			141		142—147		161—164			185—186	c—f in Table II	
						Yield (%)			68		l	<i>ct</i>		63		75		
			2	z		1		Ċ	7		-							<i>b—e</i>) S
			۵	4		CH,	3	;	Ξ		Н		Н					Table II.
			>	-		S		C	s		S		0					iote b in
			>	<		S		C	Ś		0		S					5 footn
			Compd.	No.		XIXa			XIXb		XIXc		PXIX			ХХ		a) Sec

Thus, examination of the positive inotropic activities of a large number of novel 2phenylthiazolidine-3-thiocarboxamides (II) and related compounds clarified the structureactivity relationship of this series and led to the discovery of the phenylpiperazino derivative (I_{67}) with potent and long-lasting activity. Further modification of this new lead as a cardiotonic agent is in progress and will be the subject of a forthcoming paper.

Experimental

All melting points are uncorrected. Infrared (IR) spectra were recorded on a Hitachi IR-215 spectrometer. Proton nuclear magnetic resonance (¹H-NMR) spectra were taken at 60 MHz on a JEOL PMX-60 spectrometer with tetramethylsilane (TMS) as an internal reference. The following abbreviations are used: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and br = broad. Mass spectra (MS) were measured with Hitachi RMU-6M instrument.

2-Isopropylbenzaldehyde (Vlc)—An ethereal solution of isopropylmagnesium bromide (prepared from isopropyl bromide (9.0 g) and Mg (1.96 g)) was added to a stirred solution of III^{5a} (5.0 g, 24.4 mmol) in tetrahydrofuran (THF) (20 ml) at room temperature. The mixture was stirred for 3.5 h, then aq. NH₄Cl solution was added dropwise under ice-cooling, and the aq. layer was extracted with Et₂O. The combined organic layer was washed with water, dried over Na₂SO₄, and evaporated to give IV (R = isopropyl, 5.23 g, 99%) as an oil. IR v_{max}^{reat} cm^{-1} : 1645 (C=N). ¹H-NMR (CDCl₃) δ : 1.23 (6H, d, J=7 Hz, CH(CH₃)₂), 1.37 (6H, s, 2×CH₃), 3.69 (1H, m, m, m) = 0.000 (1H, m) CH(CH₃)₂), 4.05 (2H, s, OCH₂-), 6.99-7.67 (4H, m, Ar-H). MS m/z: 217 (M⁺). This oil (1.0 g, 4.6 mmol) was heated with methyl iodide (2.25 ml) in nitromethane (2 ml) at 70 °C overnight. The cooled reaction mixture was diluted with Et₂O. The precipitate was collected, washed with Et₂O, and dried to give V (R = isopropyl, 1.54g, 96%), mp 153– $156 \,^{\circ}$ C. NaBH₄ (0.17 g, 4.5 mmol) was added portionwise to a solution of V (R = isopropyl, 1.5 g, 4.3 mmol) in EtOH (10 ml) at room temperature, and the mixture was stirred for 4 h. After removal of the solvent, the residual oil was heated with 5% aq. HCl (10 ml) at 65 °C for 20 min and extracted with Et₂O. The extracts were washed with water, dried, and concentrated. The residue was chromatographed on silica gel with benzene to give VIc (0.41 g, 64%; 61% overall yield from III) as an oil. ¹H-NMR (CDCl₃) δ : 1.31 (6H, d, J = 7 Hz, CH(CH₃)₂), 3.95 (1H, m, CH(CH₃)₂), 7.15-7.90 (4H, m, Ar-H), 10.43 (1H, s, CHO). MS m/z: 148 (M⁺). Compounds VIa, b, d, e, g were prepared in a similar manner and are listed in Table I.

