A chiral metallacyclophane for asymmetric catalysis \dagger

Hua Jiang, Aiguo Hu and Wenbin Lin*
Department of Chemistry, CB\#3290, University of North Carolina, Chapel Hill, NC 27599, USA.
E-mail: wlin@unc.edu

Received (in Columbia, MO, USA) 26th August 2002, Accepted 5th November 2002
First published as an Advance Article on the web 3rd December 2002

Chiral metallacyclophanes were self-assembled from cis$\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{PtCl}_{2}$ and enantiopure atropisomeric $1,1^{\prime}$-bina-phthyl-6,6'-bis(acetylenes) and used in highly enantioselective catalytic diethylzinc additions to aldehydes to afford chiral secondary alcohols.

The design of functional supramolecular assemblies has received intense interest from synthetic and materials chemists. ${ }^{1}$ Nanoscopic supramolecular assemblies can be expected to provide enhanced performance over their constituent building blocks. ${ }^{2}$ The last decade has in particular witnessed tremendous progress in the synthesis of metallosupramolecular assemblies. ${ }^{3}$ These rigid supramolecular assemblies can provide better selectivity in sensory and catalytic applications. Fujita and coworkers have illustrated such advantages by performing cavity-directed synthesis of labile silanol oligomers and stereoselective [$2+2$] photodimerization of olefins. ${ }^{4}$
We have become interested in chiral supramolecular assemblies for potential applications in enantioselective processes. Our approaches combine rigid bridging ligands derived from 1,1'-bi-2-naphthol (BINOL) and appropriate metallo-corners to generate supramolecular assemblies that bear chiral functionalities. BINOL and its derivatives have been shown to be a 'privileged' ligand system for highly enantioselective catalytic processes and chiral separations. ${ }^{5,6}$ Herein we wish to report the self-assembly and characterization of novel chiral metallacyclophanes $\left[\text { cis- }\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Pt}\left(\mathbf{L}_{\mathbf{1 - 3}}\right)\right]_{2}$ (where $\mathbf{L}_{\mathbf{1 - 3}}$ is enantiopure 6,6'-bis(alkynyl)-1, 1^{\prime}-binaphthalene), and our preliminary results on the application of $\left[\text { cis- }\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Pt}\left(\mathbf{L}_{\mathbf{3}}\right)\right]_{2}$ in highly enantioselective diethylzinc additions to aldehydes to afford chiral secondary alcohols.
Enantiomerically pure atropisomeric bis(acetylenes) $\mathbf{L}_{\mathbf{1}}$ and \mathbf{L}_{3} were synthesized by modified literature procedures, ${ }^{7}$ while \mathbf{L}_{2} was synthesized by treating \mathbf{L}_{3} with acetic anhydride. Treatment of ligands $\mathbf{L}_{\mathbf{1}}$ and $\mathbf{L}_{\mathbf{2}}$ with one equiv. of cis$\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}_{2}$ in the presence of catalytic amounts of CuCl in diethylamine at room temperature afforded chiral cycles [cis$\left.\left(\mathrm{PEt}_{3}\right)_{2} \operatorname{Pt}\left(\mathbf{L}_{\mathbf{1}}\right)\right]_{2} \mathbf{1}$ and $\left[\operatorname{cis}-\left(\mathrm{PEt}_{3}\right)_{2} \operatorname{Pt}\left(\mathbf{L}_{\mathbf{2}}\right)\right]_{2} \mathbf{2}$ in 49 and 59% yield, respectively (Scheme 1). Treatment of $\mathbf{L}_{\mathfrak{3}}$ with one equiv. of cis- $\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}_{2}$ under a variety of conditions gave the hydroxy cycle $\mathbf{3}$ in very low yields ($<20 \%$), presumably due to undesired competitive coordination of the dihydroxy groups of

Scheme 1 Synthesis of 1-3.

[^0]$\mathbf{L}_{\mathbf{3}}$ to lead to intractable products. Instead, $\mathbf{3}$ can be obtained in quantitative yield by treating 2 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in a mixture of THF and methanol. Compounds $\mathbf{1}-\mathbf{3}$ have been characterized by ${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, HR-MS, elemental analysis, and IR, UV-Vis, and circular dichroism (CD) spectroscopies.

