

New Growth Hormone Secretagogues: C-Terminal Modified Sulfonamide-Analogues of NN703

Bernd Peschke,*[#] Birgit Sehested Hansen[§]

^aHealth Care Chemistry, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark [§]Diabetes Biochemistry, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark

Abstract: The C-terminal the orally active growth hormone secretagogue NN703 was changed to prepare analogues with inverse sulfonamides and inverse amides. The compounds showed high activity in a *in vitro* rat pituitary model. © 1999 Elsevier Science Ltd. All rights reserved.

Received 28 January 1999; accepted 29 March 1999

Introduction: The field of growth hormone secretagogues is currently an exciting and fast evolving area in medicinal chemistry.¹⁾ The success of the first hexapeptides GHRP-6 and GHRP-2 triggered a number of research programs, that resulted in orally available compounds, from which the clinical candidates $MK-0677^{2)}$ and $NN703^{3)}$ are the most prominent examples. By the structure of MK-0677, we were inspired to synthesize a number of NN703-analogues which are modified at the *C*-terminal. An inverse peptide structure at the *C*-terminal of NN703-analogues would give an easy access not only to inverse amides but also to sulfonamides. Especially sulfonamide-moieties seemed to be of interest, since this moiety seems to be important for the high activity of MK-0677.⁴⁾

FAX: +45 44 66 34 50 E-mail: bpes@novo.dk

Discussion: We anticipated to use mono-protected diamines of type **4** as starting materials for the *C*-terminal-modified growth hormone secretagogues.

Since a mesylation of 1 resulted in our hands in immediate cyclization, we chose to oxidize $1^{5,6}$ with sulfur trioxide pyridine complex⁷⁾ to the corresponding aldehyde 2. A reductive amination with benzylamine afforded 3. After debenzylation, the desired mono-*N*-protected diamine 4 was obtained.

The amide **4** was reacted with different electrophiles, such as methanesulfonic acid chloride or acetic anhydride yielding **5** and **6**. When succinic anhydride was used as electrophile, the resulting acid was subsequently reduced with lithium borohydride to alcohol **7**.

a) SO₃ · py, NEt₃; b) PhCH₂NH₂, NaCNBH₃, HOAc; c) H₂, Pd(OH)₂; d) CH₃SO₂Cl, NEt₃, CH₂Cl₂, -78 °C; or Ac₂O; or i succinic anhydride ii ClC(=O)OEt, NEt₃ iii LiBH₄

Similarly, the thiophene analogue 10 was synthesized form D-(2-thienyl)alanine (8). Formylation, reduction to alcohol 9, Swern oxidation, and reductive amination furnished an amine, which was transferred into the sulfonamide 10.

a) i HCOOH, Ac₂O ii NaBH₄/I₂; b) i (BOC)₂O, NaOH ii (COCI)₂, DMSO, NEt₃ iii NH₂CH₃, NaCNBH₃, HOAc iv CH₃(S=O)₂CI, NEt₃ -78 °C

The growth hormone secretagogues **11**, **12**, **13**, and **14** were obtained by deprotection of the BOC-protected amino-group with trifluoroacetic acid. The peptide couplings were performed with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC)/ 1-hydroxy-7-azabenzotriazole (HOAt)⁸ and BOC-protected *N*-methyl-2-naphthylalanine³) and 5-(*tert*-butoxycarbonylamino)-5-methylhex-2-enoic acid.³ The BOC-groups were removed with 50% trifluoroacetic acid in dichloromethane at 0 °C.

Compounds 11, 12, 13, and 14 were tested in a *in vitro* rat pituitary assay.⁹⁾ The results are shown in Table 1.

Table 1

In-vitro screening

Entry	NN703	11	12	13	14
EC ₅₀ [nM]	2.7	2.5	25.0	34.0	3.0

As it can be seen from the test results, an inverse structure at the C-terminal of analogues of **NN703** is similarly active on a rat pituitary as the amide with peptide orientation. Especially, compounds with sulfonamides at the C-terminal show high growth hormone secretagogue activity. An amide substructure, which is inverse orientated, when compared to a peptide, seem to result in a compound with slightly decreased activity.

Conclusion: A new type of *C*-terminal motif was introduced to analogues of NN703. The introduction of inverse peptide bonds gave compounds with slightly lower activity, when compared NN703. A sulfonamide moiety, however, seems to be very suitable for achieving high potency as it can be seen from examples 11 and 14.

Notes and References

- Growth Hormone Secretagogues in Clinical Practice, Bercu, B. B.; Walker, R. F., Eds; Marcel Dekker, Inc.; New York, 1998.
- Patchett, A. A.; Nargund, R. P.; Tata, J. R.; Barakat, K. J.; Johnston, D. B. R.; Cheng, K.; Chan, W. W.-S., Butler, B. S.; Hickey, G. J.; Jacks, T. M.; Schleim, K.; Pong S.-S.; Chaung, L.-Y. P.; Chen, H. Y.; Frazier, E.; Leung, K. H.; Chui, S.-H. L.; Smith, R. G. *Proc. Natl. Acad. Sci. USA* **1995**, 92, 7001 - 7005.
- 3.Hansen, T. K.; Ankersen, M.; Hansen, B. S.; Raun, K.; Nielsen, K. K.; Lau, J.; Peschke, B.; Lundt, B. F.; Thøgersen, H.; Johansen, N. L.; Madsen, K. Andersen P. H. J. Med. Chem. 1998, 41, 3705 - 3714.
- Tata, J. R.; Lu, Z.; Jacks, T. M.; Schleim, K D.; Cheng, K.; Wei, L.; Chan, W. W.-S.; Butler, B.; Tsou, N.; Leung, K.; Chiu, S.-H. L.; Hickey, G.; Smith, R. G.; Patchett, A. A. Bioorg. Med. Chem. Lett. 1997, 7, 2319 - 2314.
- 5. Karim, A.; Mortreux, A.; Petit, F.; Buono, G.; Peiffer, G.; Siv, C. J. Organomet. Chem. 1986, 317, 93 107.
- 6. McKennon, J. J.; Meyers, A. I.; Drauz, K.; Schwarm, M. J. Org. Chem. 1993, 58, 3568 3571.
- 7. Beaulieu, P. L.; Wernic, D.; Duceppe, J.-S.; Guindon, Y. Tetrahedron Lett. 1995, 36, 3317 3320.
- 8. Carpino, L. A. J. Am. Chem. Soc. 1993, 115, 4397 4398.
- 9. Raun, K.; Sehested Hansen, B.; Langeland Johansen, N.; Thøgersen, H.; Madsen, K.; Ankersen, M.; Andersen, P. H. European Journal of Endocrinology 1998, 139, 552 561.