2-(N-(2-Methoxyethyl)-N-methylamino)benzyl Alcohol (IX, R₁ = CH₂OCH₃, R₂ = CH₃)—A mixture of VII (2.0 g, 16.3 mmol) and 2-methoxyacetaldehyde (1.80 g, 24.5 mmol) in MeOH (30 ml) was stirred at room temperature overnight. The MeOH was evaporated off, and the resulting oil was dissolved in THF (10 ml). This solution was added dropwise to a mixture of NaBH₄ (1.0 g, 26.4 mmol) in AcOH (8 ml) under ice-cooling, and the mixture was stirred at room temperature for 5 h. The reaction mixture was made alkaline with aq. K₂CO₃ and extracted with AcOEt. The extracts were washed with water, dried, and evaporated. The residue was chromatographed on silica gel with AcOEt-benzene (1:4) to give VIII (R₁ = CH₂OCH₃, 2.27 g, 77%) as an oil. IR v_{max}^{neat} cm⁻¹: 3350 (OH), 1600. ¹H-NMR (CDCl₃) δ : 3.2—4.0 (5H, m, 2 × CH₂ and NH), 3.31 (3H, s, OCH₃), 4.54 (2H, s, CH₂O), 4.5—4.8 (1H, br, OH), 6.5—7.4 (4H, m, Ar-H). Treatment of this oil (2.2 g, 12.3 mmol) with 37% HCHO (3 ml) and NaBH₄ (1.0 g, 26.4 mmol) in the same manner as described above gave IX (R₁ = CH₂OCH₃, R₂ = CH₃, 2.0 g, 83.4%; 64.2% overall yield from VII) as an oil. IR v_{max}^{neat} cm⁻¹: 3400 (OH). ¹H-NMR (CDCl₃) δ : 2.69 (3H, s, N-CH₃), 3.29 (3H, s, OCH₃), 3.05—3.65 (4H, m, 2 × CH₂), 4.66 (2H, s, CH₂O), 5.20 (1H, br s, OH), 7.1—7.4 (4H, m, Ar-H). Compounds IXb, c were prepared in a similar manner.

N,*N*-Dibutylaminobenzyl Alcohol (IX: $\mathbf{R}_1 = \mathbf{C}_3 \mathbf{H}_7$, $\mathbf{R}_2 = \mathbf{C}_4 \mathbf{H}_9$)—BF₃-etherate (27 g) was added dropwise to a mixture of X ($\mathbf{R}_1 = \mathbf{C}_3 \mathbf{H}_7$, $\mathbf{R}_2 = \mathbf{C}_4 \mathbf{H}_9$, 12.4 g, 38.9 mmol) and NaBH₄ (9.0 g, 238 mmol) in THF (200 ml) with stirring. The mixture was refluxed overnight, then decomposed with water, and extracted with AcOEt. The extracts were washed with water, dried, and evaporated *in vacuo*. The residual oil was chromatographed on silica gel with AcOEt-benzene (1:6) to give IX ($\mathbf{R}_1 = \mathbf{C}_3 \mathbf{H}_7$, $\mathbf{R}_2 = \mathbf{C}_4 \mathbf{H}_9$, 6.29 g, 69%) as an oil. ¹H-NMR (CDCl₃) δ : 0.65—1.10 (6H, m, 2 × CH₂CH₃), 1.10—1.80 (8H, m, 2 × CH₂CH₂), 2.80—3.05 (4H, m, 2 × CH₂N), 4.80 (2H, s, CH₂O), 6.08 (1H, s, OH), 7.05—7.30 (4H, m, Ar-H).

2-(N-(2-Methoxyethyl)-N-methylamino)benzaldehyde (XIa) A mixture of IX ($R_1 = CH_2OCH_3$, $R_2 = CH_3$, 2.00 g, 10.3 mmol) and BaMnO₄ (5.23 g) in CHCl₃ (40 ml) was refluxed for 6 h with stirring. The inorganic material was removed by filtration, and the filtrate was concentrated *in vacuo*. The residue was chromatographed on silica gel with AcOEt-hexane (1:4) to give XIa (1.7 g, 85.5%; 55% overall yield from VII) as an oil. IR v_{max}^{neat} cm⁻¹: 1680 (CHO). ¹H-NMR (CDCl₃) δ : 2.94 (3H, s, NCH₃), 3.31 (3H, s, OCH₃), 3.31—3.80 (4H, m, 2×CH₂), 7.00—7.85 (4H, m, Ar-H), 10.31 (1H, s, CHO). Compounds XIb—f were prepared in a similar manner and are listed in Table I.

