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A b s t r a c t  

The stereoselective synthesis of a-cinnamyl y-amino acids and the corresponding oligopeptides is described. 
Detailed 1D and 2D NMR studies in pyridine-ds .show that the (0tR)-cinnamyl y-amino acid tetrapeptide adopts a 
reverse turn structure, while the (otS)-cinnamyl y-amino acid tetrapeptide adopts a right-handed helical structure. 
© 1999 Elsevier Science Ltd. All rights reserved. 

The design and synthesis of unnatural oligopeptides that are able to form well-defined secondary 
structures has received significant attention in the past few years.l Recent investigations by Seebach, 2 
Gellman 3 and in our laboratory 4 have shown that 13-amino acid oligopeptides can adopt helix, sheet or 
reverse turn conformations in solution 2,4 or solid state, 3d as evidenced by NMR, CD, X-ray or modeling 
studies. Further studies by us s as well as by Seebach 6 have revealed that y-amino acid oligopeptides 
can also adopt helical conformations in solution. Gervay et al.7 have demonstrated helix formation in a 
8-peptide constructed from neuraminic acid. Oligomers of dihydroxy tetrahydrofuran amino acids also 
adopt a helical structure. 8 A notable contribution from Gellman reports helix formation by a foldamer in 
water. 9 In previous studies, we demonstrated that the folding patterns of our y-amino acid oligopeptides 
could be controlled by changing the stereochemistry of an or-methyl substituent to give helical or non- 
helical structures: In order to further investigate this phenomenon, we synthesized both (erR)- and (otS)- 
cinnamyl y-amino acid oligopeptides (Fig. 1). Although X-ray quality crystals could not be obtained, 
detailed NMR studies revealed the existence of reverse turn and helical conformations in solution for 
tetrapeptides 4 and 8 respectively, depending on the configuration at the ot position of each y-amino acid 
residue (Fig. 1). 

The (otR)-cinnamyl y-amino acid tetrapeptide 4 was synthesized via the convergent route shown in 
Scheme 1. The N-Boc protected monomer 9 was prepared as previously described by homologation of L- 
alanine and subsequent stereoselective alkylation. 10 The stereoselective synthesis of (otS)-cinnamylated 
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Figure 1. 

N-Boc protected y-amino acid units 16 and 17, however, was achieved by a different route as shown in 
Scheme 2. 
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Scheme 2. 

Pyrrolidinones 12 and 13 were synthesized from ~x-amino acids via N-Cbz protected cx,13-unsaturated 
y-amino esters, II or Meldrum's acid derivatives. 12 Cinnamylation of 12 and 13 in the presence 
of LiHMDS at -78°C gave 14 and 15 in good isolated yields and with high diastereoselectivities 
(anti:syn= 18:1 and 40:1, respectively). Hydrolysis of 14 and 15 under mild conditons t3 afforded 16 and 
17 without detectable epimerization at the newly generated stereocenters, as evidenced by I H NMR and 
X-ray crystal structure analysis. 

The synthesis of dipeptide 6 was challenging since lactamization of both the Boc-protected y-amino 
acid 16 and the Boc-deprotected y-amino ester derived from 17 occurred under several conditions of 
peptide coupling. Although lactamization of 16 could be minimized when EDC/DMAP was used, it was 
necessary to adopt a slightly longer route in the case of 17 by going through the pivalate ester 19. Thus, 
peptide coupling followed by deprotection and oxidation gave the dipeptide 6 albeit in moderate yield. 
The target tetrapeptide 8 was then obtained by a convergent synthesis. 



