This article was downloaded by: [Pennsylvania State University]
On: 20 July 2012, At: 01:50
Publisher: Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3J H, UK

Synthetic Communications: An International J ournal for Rapid Communication of Synthetic Organic Chemistry
 Publication details, including instructions for authors and subscription information: http:// www.tandfonline.com/ Ioi/ Isyc20

An Improved Procedure for the Conversion of Alkenes and Glycals to 1,2-Diazides Using $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O}$ in Acetonitrile Containing Trifluoroacetic Acid

Barry B. Snider* ${ }^{\text {a }} \&$ Hong Lin ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Brandeis University, Waltham, MA, 02254-9110

Version of record first published: 20 Aug 2006

To cite this article: Barry B. Snider* \& Hong Lin (1998): An Improved Procedure for the Conversion of Alkenes and Glycals to 1,2-Diazides Using Mn(OAc) $)_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in Acetonitrile Containing Trifluoroacetic Acid, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 28:10, 1913-1922

To link to this article: http://dx.doi.org/ 10.1080/00397919808007024

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan,
sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

AN IMPROVED PROCEDURE FOR THE CONVERSION OF ALKENES AND GLYCALS TO 1,2-DIAZIDES USING $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot \mathbf{2 H}_{2} \mathrm{O}$ IN ACETONITRILE CONTAINING TRIFLUOROACETIC ACID

Barry B. Snider* and Hong Lin
Department of Chemistry, Brandeis University, Waltham, MA 02254-9110

Abstract

Alkenes and Glycals react with $\mathrm{Mn}\left(\mathrm{OAc}_{3}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and NaN_{3} in 9:1 acetonitrile-trifluoroacetic acid to give 1,2 -diazides in $>80 \%$ yield. Allylic azides are formed by slow addition of NaN_{3} to a mixture of alkene, $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$.

In 1985, Fristad and coworkers reported that simple alkenes are converted to $50-75 \%$ of the corresponding 1,2 -diazide by reaction with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and excess NaN_{3} in AcOH at $70-116^{\circ} \mathrm{C}$ for $10-30 \mathrm{~min}$. ${ }^{1-3}$ Extension of this procedure to glycals to provide 2-azido-2-deoxyglycopyranosyl azides would be of synthetic utility since glycopyranosyl azides have been extensively used for the preparation of glycosylated asparagine derivatives,4,5 while 2-azido-2-deoxyglycopyranosyl donors have been extensively used as intermediates for the preparation of 2-amino-2-deoxyglycose containing oligosacharrides. 6-8 These donors were first prepared as a mixture of stereoisomers by Lemieux and Ratcliffe by conversion of the glycal to the 2-azido-2-deoxyglycopyranosyl nitrate with ceric ammonium nitrate and sodium azide in acetonitrile as the first step. 6 2-Azido-2-deoxyglycopyranosyl phenyl selenides have been prepared as mixtures of stereoisomers by addition of sodium azide and diphenyldiselenide in the presence of (diacetoxyiodo)benzene 9 to peracetylated glycals. 8

Initial experiments were conducted with dihydropyran (1) as a glycal model. Protonation of the enol ether double bond of 1 is faster than azide oxidiation under Fristad's conditions with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and excess NaN_{3} in AcOH at reflux so
that tetrahydropyranol and tetrahydropyranyl azide are the major products. We eventually found that azide oxidation can be accomplished with very little enol ether protonation by carrying out the reaction in 9:1 acetonitrile-trifluoroacetic acid (MeCN-TFA) 10 at low temperature. Reaction of 1 as a 0.1 M solution with 3 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 5 equiv of NaN_{3} in $9: 1 \mathrm{MeCN}-\mathrm{TFA}$ for 3 min at $-20^{\circ} \mathrm{C}$ provides 86% of a $94: 6$ inseparable mixture of trans and cis diazides 2 and 3 and $<10 \%$ of tetrahydropyranol and tetrahydropyranyl azide resulting from protonation of the double bond. The stereochemistry is assigned based on the coupling between the methine hydrogens which should be larger for the diaxial hydrogens in the trans isomer $2(6.6 \mathrm{~Hz})$ than for the equatorial and axial hydrogens in the cis isomer $3(3.7 \mathrm{~Hz})$.

