Pd(II)-Catalyzed One-Pot, Three-Step Route for the Synthesis of Unsymmetrical Acridines

Hai-Ming Guo,^{*,†} Run-Ze Mao,[†] Qiao-Tian Wang,[†] Hong-Ying Niu,^{†,‡} Ming-Sheng Xie,[†] and Gui-Rong Qu^{*,†}

School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China, and School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China

guohm518@hotmail.com; quguir@sina.com

Received September 9, 2013

Unsymmetric acridines are synthesized via a one-pot amination/cyclization/aromatization reaction for the first time. With Pd(OAc)₂-X-Phos as the catalyst, a series of unsymmetric acridines are obtained in moderate to excellent yields (up to 99% yield). Meanwhile, the diphenylamine intermediate could be isolated, which is evidence of the domino process.

Acridines have attracted considerable attention due to their important biological and medicinal activities.¹ As shown in Figure 1, Porflavine, a disinfectant bacteriostatic against many gram-positive bacteria, has been approved by the FDA as a drug.² Acrisorcin, a new agent for the control of tinea versicolor, has also been approved by the FDA to serve as a drug.³ Mepacrine, an intrapleural sclerosing agent, is known to act as a histamine *N*-methyltransferase inhibitor.⁴ Since acridines have been proven to be important in many areas, searching for a useful and efficient approach for the synthesis of acridines is therefore highly desirable.

The Bernthsen acridine synthesis, a name reaction, consists of heating diphenylamine and carboxylic acids with zinc chloride as the catalyst (Scheme 1a).⁵ Later, Larock's group developed a [4 + 2] annulation of 2-aminoaryl ketones with arynes generated in situ from *o*-(trimethylsilyl)aryl triflate with CsF (Scheme 1b).⁶ In 2010, Buchwald et al.

[†] Henan Normal University.

[‡]Henan Institute of Science and Technology.

^{(1) (}a) Kocisko, D. A.; Caughey, B. *J. Virol.* **2006**, *80*, 1044. (b) Goodell, J. R.; Ougolkov, A. V.; Hiasa, H.; Kaur, H.; Remmel, R.; Billadeau, D. D.; Ferguson, D. M. *J. Med. Chem.* **2008**, *51*, 179. (c) Tonelli, M.; Vettoretti, G.; Tasso, B.; Novelli, F.; Boido, V.; Sparatore, F.; Busonera, B.; Ouhtit, A.; Farci, P.; Blois, S.; Giliberti, G.; Colla, P. L. *Antiviral Res.* **2011**, *91*, 133.

^{(2) (}a) DeJong, E. S.; Chang, C.; Gilson, M. K.; Marino, J. P. *Biochemistry* 2003, 42, 8035. (b) Horowitz, E. D.; Hud, N. V. J. Am. *Chem. Soc.* 2006, 128, 15380. (c) Bellinzoni, M.; Buroni, S.; Schaeffer, F.; Riccardi, G.; Rossi, E. D.; Alzari, P. M. J. Bacteriol. 2009, 191, 7531. (d) Varvaresou, A.; Iakovou, K. J. Mol. Model. 2011, 17, 2041. (e) Bolla, J. R.; Do, S. V.; Long, F.; Dai, L.; Su, C.-C.; Lei, H.-T.; Chen, X.; Gerkey, J. E.; Murphy, D. C.; Rajashankar, K. R.; Zhang, Q.; Yu, E. W. *Nucleic Acids Res.* 2012, 40, 9340.

^{(3) (}a) Jones, J. O.; An, W. F.; Diamond, M. I. *ACS Chem. Biol.* **2009**, *4*, 199. (b) Shahinas, D.; Liang, M.; Datti, A.; Pillai, D. R. *J. Med. Chem.* **2010**, *53*, 3552.