Table 1 
Key inter-residue NOEs for peptides 4 and 8 in pyridine-d5 at room temperature (1 mM) 
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Peptide Proton Residue Proton Residue NOE Proton Residue Proton Residue NOE 

Nil 2 Htx 1 strong Hct 3 H I , 2 strong 
NH 3 Ha 2 medium NH 4 HI3(pro S) 3 weak 
NH 3 H~(pro S) 2 strong NH 4 Ha 3 strong 
NH 2 Ha 1 strong Nil 4 Ha 3 strong 
NH 3 Ha 2 strong NH 4 Hy 3 strong 
NH 3 I-b/ 1 medium NH 4 H'/ 2 medium 

Figure 2. Computer molecular model of tetrapeptides 4 (left) and 8 (fight) from COSY and NOE constraints 19 

2D I H NMR experiments (COSY, TOCSY, ROESY) were performed on peptides 4 and 8 in pyridine- 
d5 at 1 mM since intra- rather than inter-molecular processes are favored at these concentrations. 3a 
Complete proton resonance assignments in each residue of the peptides were easily achieved by means 
of a combination of both TOCSY and COSY data. Sequence specific assignments for each peptide were 
obtained by analyzing short-range NOEs between Hot(i) and NH(i+I). 

The NOE data observed for peptide 4 (Table 1) suggest a reverse turn structure as shown in Fig. 2 (left). 
The large cinnamyl substituents are arranged towards the exterior of the turn while the amide proton of 
residue 4 is oriented towards the carbonyl group of residue 1. Deuterium exchange studies in pyridine-d5 
and 10% CD3OD (Fig. 3) show that the gradual disappearance of the NH-4 peak is slower than that of the 
NH-2 and NH-3 peaks, which supports the intramolecular H-bond conformation adopted by the peptide. 
This reverse turn bears resemblance to a natural peptide [3 II' turn in that the orientation of NH-3 and 
the ot substituents are above the plane of the turn.14 That such a flexible peptide can adopt a reverse turn 
is even more remarkable in light of the fact that classical 13-turns are favored by more conformationally 
constrained amino acids like proline.15 

The long-range NOE data in Table 1 indicate a right-handed 14-helical secondary structure (Fig. 2, 
right) for peptide 8, which is similar to the helical structures of ,g-amino acid oligopeptides we have 
reported previously. 5 The helix is stablized by two H-bonds ( i -1)C=O.. .HN(i+2)  (i.e. C--O of Boc 
to NH-3, and C--O of residue 1 to NH-4), which is further substantiated by variable temperature I H 
NMR experiments. 16 Fig. 4 shows the temperature dependence of chemical shifts of amide protons in 
hexapeptide 8. A linear relationship for 6 vs 1/T is observed for all residues. The temperature coefficients 
(--d/i/dT, ppb/K) of NH-3 (1.64) and NH-4 (2.94) are much lower than NH-1 (11.74) and NH-2 (9.98). 
The observation of such a low dS/dT (<6.0 ppb/K) has generally been attributed to intramolecularly 
hydrogen bonded amide groups in linear peptides, 17 which indicates that NH-3 and NH-4 are H-bonded 
and shielded from the solvent. This is consistent with a solution conformation in which the amide protons 
in residue 3 and residue 4 are part of  the H-bonding network of a well-defined helical structure. 
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Figure 3. Deuterium exchange of the amide protons for peptide 4 in py-d~/10% CD3OD at 1 mM 
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Figure 4. Temperature dependence of the chemical shifts of the amide protons of peptide 8 

Compared to the unsubstituted and (otS)-methyl substituted analogs, 5 amide protons in peptide 8 show 
smaller temperature coefficients, indicating that the helical structure may be further stabilized by the 
cinnamyl substituents at the ~x position of the y-amino acid residues. A preferred backbone conformation 
in the context of helical secondary structures of 13- and y-amino acid oligopeptides has recently been 
discussed by Seebach. Is 

In summary, we have demonstrated that the (otR)-cinnamyl y-amino acid tetrapeptide 4 can adopt 
a reverse turn in solution, while the ({xS)-cinnamyl analog 8 adopts a helical structure. Both of these 
structures are stabilized by intramolecular H-bonds as evidenced by NMR experiments. The strong 
dependence of secondary structure and conformation on the stereochemistry of the ot-substituent in these 
y-amino acid tetrapeptides will be useful in their utilization as peptidomimetics in drug design. 
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