NMR spectra of $\mathbf{1 - 3}$ indicated a single ligand environment, consistent with the formation of cyclic species. HR FAB-MS data showed the presence of molecular ions due to dinuclear species for 1-3. The terminal acetylenic C-H stretches of $\mathbf{L}_{\mathbf{1 - 3}}$ at $\sim 3280 \mathrm{~cm}^{-1}$ disappeared upon the formation of $\mathbf{1 - 3}$. The IR spectra of 1-3 exhibit expected $\mathrm{C} \equiv \mathrm{C}$ stretches at $\sim 2110 \mathrm{~cm}^{-1}$. All these spectroscopic data are consistent with a cyclic dimeric structure of approximate D_{2} symmetry. These results are in stark contrast with an earlier report where polymeric compounds were obtained when bis(alkynyl) ligand $\mathbf{L}_{\mathbf{1}}$ was treated with trans $-\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}_{2} .{ }^{7 a, 8}$

A single-crystal X-ray diffraction study on compound 3 unambiguously demonstrated the formation of a chiral metallacyclophane. ${ }^{9}$ Compound 3 crystallizes in chiral monoclinic space group $P 2_{1} \not \ddagger$ Two cis- $\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}$ units are linked by two enantiopure $\mathbf{L}_{\mathbf{3}}$ ligands to form a cyclic dinuclear structure (Fig. 1). Both Pt centers adopt slightly distorted square planar geometry with the cis angles around the Pt1 center ranging from 82.4(2) to $101.3(1)^{\circ}$ and the cis angles around the Pt2 center ranging from $84.3(2)$ to $100.3(1)^{\circ}$. The rigid metallacyclophane structure of $\mathbf{3}$ is characterized by very small dihedral angles between the naphthyl rings within each $\mathbf{L}_{\mathbf{3}}$ ligand (62.18 and 73.45°).
The electronic spectra of $\mathbf{L}_{\mathbf{1 - 3}}$ show three major $\pi \rightarrow \pi^{*}$ transitions: the naphthyl $\pi \rightarrow \pi^{*}$ transitions at ~ 240 and ~ 255 nm and a weak absorption at $\sim 290 \mathrm{~nm}$ due to acetylenic $\pi \rightarrow \pi^{*}$ transition that has been delocalized into naphthyl ring systems. Upon the formation of metallacyclophanes $\mathbf{1 - 3}$, a new peak appears at $230-240 \mathrm{~nm}$, which can be assigned to the cis$\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}$ moiety. The naphthyl $\pi \rightarrow \pi^{*}$ transitions and the acetylenic $\pi \rightarrow \pi^{*}$ transition have significantly red-shifted (Fig. 2). Bathochromic shifts are well-established in platinum acetylides, assignable to the mixing of Pt p-orbitals into the acetylenic $\pi \rightarrow \pi^{*}$ bands. ${ }^{10}$ The $\pi \rightarrow \pi^{*}$ transitions at $\sim 310 \mathrm{~nm}$ in 1-3 thus have significant ligand-to-metal charge transfer (LMCT) character. CD spectra of ligands $\mathbf{L}_{\mathbf{1 - 3}}$ exhibit one

Fig. 1 (Left) ORTEP view of metallacyclophane 3. Key bond distances (Å): Pt1-C22 1.983(8), Pt1-C46 2.016(9), Pt1-P1 2.306(2), Pt1-P2 2.310(2), Pt2-C24 1.989(9), Pt2-C48 1.999(8), Pt2-P4 2.314(2), Pt2-P3 2.316(2). (Right) A space-filling model of $\mathbf{3}$.

Fig. 2 UV-Vis spectra of 1-3 in acetonitrile.
major bisignate band corresponding to naphthyl $\pi \rightarrow \pi^{*}$ transitions at $\sim 245 \mathrm{~nm}$ and one minor band at $\sim 290 \mathrm{~nm}$ due to acetylenic $\pi \rightarrow \pi^{*}$ transition. CD spectra of metallacyclophanes 1-3 exhibit a bisignate band at $\sim 260 \mathrm{~nm}$ due to the naphthyl $\pi \rightarrow \pi^{*}$ transitions and an intense band at 320 nm assignable to the acetylenic $\pi \rightarrow \pi^{*}$ transitions, along with a band at $\sim 230 \mathrm{~nm}$ which can be attributed to the chiral arrangment of the PEt_{3} groups on the Pt centers (Fig. 3). Interestingly, the intensities of the naphthyl $\pi \rightarrow \pi^{*}$ CD bands of coordinated L_{1-3} in 1-3 have decreased to $\sim 1 / 4$ of those of free \mathbf{L}_{1-3}, probably a consequence of the reduction in their dihedral angles upon the formation of metallacyclophanes.

Fig. 3 Circular dichroism spectra of $\mathbf{1}-\mathbf{3}$ in acetonitrile.
The presence of chiral dihydroxy groups in $\mathbf{3}$ has prompted us to examine its utility in asymmetric catalysis. We have carried out prototypical diethylzinc additions to aromatic aldehydes using a combination of $\mathbf{3}$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}$ as the catalyst (eqn. 1). ${ }^{11}$ As shown in Table 1, the Ti(rv) complexes of $\mathbf{3}$ are excellent catalysts for the additions of diethylzinc to 1-naphthaldehyde with 94% ee and $>95 \%$ conversion at $0{ }^{\circ} \mathrm{C}$. The enantioselectivity has however dropped significantly when other smaller aromatic aldehydes were used as the substrates. This result differs from the performance of BINOL and a BINOL-derived organometallic triangle, both of which have a very broad substrate scope. ${ }^{11}$ We believe that this difference is a direct consequence of much more rigid structure of $\mathbf{3}$; the dihedral angles of naphthyl rings in the $\mathrm{Ti}(\mathrm{Iv})$ catalyst can no vary to accommodate aldehydes of various sizes to give high enantioselectivity. The chiral dihydroxy groups in $\mathbf{3}$ thus differ from those of BINOL, and may prove useful for mechanistic work owing to their rigid structure.