2-(2-(4-Methylpiperazino)ethylthio)benzaldehyde (XIVc) A mixture of 2-mercaptobenzyl alcohol (XII, 3.6g, 25.7 mmol), 1-chloroethyl-4-methylpiperazine dihydrochloride (6.0g, 25.7 mmol), and K_2CO_3 (10.5g, 3×25.7 mmol) in dimethyl formamide (DMF, 25 ml) was stirred overnight under argon, then poured into water. Extraction with AcOEt followed by evaporation of the solvent gave XIII ($R = CH_2CH_2N_N$ N-CH₃, 4.9g) as an oil, which was

oxidized with BaMnO₄ (15 g) in CH₂Cl₂ (150 ml) under reflux for 4 h. The inorganic material was removed by filtration; and the filtrate was concentrated *in vacuo*. The residue was chromatographed on silica gel with CHCl₃–MeOH (10:1) to give XIVc (2.3 g, 34.2% overall yield from XII) as an oil. IR v_{max}^{neat} cm⁻¹: 1680 (CHO). ¹H-NMR (CDCl₃) δ : 2.27 (3H, s, NCH₃), 2.47–2.77 (10H, m, 5×CH₂), 2.99–3.24 (2H, m, SCH₂), 7.17–7.92 (4H, m, Ar-H), 10.48 (1H, s, CHO). MS *m/z*: 264 (M⁺). Compounds XIVa, b, d were prepared in a similar manner and are listed in Table I.

2-(2-Methoxyethoxy)benzaldehyde (XVIa)—A mixture of XV (2.63 g, 21.6 mmol), 1-bromo-2-methoxyethane (4.00 g, 28.8 mmol), and K_2CO_3 (3.0 g, 21.7 mmol) in DMF (30 ml) was stirred for 16 h at room temperature, then heated at 50 °C for 16 h. The mixture was cooled, diluted with water, and extracted with AcOEt. The extracts were washed with water, dried, and evaporated. The residue was chromatographed on silica gel and eluted with AcOEt-hexane (1:9) to give 3.20 g of XVIa as an oil. IR ν_{max}^{max} cm⁻¹: 1680 (CHO). ¹H-NMR (CDCl₃) δ : 3.43 (3H, s, OCH₃), 3.70–3.90 (2H, m, CH₂-C), 4.10–4.30 (2H, m, C-CH₂), 6.80–7.90 (4H, m, Ar-H), 10.49 (1H, s, CHO). MS *m/z*: 180 (M⁺). Compounds XVIb, c were prepared in a similar manner (Table I).

Preparation of 2-Aryl-*N***-methylthiazolidine-3-thiocarboxamides (I)**— The following prodedure is representative. A solution of 2-methoxybenzaldehyde (10.0 g, 73.4 mmol) in EtOH (20 ml) was added to a stirred suspension of cysteamine hydrochloride (8.34 g, 73.4 mmol) and NaOH (3.00 g, 75 mmol) in EtOH (160 ml) under argon. The mixture was refluxed for 1 h, and a solution of methyl isothiocyanate (5.90 g, 80.7 mmol) in EtOH (20 ml) was added, then the whole was refluxed for 3 h. After removal of the solvent, the residue was chromatographed on silica gel with CHCl₃–EtOH (30:1) to give 14.6 g of 2-(2-methoxyphenyl)-*N*-methylthiazolidine-3-thiocarboxamide (1₃₇), mp 154—155 °C (from EtOH). IR v_{max}^{Nujol} cm⁻¹: 3365, 3280 (NH). ¹H-NMR (CDCl₃) δ : 2.99 (3H, d, J=4.5 Hz, NHCH₃), 2.90—3.25 (2H, m, SCH₂), 3.93 (3H, s, OCH₃), 4.09—4.80 (2H, m, NCH₂), 5.50 (1H, br, NH), 6.31 (1H, s, S–CH–N), 6.30—7.40 (4H, m, Ar-H). MS m/z: 268 (M⁺).

2-(2-Aminophenyl)-*N*-methylthiazolidine-3-thiocarboxamide (I_{17})—A mixture of I_{18} (0.95 g, 3.2 mmol) and 20% KOH (5 ml) in MeOH (30 ml) was refluxed for 30 h. The reaction mixture was evaporated *in vacuo* and diluted with water. The precipitate was collected and recrystallized from EtOH to give 0.22 g of I_{17} . mp 159—161 °C. IR v_{max}^{neat} cm⁻¹: 3445, 3360, 3330 (NH₂). ¹H-NMR (CDCl₃) δ : 3.00 (3H, d, J = 4.5 Hz, NHCH₃), 3.00—3.20 (2H, m, SCH₂), 3.8 (2H, br s, NH₂), 4.10—4.70 (2H, m, NCH₂), 5.55 (1H, br s, NH), 6.12 (1H, s, S-CH-N), 6.68—7.27 (4H, m, Ar-H). MS *m/z*: 253 (M⁺). Compound XVIII₁ was prepared from XVIII₉ in a similar manner.