^{(4) (}a) Bonse, S.; Santelli-Rouvier, C.; Barbe, J.; Krauth-Siegel, R. L. J. Med. Chem. **1999**, 42, 5448. (b) Chen, Y.-L.; Lu, C.-M.; Chen, I.-L.; Tsao, L.-T.; Wang, J.-P. J. Med. Chem. **2002**, 45, 4689. (c) Gemma, S.; Kukreja, G.; Fattorusso, C.; Persico, M.; Romano, M. P.; Altarelli, M.; Savini, L.; Campiani, G.; Fattorusso, E.; Basilico, N.; Taramelli, D.; Yardley, V.; Butini, S. Bioorg. Med. Chem. Lett. **2006**, 16, 5384. (d) Hajjo, R.; Setola, V.; Roth, B. L.; Tropsha, A. J. Med. Chem. **2012**, 55, 5704.

^{(5) (}a) Bernthsen, A. Ann 1878, 192, 1. (b) Bernthsen, A. Ann. 1884, 224, 1. (c) Popp, F. D. J. Org. Chem. 1962, 27, 2658.

^{(6) (}a) Rogness, D. C.; Larock, R. C. J. Org. Chem. 2010, 75, 2289. (b) Pintori, D. G.; Greaney, M. F. Org. Lett. 2010, 12, 168. (c) Huang, X.; Zhang, T. J. Org. Chem. 2010, 75, 506. (d) Dubrovskiy, A. V.; Larock, R. C. J. Org. Chem. 2012, 77, 11232.

Figure 1. Selected examples of acridines that exhibit important biological and medicinal activities.

reported the N-arylation/Heck type transformation of 2-bromostyrene and 2-chloroaniline to construct an acridine derivative (Scheme 1c).⁷ Very recently, when we were preparing the present manuscript, Ellman et al. reported Ru(III)-catalyzed [3 + 3] annulations of aromatic azides and aromatic imines to give acridines, in which the imine part functioned as the directing group (Scheme 1d).⁸ Although great endeavors have been devoted to the synthesis of acridines,⁹ a new and efficient method for the synthesis of acridines is still in great demand. Herein, we report our findings on the domino amination/cyclization/aromatization reaction of 2-formylphenyl triflate and anilines to construct unsymmetrical acridines (Scheme 1e).

Scheme 1. Strategies for the Synthesis of Acridines

Previous work

⁽⁷⁾ Tsvelikhovsky, D.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 14048.

Table 1. Optimization of the Reaction Conditions^a

	1a X = OTf 1b X = Cl 1c X = Br	+ H ₂ N 2a	Pd(OAc) ₂ (x mol L (y mol %) base, solvent, I OMe	$\frac{(N)}{N_2}$ (N) $(N$	$\frac{1}{Pr} + \frac{1}{Pr} + \frac{1}{Pr}$ $\frac{1}{Pr} + \frac{1}{Pr} $	
entry	y x	у	base	solvent	<i>t</i> (°C)	yield $(\%)^b$
1	10	15	t-BuOK	toluene	105	trace
2	10	15	Cs_2CO_3	toluene	105	trace
3	10	15	Na_2CO_3	toluene	105	trace
4	10	15	K_3PO_4	toluene	105	trace
5	10	15	K_2CO_3	toluene	105	99
6	10	15	K_2CO_3	o-xylene	105	87
7	10	15	K_2CO_3	p-xylene	105	82
8	10	15	K_2CO_3	dioxane	105	trace
9	10	15	K_2CO_3	$\mathbf{D}\mathbf{MF}$	105	trace
10	10	15	K_2CO_3	toluene	100	92
11	10	15	K_2CO_3	toluene	120	87
12	5	15	K_2CO_3	toluene	105	76
13	10	10	K_2CO_3	toluene	105	83
14	5	7.5	K_2CO_3	toluene	105	72
15^c	10	15	K_2CO_3	toluene	105	trace
16^d	10	15	K_2CO_3	toluene	105	trace
17^e	10	15	K_2CO_3	toluene	105	trace

^a Unless otherwise mentioned, the reactions were carried out with 2a (0.2 mmol), 1a (0.24 mmol), Pd(OAc)₂-L, base (2.0 equiv), and solvent (2.0 mL) in a Schlenk tube at 105 °C for 13 h under a N₂ atmosphere. ^b Isolated yield. ^cAir atmosphere. ^d **1b** as the substrate. ^e **1c** as the substrate