This solvent mixture works equally well with peracetylated or perbenzylated glycals. Reaction of 3,4,6-tri-O-acetyl-D-glucal (4a) with 3 equiv of $\mathrm{Mn}(\mathrm{OAc}$) $3 \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and 5 equiv of NaN_{3} in $9: 1 \mathrm{MeCN}$-TFA for 2 h at $25^{\circ} \mathrm{C}$ provides 92% of a partially separable 52:31:17 mixture of 5a, 6a and 7a. A similar reaction with 3,4,6-tri-O-acetyl-D-galactal (8) yields 83% of a $60: 40$ mixture of 911 and 10.11 The stereochemistry of the products was assigned based on the coupling pattern of H_{2} which absorbs as a doublet of doublets: $5 \mathbf{a}(J=3.3,1.6 \mathrm{~Hz})$, $\mathbf{6 a}(J=10.3$, $4.1 \mathrm{~Hz}), 7 \mathrm{a}(J=9.9,9.0 \mathrm{~Hz}), 9(J=10.9,4.3 \mathrm{~Hz})$, and $10(J=10.7,8.9 \mathrm{~Hz})$. $\mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3} are all axial in 7 a and 10 , in which H_{2} has two large coupling constants, H_{2} and H_{3} are axial and H_{1} is equatorial in $6 a$ and 10 , in which H_{2} has one large coupling constant, and H_{3} is axial and H_{1} and H_{2} are equatorial in 5a, which has two small coupling constants.

Azide addition to 3,4,6-tri- O-benzyl-D-glucal (4b) for 2 h at $0^{\circ} \mathrm{C}$ affords 81% of an inseparable 41:32:27 mixture of $\mathbf{5 b}, \mathbf{6 b}$ and $\mathbf{7 b}$. The stereochemistry was assigned by analogy to $5 \mathrm{a}-7 \mathrm{a}$ based on the coupling constant between H_{1} and H_{2}. Oxidation of the benzyl groups to benzaldehyde occurs at $25^{\circ} \mathrm{C}$. As expected the mixtures of stereoisomers produced from $\mathbf{4 a}, \mathbf{4 b}$, and 8 are similar to those formed in glycal azidonitrations, 6,7 and azidophenylselenations ${ }^{8}$ since all of these processes involve the addition of the azide radical to the glycal double bond.

$4 \mathrm{a}, \mathrm{R}=\mathrm{Ac}$
$\mathbf{4 b}, \mathrm{R}=\mathrm{Bn}$
$\xrightarrow[9: 1 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{TFA}]{\substack{3 \text { equiv } \mathrm{Mn}(\mathrm{OAc})_{3} \\ 5 \text { equiv } \mathrm{NaN}_{3}}}$

6a, $R=A c(28 \%)$
$\mathbf{6 b}, \mathrm{R}=\mathrm{Bn}(26 \%)$

5a, $\mathrm{R}=\mathrm{Ac}(48 \%)$
5b, $\mathrm{R}=\mathrm{Bn}(33 \%)$

Azide addition to simple alkenes proceeds in higher yields and is much faster in 9:1 MeCN-TFA than in acetic acid. Cyclohexene (11a) affords 88% of a $3: 1$ mixture of $12 \mathrm{a}^{12}$ and $13 \mathrm{a}^{12} \mathrm{in} 5 \mathrm{~min}$ at $-20^{\circ} \mathrm{C}$ versus 59% of a $4: 1$ mixture in acetic acid at $85^{\circ} \mathrm{C} .1^{1}$ Similarly cyclooctene (11b) affords 74% of a $5: 1$ mixture of $\mathbf{1 2 b}$ and 13 b in 5 min at $-20^{\circ} \mathrm{C}$ versus 51% of $6: 1$ mixture in acetic acid at $85^{\circ} \mathrm{C} .1$ Since addition of azide to cyclohexene and dihydropyran occurs at similar rates, the reaction proceeds by oxidiation of azide rather than oxidation of the alkene to a cation-radical, which would occur much more rapidly for dihydropyran than for cyclohexene.

11a, $\mathrm{n}=1$
11b, $\mathrm{n}=3$
$\xrightarrow[\text { 9:1 } \mathrm{CH}_{3} \mathrm{CN} / \mathrm{TFA}]{\substack{3 \text { equiv } \mathrm{Mn}(\mathrm{OAc})_{3} \\ 5 \text { equiv } \mathrm{NaN}_{3}}}$

$12 \mathrm{a}, \mathrm{n}=1(66 \%) \quad 13 \mathrm{a}, \mathrm{n}=1(22 \%)$
12b, $n=3$ (62\%) 13b, $n=3$ (12\%)