2-(2-Carboxymethoxyphenyl)-*N***-methylthiazolidine-3-thiocarboxamide** (I_{51})—A mixture of the ester (I_{50} , 7.00 g, 21.5 mmol) and NaOH (0.945 g, 23.7 mmol) in 50% aq. MeOH (100 ml) was stirred at room temperature overnight. The mixture was acidified with 10% HCl and extracted with AcOEt. The extracts were washed with water, dried over Na₂SO₄, and evaporated. The residue was recrystallized from aq. MeOH to give 4.1 g of I_{51} , mp 184—185 °C. IR v_{max}^{Nujol} cm⁻¹: 3380 (NH), 1720 (COOH). ¹H-NMR (DMSO- d_6) δ : 2.86 (3H, d, J = 4 Hz, N–CH₃), 3.00—3.21 (2H, m, –SCH₂), 3.80–4.30 (2H, m, N–CH₂), 4.72 (2H, s, O–CH₂), 6.80–7.30 (5H, m, S–CH–N and Ar-H), 7.50 (1H, br s, NH). MS m/z: 312 (M⁺). Compound XVIII₇ was prepared from XVIII₆ in a similar manner.

2-(2-Methoxyphenyl)-*N*,*N*-dimethylthiazolidine-3-thiocarboxamide (XVIII₁₁) — A solution of dimethylthiocarbamoyl chloride (2.96 g, 24 mmol) in DMF (10 ml) was added to a solution of 2-(2-methoxyphenyl)thiazolidine (XVII, $R = 2-OCH_3$, 3.90 g, 20 mmol) and 4-dimethylaminopyridine (2.93 g, 24 mmol) in DMF (40 ml) under icecooling, and the mixture was stirred at room temprature for 20 h, then poured into water and extracted with AcOEt. The extracts were washed with 5% HCl, sat. NaHCO₃, and water, successively and dried over Na₂SO₄. After removal of the solvent, the residual oil was chromatographed on silica gel with benzene–AcOEt (100:1) to give 0.10 g of XVIII₁₁, mp 170–173 °C (from AcOEt–hexane). IR v_{Max}^{Nujel} cm⁻¹: 1600 (Ar). ¹H-NMR (CDCl₃) δ : 3.30 (6H, s, N(CH₃)₂), 2.93–3.75 (3H, m, S–CH₂, NCH–H), 3.88 (3H, s, OCH₃), 4.50–4.85 (1H, m, NCH–H), 6.59 (1H, s, S–CH–N), 6.76–7.35 (4H, m, Ar-H). MS m/z: 282 (M⁺).

2-(2-Methoxyphenyl)-*N***-methyloxazolidine-3-thiocarboxamide** (XIXc)—A solution of MeNCS (1.40 g, 18.4 mmol) was added to a solution of 2-(2-methoxyphenyl)oxazolidine¹³⁾ (3.00 g, 16.7 mmol) in EtOH (30 ml), and the mixture was refluxed for 4 h. The mixture was concentrated *in vacuo*, and the residue was dissolved in CHCl₃. The CHCl₃ solution was washed with water, dried, and evaporated. The crystalline residue was collected by filtration, washed with Et₂O, and recrystallized from EtOH to give 2.66 g of XIXc, mp 142—147 °C. IR v_{max}^{Wigl} cm⁻¹: 3400, 3250 (NH). ¹H-NMR (CDCl₃) δ : 3.00 (3H, d, *J*=4.5 Hz, NHCH₃), 3.92 (3H, s, OCH₃), 3.81—4.50 (4H, m, -OCH₂CH₂–N), 5.50 (1H, br, NH), 6.46 (1H, s, O-CH–N), 6.87—7.50 (4H, m, Ar-H). MS *m/z*: 252 (M⁺).