Initially, 2-formylphenyl triflate (1a) and 3,5-dimethoxyaniline (2a) were chosen as model substrates to explore the domino reaction conditions (Table 1). With Pd(OAc)₂-X-Phos as the catalyst, various bases including t-BuOK, Cs₂CO₃, Na₂CO₃, K₃PO₄, and K₂CO₃ were examined in toluene at 105 °C (entries 1-5). Surprisingly, the base had great impact on the reactivity of the reaction, and K₂CO₃ could afford the desired acridine 3a with quantitative yield (99% yield, entry 5). Encouraged by the results, the solvent effect was tested. Changing toluene to o-xylene, p-xylene, dioxane, and DMF did not produce better results (entries 6-9). Subsequently, the reaction temperature was also examined, and the results showed that 105 °C was the best choice (entries 5 vs 10-11). Then, the ratio of Pd(OAc)₂ and X-Phos was examined, and x/y = 1:1.5 was determined to be the suitable ratio (entries 5 vs 12-13). When the catalyst loading was reduced to 5 mol %, the product of **3a** was obtained with 72% yield (entry 14). Meanwhile, when the domino reaction was performed under an air atmosphere, only a trace amount of annulation product 3a was observed, which indicated that the N₂ was crucial for the domino reaction to occur (entry 15). Last, when 2-chlorobenzaldehyde (2b) or 2-bromobenzaldehyde (2c) was used to react with 3,5-dimethoxyaniline (2a), the reaction could hardly proceed, which means that the triflate group was essential for the reaction to occur (entries 16-17). Thus, the optimal reaction conditions

⁽⁸⁾ Lian, Y.; Hummel, J. R.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2013, 135, 12548.

⁽⁹⁾ For other methods for the synthesis of acridines, see: (a) Belmont, P.; Belhadj, T. Org. Lett. 2005, 7, 1793. (b) Wang, H.; Li, L.; Lin, W.; Xu, P.; Huang, Z.; Shi, D. Org. Lett. 2012, 14, 4598. (c) Han, X.-D.; Zhao, Y.-L.; Meng, J.; Ren, C.-Q.; Liu, Q. J. Org. Chem. 2012, 77, 5173.

were $Pd(OAc)_2$ (10 mol %), X-Phos (15 mol %), and K_2CO_3 as the base in toluene at 105 °C under N_2 for 13 h (Table 1, entry 15).

Under the optimized conditions (Table 1, entry 5), the substrate scope of the domino reaction was examined (Scheme 2). When the position (4, 5, or 6 position) of 2-formylphenyl triflate was introduced with a methoxy group, the domino reaction proceeded well, affording the corresponding acridines 3d-3f with 88-98% yields. In addition, when the methoxy group was changed with a benzyloxy group, a comparable yield could still be obtained (3g, 93% yield). Meanwhile, 4-methyl or 6-methyl substituted substrates could also be tolerated in the reaction to give the acridines **3h** and **3i** in good yields. Next, 4-chloro or 4-nitro substituted substrates could also furnish the target acridines 3i-3k, albeit the yields were somewhat low. Notably, the ring-fused substrate 11 could also give the product 31 in moderate yield, providing a useful access for the preparation of the benzo[a]acridine derivative.

Scheme 2. Reaction with Various 2-Formylphenyl Triflates^{*a,b*}

^{*a*} Reaction conditions: **2a** (0.2 mmol), **1** (0.24 mmol), Pd(OAc)₂-L, K_2CO_3 (2.0 equiv), toluene (2.0 mL) in a Schlenk tube at 105 °C under N_2 atmosphere. ^{*b*} Isolated yield.