Even though TFA is a much stronger acid than acetic acid, double bond protonation is less of a problem in MeCN-TFA mixtures than in acetic acid, presumably because the TFA accelerates oxidation of azide anion more than it accelerates protonation of the double bond. The very acid-sensitive β-pinene (14)
decomposes in 9:1 MeCN-TFA, but gives diazide 16a stereospecifically in 87% yield in 97:3 MeCN-TFA ($3.5 \mathrm{~h}, 25^{\circ} \mathrm{C}$) without accompanying opening of the strained four-membered ring. This suggests that conversion of intermediate radical 15 to diazide 16a, probably by ligand transfer from a Mn (III) azide, 1 is exceedingly rapid, since opening of the cyclobutylcarbinyl radical of 15 should proceed with a rate constant of about $105 \mathrm{~s}^{-1} .13,14$ Hydrogenation of $\mathbf{1 6 a}$ over $5 \% \mathrm{Pd} / \mathrm{C}$ in EtOH at $1 \mathrm{~atm} \mathrm{H}_{2}$ provides 59% of diamine $\mathbf{1 6 b}$, which may be a useful ligand for asymmetric synthesis.

The electrophilic azide radical will even add to α, β-unsaturated enones in 9:1 MeCN-TFA. Addition of azide to 2-cyclohexenone (17) over 12 h at $25^{\circ} \mathrm{C}$ affords 31% of 2 -azido-2-cyclohexenone (18). 15 2,3-Diazidocyclohexanone can be detected spectroscopically, but eliminates hydrazoic acid under the reaction conditions to give 18.

Primary and secondary radicals formed in Mn (III)-based oxidative free-radical cyclizations can be oxidized to alkenes by $\mathrm{Cu}(\mathrm{OAc})_{2} .{ }^{16}$ We investigated the oxidation of alkenes with $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{Cu}(\mathrm{OAc})_{2}$, and NaN_{3} to determine whether oxidation of the intermediate β-azidoalkyl radical by $\mathrm{Cu}(\mathrm{OAc})_{2}$ to give an allylic azide could compete with ligand transfer from a $\mathrm{Mn}(I I I)$ azide to give a 1,2diazide. Reaction of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{Cu}(\mathrm{OAc})_{2}$, and NaN_{3} with cyclooctene in 9:1 MeCN-TFA gives a 1:20 mixture of allylic azide 20 and diazides $\mathbf{1 2 b}$ and 13b, indicating that azide transfer is much faster than oxidation by $\mathrm{Cu}(\mathrm{II})$ in this solvent mixture. Better results are obtained in 98:2 AcOH-TFA, which affords a 3:1
mixture of allylic azide 20 and diazides 12b and 13b. The best results are obtained by slow addition (1.5 h) of a solution of sodium azide in AcOH with a syringe pump to a solution of 4 equiv of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 1$ equiv of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and cyclooctene in 98:2 AcOH-TFA at $25^{\circ} \mathrm{C}$. These conditions provide 65% of allylic azide $\mathbf{2 0}$, only traces of diazides $\mathbf{1 2 b}$ and $\mathbf{1 3 b}$, and 12% of allylic diazides 21a and 21b, which are formed by azide addition to allylic azide 20. Under these conditions cyclohexene undergoes mainly allylic oxidation to give 2-cyclohexenyl acetate as has been previously observed with $\mathrm{Co}(\mathrm{OAc})_{3 .} .17$ A similar reaction with

1-octene (21) affords 22% of diazide 25 and 48% of a $28: 65: 7$ mixture of allylic azides $23,24 E$ and $25 Z,{ }^{18}$ which are known to equilibrate readily at room temperature. 18 Thus it is possible to trap β-azidoalkyl radicals 19 and 22 with $\mathrm{Cu}(\mathrm{OAc})_{2}$, rather than with $\mathrm{Mn}(\mathrm{II})-\mathrm{N}_{3}$, if the azide concentration is kept low. This
provides an efficient route to allylic azides that may be of synthetic value for symmetrical azides such as $\mathbf{2 0}$.

In conclusion, we have shown that 2-azido-2-deoxyglycopyranosyl azides 57, and 9-10, can be prepared from glycals and $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot{ }^{2} \mathrm{H}_{2} \mathrm{O}$ and NaN_{3} in 9:1 MeCN -TFA and that this solvent mixture permits the use of electron deficient alkenes such as 2 -cyclohexenone (17). Acid-sensitive alkenes such as β-pinene (14) can be used successfully in $97: 3 \mathrm{MeCN}$-TFA. Finally allylic azides can be prepared by slow addition of NaN_{3} in AcOH to $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{O}$, and an alkene in 98:2 AcOH-TFA at $25^{\circ} \mathrm{C}$. These protocols significantly extend the scope of azide addition to alkenes using $\mathrm{Mn}(\mathrm{OAc})_{3}$.