2-(2-Methoxyphenyl)-*N***-methylthiazolidine-3-carboxamide (XIXd)** A solution of methyl isocyanate (3.80 g, 66 mmol) in THF (10 ml) was added to a solution of 2-(2-methoxyphenyl)thiazolidine (XVII, $R = 2-OCH_3$, 10.7 g, 55 mmol) in THF. The mixture was refluxed for 4h and concentrated *in vacuo*, and the residue was dissolved in CHCl₃. The CHCl₃ solution was washed with water, dried, and evaporated. The crystalline residue was collected by filtration, washed with Et₂O, and recrystallized from EtOH-Et₂O to give 10.4g of XIXd, mp 161–164 °C. IR v_{max}^{Nujol} cm⁻¹: 3310 (NH), 1635 (CO). ¹H-NMR (CDCl₃) δ : 2.73 (3H, d, J=4.5 Hz, NHCH₃), 2.88–3.08 (2H, m, S-CH₂), 3.60–4.50 (3H, m, N-CH₂ and NH), 3.89 (3H, s, OCH₃), 6.16 (1H, s, S-CH-N), 6.78–7.41 (4H, m, Ar-H).

Acknowledgements The authers are grateful to Dr. S. Saito, Director of the Organic Chemistry Research

Laboratory, Dr. H. Nakajima, Director of the Biological Research Laboratory, Dr. T. Yamazaki, Professor of the Toyama Medical and Pharmaceutical University, and Dr. K. Masuda, Professor of the same university, for their interest and encouragement. Thanks are also due to the staff of the Analytical Division of this laboratory for measurement of spectra and elemental analyses.

References and Notes

- 1) Recently, denopamine (TA-064), a phenylethanolamine derivative, was found in our laboratory to be an orally active positive inotropic agent which did not cause a significant increase in heart rate. See ref. 2.
- a) T. Nagao, T. Ikeo, S. Murata, M. Sato, and H. Nakajima, Jpn. J. Pharmacol., 35, 415 (1984); b) T. Ikeo, T. Nagao, T. Suzuki, H. Yabana, and H. Nakajima, *ibid.*, 39, 191 (1985); c) M. Ikezaki, N. Umino, M. Gaino, K. Aoe, T. Iwakuma, and T. Oh-ishi, Yakugaku Zasshi, 106, 80 (1986).
- 3) J. A. Bristol and D. B. Evans, Med. Res. Rev., 3, 259 (1983) and references cited therein.
- 4) a) K. Prout, S. R. Critchley, C. R. Ganellin, and R. C. Mitchell, J. Chem. Soc., Perkin Trans. 2, 1977, 68; b) R. C. Mitchell, *ibid.*, 1980, 915.
- 5) a) A. I. Meyers, D. L. Temple, D. Haidukewych, and E. D. Mihelich, J. Org. Chem., 39, 2787 (1974); b) A. I. Meyers and E. D. Mihelich, Angew. Chem. Int. Ed. Engl., 15, 270 (1976).
- 6) I. C. Nordin, J. Heterocycl. Chem., 3, 531 (1966).
- 7) H. Firouzabadi and E. Ghaderi, Tetrahedron Lett., 1978, 839.
- 8) G. W. Stacy, F. W. Villaescusa, and T. E. Woliner, J. Org. Chem., 30, 4074 (1965).
- 9) a) G. B. Borlin, J. Appl. Chem., 12, 148 (1962); b) L. Syper, Tetrahedron Lett., 1966, 4493.
- 10) a) V. J. Traynelis and D. M. Borgnaes, J. Org. Chem., 37, 3824 (1972); b) B. Tornetta, F. Guerrera, and C. Mazzarino, Boll. Chim. Farm., 112, 822 (1973).
- a) F. Ulian and L. Vio, *Farmaco. Ed. Sci.*, 24, 518 (1969); b) L. Katz, L. S. Karger, W. Schroeder, and M. S. Cohen, *J. Org. Chem.*, 18, 1380 (1953); c) Hoffmann-La Roche Inc., U. S. Patent 2774766 (1956) [*Chem. Abstr.*, 51, 8139*i* (1957)]; d) Warner-Lambert Pharmaceutical Co., Brit. Patent 1057969 (1967) [*Chem. Abstr.*, 67, 21670s (1967)]; e) Pfizer Corp., Ger. Patent 2109941 (1971) [*Chem. Abstr.*, 76, 45918*r* (1972)]; f) E. R. Squibb and Sons Inc., U. S. Patent 4122255 (1978) [*Chem. Abstr.*, 90, 87480*m* (1979)].
- 12) F. I. Carroll, J. D. White, and M. E. Wall, J. Org. Chem., 28, 1240 (1963).
- 13) M. Meltsner, E. Waldman, and C. B. Kremer, J. Am. Chem. Soc., 62, 3494 (1940).
- 14) T. Ikeo and T. Nagao, Jpn. J. Pharmacol., 39, 179 (1985).