To further test the generality of the domino reaction, a series of anilines (2a-2f) were investigated under the optimized reaction conditions (Scheme 3).¹⁰ When

Scheme 3. Reaction with Various Anilines^{*a,b*}

^{*a*} Reaction conditions: **2** (0.2 mmol), **1a** (0.24 mmol), Pd(OAc)₂-L, K₂CO₃ (2.0 equiv), and toluene (2.0 mL) in a Schlenk tube at 105 °C under a N₂ atmosphere. ^{*b*} Isolated yield. ^{*c*} The ratio of 3-methoxyacridine **3n** to 1-methoxyacridine **3n**' is 2:1.

3,5-dimethylaniline (2b) was used as the aniline component, the yield decreased greatly. Meanwhile, 3-methoxyaniline 2c could afford the corresponding acridine 3n with 70% yield, which had a 2:1 regioselective ratio and the annulation occurred at the less hindered site. We were pleased to find that 5-chloropyridin-2-amine 2d could also give the acridine 3o in moderate yield. However, when pyridin-2amines 2e was used to react with 2-formylphenyl triflate (1a), the corresponding acridine could not be formed. The isolated stable 2-amino-benzaldehyde derivative 4p was obtained, which indicated that the amination reaction is the first step of this domino reaction.

Based on the results and previous work,^{11,12} a preliminary mechanism of this domino reaction was proposed as follows (Scheme 4). The first step was the Pd-catalyzed amination reaction to form the diphenylamine intermediate **4**, which

^{(10) 2-}Hydroxyl aniline, 3-hydroxyl aniline, and 3-amino aniline had been tested, and the desired products were not formed. Meanwhile, when 3-isopropoxyaniline, 3-phenoxyaniline, and 3-(benzyloxy)aniline were used, trace products were observed, which were hard to isolate.

could be isolated for many substrates. Subsequently, the carbonyl group of intermediate 4 was activated by the Pd catalyst. Then, the cyclization occurred with the formation of intermediate 6 through an intramolecular nucleophilic attack from intermediate 5. After releasing the Pd catalyst, the aromatization reaction occurred with dehydration to generate the final acridine 3.

In summary, we have developed a Pd-catalyzed one-pot amination/cyclization/aromatization reaction to construct acridines for the first time. With Pd(OAc)₂-X-Phos as the catalyst, a series of unsymmetric acridines were obtained in moderate to excellent yields (up to 99% yield). Meanwhile, the diphenylamine intermediate could be isolated, which proved the domino reaction mechanism. Further investigation of the reaction mechanism is in progress in our laboratory.

Acknowledgment. We are grateful for financial support from the National Natural Science Foundation of China (Nos. 21072047, 21172059, 21272059, 21202039, and 21372066), Excellent Youth Foundation of Henan Scientific Committee (No. 114100510012), the Program for Innovative Research Team from the University of Henan Province (2012IRTSTHN006), the Program for Changjiang Scholars and Innovative Research Team in the University (IRT1061), and the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 13HASTIT013).

Supporting Information Available. Experimental procedure, characterization data, and copies of ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

^{(11) (}a) Burgos, C. H.; Barder, T. E.; Huang, X.; Buchwald, S. L. *Angew. Chem., Int. Ed.* **2006**, *45*, 4321. (b) Watanabe, T.; Ueda, S.; Inuki, S.; Oishi, S.; Fujii, N.; Ohno, H. *Chem. Commun.* **2007**, 416. (c) Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S. L. *Org. Lett.* **2008**, *10*, 3505. (d) Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. *J. Org. Chem.* **2009**, *74*, 4720. (e) Fors, B. P.; Buchwald, S. L. *J. Am. Chem. Soc.* **2010**, *132*, 15914.

^{(12) (}a) Bradsher, C. K. *Chem. Rev.* **1946**, *38*, 447. (b) Bradsher, C. K. *Chem. Rev.* **1987**, *87*, 1277. (c) Baum, J. S.; Condon, M. E.; Shook, D. A. *J. Org. Chem.* **1987**, *52*, 2983. (d) Kuninobu, Y.; Tatsuzaki, T.; Matsuki, T.; Takai, K. *J. Org. Chem.* **2011**, *76*, 7005.

The authors declare no competing financial interest.