Experimental Section

General Procedures. NMR spectra were recorded at 300 MHz in CDCl_{3}, chemical shifts are reported in δ and coupling constants in Hz and \mathbb{R} spectra are reported in cm^{-1}.
trans- and cis-1,2-Diazidotetrahydropyran (2,3). Dihydropyran (1) ($0.061 \mathrm{~mL}, 0.5 \mathrm{mmol}$) and TFA (0.45 mL) were added to a suspension of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(402 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(162.5 \mathrm{mg}, 2.5 \mathrm{mmol})$ in 4.5 mL of MeCN at $-20^{\circ} \mathrm{C}$ under N_{2}. The reaction was complete in 3 min . Saturated NaHSO_{3} aqueous solution was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 15 \mathrm{~mL}$). The combined organic layers were washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Flash chromatography of the residue on silica gel (10:1 hexane-EtOAc) gave 72.4 mg (86%) of an inseparable $94: 6$ mixture of 2 and 3: 1 H NMR (2) 4.64 (d, $1, J=$ 6.6), $3.99(\mathrm{~m}, 1), 3.57(\mathrm{~m}, 1), 3.27(\mathrm{~m}, 1), 1.38-2.20(\mathrm{~m}, 4)$; (3) $5.20(\mathrm{~d}, 1, J=$ 3.7), $4.40(\mathrm{~m}, 1), 3.82(\mathrm{~m}, 1), 3.67(\mathrm{~m}, 1), 1.38-2.20(\mathrm{~m}, 4) ;{ }^{13} \mathrm{C}$ NMR (2) 89.9, $65.0,59.2,26.2,22.5$; (3) 88.4, 61.5, 57.5, 23.1, 23.0; IR (neat) 2954, 2864, 2105, 1253.

Azide Addition to 4 a . TFA (0.45 mL) was added to a suspension of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot \mathrm{AH}_{2} \mathrm{O}(402 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathrm{NaN}_{3}(162.5 \mathrm{mg}, 2.5 \mathrm{mmol})$, and $4 \mathrm{a}(136$ $\mathrm{mg}, 0.5 \mathrm{mmol}$) in 4.5 mL of MeCN at $-20^{\circ} \mathrm{C}$ under N_{2}. The reaction was warmed up to $25^{\circ} \mathrm{C}$ and stirred for 2 h . Work up as described above followed by flash chromatography of the residue on silica gel ($2: 2: 1$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}$) gave 11 mg of 5 a , followed by 91 mg of a $63: 37$ mixture of 5 a and $\mathbf{6 a}, 20 \mathrm{mg}$ of a $55: 45$ mixture of 5 a and $\mathbf{6 a}, 40 \mathrm{mg}$ of a 16:21:63 mixture of $5 \mathrm{a}, \mathbf{6 a}$ and 7 a , and 3 mg of crystalline 7a. The total yield is $165 \mathrm{mg}(92 \%)$ of a $52: 31: 17$ mixture of $\mathbf{5 a}, \mathbf{6 a}$ and 7a: IR (neat, mixture) 2959, 2111, 1749.

Data for 3,4,6-tri- O-acetyl-2-azido-2-deoxy- α-D-mannopyranosyl azide (5a): ${ }^{1} \mathrm{H}$ NMR 5.41 (d, 1, $J=1.6$), 5.30 (dd, $1, J=9.8,9.5$), 5.29 (dd, $1, J=9.5$, 3.3), 4.28 (dd, $1, J=12.4,5.0$), 4.16 (dd, $1, J=12.4,2.3$), 4.10 (m, 1), 3.96 (dd, $1, J=3.3,1.6$), $2.12(\mathrm{~s}, 3), 2.10(\mathrm{~s}, 3), 2.06(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR 170.6, 169.8, $169.4,87.8,70.6,70.3,65.3,61.8,61.0,20.7,20.6,20.5$.