$$
\begin{equation*}
\mathrm{Ar}_{\mathrm{H}}^{\mathrm{O}}+\mathrm{Et}_{2} \mathrm{Zn} \xrightarrow[\mathrm{Ti}^{(}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{4}]{(\mathrm{S})-3} \tag{1}
\end{equation*}
$$

In summary, a family of novel chiral metallacyclophanes has been readily assembled based on robust Pt -acetylide linkages. Metallacyclophane $\mathbf{3}$ has been used as a chiral ligand for enantioselective catalytic diethyl zinc additions to aromatic

Table 1 Diethylzinc additions to aldehydes catalyzed by $\mathrm{Ti}(\mathrm{Iv})$ complexes of 3

aldehydes. Such a supramolecular approach will add a new dimension to the rapidly expanding field of asymmetric catalysis.

We acknowledge financial support from NSF (CHE0208930). W. L. is an Alfred P. Sloan Fellow, an Arnold and Mabel Beckman Young Investigator, a Cottrell Scholar of Research Corp, and a Camille Dreyfus Teacher-Scholar.

Notes and references

\ddagger X-Ray single-crystal diffraction data for $3 \cdot \mathrm{EtAc} \cdot \mathrm{H}_{2} \mathrm{O}$ were collected on a Siemens SMART CCD diffractometer. Crystal data: monoclinic, space group $P 2_{1}, a=13.833(3), b=15.047(3), c=17.264(4) \AA, \beta=$ $92.105(5)^{\circ}, U=3591.1(14) \AA^{3}, Z=2, D_{\mathrm{c}}=1.51 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=$ $40.3 \mathrm{~cm}^{-1}$. Least-squares refinement based on 13710 reflections with I > $2 \sigma(I)$ and 802 parameters led to convergence, with a final $R 1=0.050, w R 2$ $=0.105$, and GOF $=1.03$. Flack parameter $=-0.02(6)$. See http:/ /www.rsc.org/suppdata/cc/b2/b208324h/ for crystallographic data in CIF or other electronic format.

1 J.-M. Lehn, Supramolecular Chemistry, Concepts and Perspectives, VCH, New York, 1995.
2 P. H. Dinolfo and J. T. Hupp, Chem. Mater., 2001, 13, 3113.
3 (a) S. Leininger, B. Olenyuk and P. J. Stang, Chem. Rev., 2000, 100, 853-907; (b) B. J. Holiday and C. A. Mirkin, Angew. Chem., Int. Ed., 2001, 40, 2022-2043; (c) M. Fujita, Chem. Soc. Rev., 1998, 27, 417-425.
4 (a) M. Yoshizawa, T. Kusukawa, M. Fujita, S. Sakamoto and K. Yamaguchi, J. Am. Chem. Soc., 2001, 123, 10454-10459; (b) M. Yoshizawa, Y. Takeyama, T. Kusukawa and M. Fujita, Angew. Chem., Int. Ed., 2002, 41, 1347-1349.
5 (a) L. Pu, Chem. Rev., 1998, 98, 2405; (b) R. Noyori, Angew. Chem. Int. Ed., 2002, 41, 2008.
6 S. J. Lee and W. Lin, J. Am. Chem. Soc., 2002, 124, 4554-4555.
7 (a) K. Onitsuka, Y. Harada, F. Takei and S. Takahashi, Chem. Commun., 1998, 643-644; (b) H. Sasai, T. Tokunaga, S. Watanabe, T. Suzuki, N. Itoh and M. Shibasaki, J. Org. Chem., 1995, 60, 7388-7389.
8 S. M. Al Qaisi, K. J. Galat, M. Chai, D. G. Ray, P. L. Rinaldi, C. A. Tessier and W. J. Youngs, J. Am. Chem. Soc., 1998, 120, 12149.
9 J. W. Steed and J. L. Atwood, Supramolecular Chemistry, Wiley, New York, 2000.
10 V. W.-W. Yam, Acc. Chem. Res., 2002, 35, 555.
11 (a) L. Pu and H.-B. Yu, Chem. Rev., 2001, 101, 757; (b) S. J. Lee, A. Hu and W. Lin, J. Am. Chem. Soc., 2002, 124, 12948.

[^0]: \dagger Electonic supplementary information (ESI) available: experimental details and analytical data for $\mathbf{2}$ and $\mathbf{3}$, and general procedure for analysis. See http://www.rsc.org/suppdata/cc/b2/b208324h/

