STEREOSELECTIVE SYNTHESIS OF a-D-GLUCOPYRANOSIDES VIA 6-SILYL-a-D-GLUCOPYRANOSYL BROMIDES

C. P. Fei and T. H. Chan*

Department of Chemistry, McGill University,

Montreal, Quebec, Canada. H3A 2K6.

ABSTRACT: Bromotrimethylsilane cleaved 2,3,4-tri-O-benzyl-1,6-anhydro-β-D-glucopyranose (1) to give 2,3,4-tri-O-benzyl-6-O-trimethylsilyl- α-D-glucopyranosyl bromide (2). Reaction of 2 with ROH/diisopropylethylamine gave the corresponding α-glucopyranosides.

One of the problems in the synthesis of complex oligosaccharides is the stereoselective formation of the glycosidic linkage.¹ In the D-gluco series, the synthesis usually starts from the α -D-glucopyranosyl halides. The β -anomer is prepared by taking advantage of the neighboring group assisted procedure with an acyl-substituent at the C-2 position.² The synthesis of the α -anomer is more demanding. It is necessary to choose a starting α -D-pyranosyl halide with a non-neighboring group active substituent at C-2. An <u>in situ</u> anomerisation procedure³ is then employed to cause an equilibration between the α - and the β -D-glycopyranosyl halide followed by a faster substitution reaction at the less stable β -D-halide. We wish to report here a procedure for the stereoselective synthesis of α -D-glucopyranosides which appears to rely on the neighboring group participation of a siloxy group at C-6.

While bromotrimethylsilane reacts with 2-methoxytetrahydropyran to give the corresponding 2-pyranosyl bromide,⁴ it is unreactive towards the fully protected methyl D-glucopyranoside.⁵ We reasoned that a strained ether linkage at the anomeric centre may be more susceptible to cleavage.⁶ Indeed, bromotrimethylsilane cleaved 2,3,4-tri-0-benzyl-1,6-anhydro- β -Dglucopyranose (1) cleanly to give 2, 3, 4-tri-0-benzyl-6-0-trimethylsilyl- α -D-glucopyranosyl bromide (2).

While compound \gtrsim could be isolated⁷ if necessary, the synthesis of glycosides can be performed more easily by adding the appropriate ROH with diisopropylethylamine to a solution of 2 generated in situ (Scheme 1).⁸

849

SCHEME 1

The glucopyranoside 3 isolated has predominantly the α -stereochemistry at the anomeric centre (Table). In addition to the simple alcohols, β -trimethylsilylethanol can also replace the bromide to give the corresponding glucopyranoside with exclusive α -stereochemistry. One advantage of the reaction is that the trimethylsilyl protecting group at the 6-OH position can be unmasked readily. Thus, compound 4 was obtained by treatment of 3 (R=CH₃) with methanol. Coupling of 4 with 2 under similar reaction conditions gave the disaccharide 5 with α -stereochemistry at the new glycosidic linkage.

Bromotriethylsilane also cleaved the anhydro ether linkage in 1 to give the 6-0-triethylsilyl derivative of 2. The reaction was much slower and the α -glucopyranosyl bromide was formed in about 30% yield even after 15 days at 35-40°. Nevertheless, coupling of the glucopyranosyl bromide with methanol/diiso- propylethylamine gave the methyl 2,3,4-tri-0-benzyl-6-0-triethylsilyl- α -D-glucopyranoside with no indication of the β -anomer.

We attribute the α -stereoselectivity in the formation of the glycosidic linkage not to an anomerization of the α -glucopyranosyl bromide to the β -bromide (6, scheme 2, path a)³ but to the intervention of the intermediate 7 (scheme 2, path b) by neighboring group participation of the 6-siloxy group.⁸ This is based on the following observations. (1) The use of ammonium bromide salt to cause equilibration of the α -and β -bromides (2 6) was not necessary in the present synthesis.(2) When methanol was reacted with 2 without the use of diisopropylethylamine, the α -anomer of methyl D-glucopyranoside was formed predominantly as well.

(3) Furthermore, when diisopropylethylamine alone was used without the presence of nucleophile, the anhydroglucose 1 could be obtained from 2. Evidently, 2 exists in equilibrium with 7, and nucleophillic opening of the bicyclic structure 7 to give 3 occurs preferentially with α -stereoselectivity. We are exploring the application of this approach to the synthesis of other α -glycosides.

Acknowledgement: We thank NSERC and FCAR for financial support of this work.

References

- 1. For review, see H. Paulsen, Angew Chem. Internat. Ed. Engl., <u>21</u>:155(1982).
- 2. K. Igarashi, Adv. Carbohydr. Chem. 34:246-253(1977).
- K. U. Lemieux, K. B. Hendriks, R. V. Stick, and K. James, J. Amer. Chem. Soc., 97:4056(1975).
- 4. T. H. Chan and S. D. Lee, Tetrahedron Letters, 24:1225(1983).
- 5. J. W. Gillard and M. Israel, Tetrahedron Letters, 22:513(1982).
- 6. J. Thiem and B. Meyer, Chem. Ber., 113:3075(1980).
- 7. Physical properties of 2: ¹H NMR: H₁: 6.46 ppm(d, J=3.8Hz); ¹³C nmr: C₁:92.1; C₂:79.9; C₃:82.2; C₄:76.4; C₅:72.8: C₆:60.8; C-Si:-0.3; $[\alpha]_D^{22}$ =+89.5° (CHCl₃, C=1.6).
- 8. Typical procedure: To 108 mg. (0.25 mmoli) of 1 dissolved in 0.15 ml of CHCl₃ was added 306 mg. (2.0 mmol) of bromotrimethylsilane. The reaction was left in the dark at room temperature for 7 days. Solvent and excess reagent was removed in vacuo, Compound 2 so obtained was redissolved in 0.4 ml of CHCl₃ and 0.1 ml of diisopropylethylamine. Then 0.5 mmol of ROH was added and allowed to react for 8 hrs at rt. The product was isolated by flash chemotography on silica gel with 4:1 hexane/ethylacetate as eluent.
- The influence of the 6-substituent on the stereoselectivity of the glycosidic linkage formation was noted previously. J. M. Frechet and C. Schuerch. J. Amer. Chem. Soc., <u>94</u>:604(1972).

TABLE:	Formation of a-D-	glucopyaniosides 3 accord	ling to Scheme 1
ROH=	Yield % (isolated)	Optical rotation ^a of $\frac{3}{2}$ [a] _D ²²	Anomeric ratio ^b α=B
Снзон	70	+ 16.1° (C=1.6,0	CHC1 ₃) 6:1
сн ₃ снон	61	+ 26.0° (C=0.95,	CHC1 ₃) 15:1
сн ₃ снсн ₂ он	72	+ 36.6° (C=1.4,0	CHC1 ₃) 15:1
Он	44	+ 43.9° (C=1.3,0	CHCl ₃) noβ
Me3SiCH2CH2C	н ₂ он 60	+ 39.1° (C=2.7,0	CHC1 ₃) noβ

- a: Optical rotation was measured with a JASCO-DIP-140 Polarimeter.
- b: Anomeric ratio was determined by 13 C nmr using C-1 α at 94-98 ppm and C-1 β at 102-104 ppm.
- c: Ratio was determined by weight of isolated compounds.

(Received in USA 3 December 1986)