Data for 3,4,6-tri- O-acetyl-2-azido-2-deoxy- α-D-glucopyranosyl azide (6a) were determined from the $45: 55$ mixture with 5a: 1 H NMR 5.47 ($\mathrm{d}, 1, J=4.1$),
5.36 (dd, $1, J=10.3,9.3$), $5.03(\mathrm{t}, 1, J=9.3$), 4.29 (dd, $1, J=12.0,4.4), 4.18$ (m, 1), 4.12 (dd, $1, J=12.0,2.3$), 3.66 (dd, $1, J=10.3,4.1$), 2.10 (s, 3), 2.09 (s, 3), 2.04 (s, 3); ${ }^{13} \mathrm{C}$ NMR 170.4, 169.7, 169.6, 87.8, 70.7, 69.7, 68.0, 61.5, 60.7, 20.6, 20.5, 20.5.

Data for 3,4,6-tri- O-acetyl-2-azido-2-deoxy- β-D-glucopyranosyl azide (7a): ${ }^{1} \mathrm{H}$ NMR 5.04 (m, 2), 4.64 (d, 1, $J=9.0$), 4.30 (dd, $1, J=12.5,4.7$), 4.14 (dd, $1, J=12.5,2.3$), 3.77 (m, 1), 3.41 (dd, 1, $J=9.9,9.0$), $2.10(\mathrm{~s}, 6), 2.03(\mathrm{~s}, 3)$; ${ }^{13} \mathrm{C}$ NMR $170.6,169.8,169.5,89.1,73.9,72.9,67.8,63.6,61.6,20.7,20.6$, 20.5; \mathbb{R} (neat) $2961,2112,1747$.

Azide Addition to 4 b . TFA (0.22 mL) was added to a suspension of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($226 \mathrm{mg}, 0.87 \mathrm{mmol}$), NaN_{3} ($135 \mathrm{mg}, 2.0 \mathrm{mmol}$) and 4 (98 $\mathrm{mg}, 0.235 \mathrm{mmol}$) in 2.2 mL of MeCN at $-20^{\circ} \mathrm{C}$ under N_{2}. The reaction was warmed up to $0^{\circ} \mathrm{C}$ and stirred for 2 h . Work up as described above followed by flash chromatography of the residue on silica gel ($2: 2: 1$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}$) gave 15 mg of a $54: 39: 8$ mixture of $\mathbf{5 b}, \mathbf{6 b}$, and $\mathbf{7 b}$, followed by 64.8 mg of a 41:34:25 mixture of $\mathbf{5 b}, \mathbf{6 b}$, and $\mathbf{7 b}$, and 13 mg of a $27: 13: 60$ mixture of $\mathbf{5 b}, \mathbf{6 b}$ and $\mathbf{7 b}$. The total yield is $92.8 \mathrm{mg}(81 \%)$ of a $41: 32: 27$ mixture of $\mathbf{5 b}, \mathbf{6 b}$ and $\mathbf{7 b}$: IR (neat, mixture) 3031, 2917, 2108.

Partial data for 3,4,6-tri-O-benzyl-2-azido-2-deoxy- α-D-mannopyranosyl azide (5b): ${ }^{1} H$ NMR 5.34 (d, $1, J=2.0$); ${ }^{13} \mathrm{C}$ NMR 88.2, 78.9, 75.2, 73.8, 73.8, 73.6, 73.0, 68.3, 61.0 .

Partial data for 3,4,6-tri-O-benzyl-2-azido-2-deoxy- α-D-glucopyranosyl azide (6b): ${ }^{1} \mathrm{H}$ NMR 5.42 (d, $1, J=4.1$), 3.58 (dd, $1, J=4.1,9.8$); ${ }^{13} \mathrm{C}$ NMR 88.3, 80.4, 77.7, 75.7, 75.0, 73.6, 73.0, 67.9, 63.1;

Partial data for 3,4,6-tri-O-benzyl-2-azido-2-deoxy- β-D-galactopyranosyl azide (7b): ${ }^{1} \mathrm{H}$ NMR $3.31(\mathrm{t}, 1, J=9.3)$; ${ }^{13} \mathrm{C}$ NMR 89.1, 83.3, 77.3, 77.2, 75.7, 75.1, 73.6, 68.1, 66.0.

Azide Addition to 8. TFA (0.45 mL) was added to a suspension of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(380 \mathrm{mg}, 1.34 \mathrm{mmol}), \mathrm{NaN}_{3}(239 \mathrm{mg}, 2.23 \mathrm{mmol})$ and $3,4,6-$ tri-O-acetyl-D-galactal ($121.5 \mathrm{mg}, 0.446 \mathrm{mmol}$) in 4.5 mL of MeCN at $-20^{\circ} \mathrm{C}$ under N_{2}. The reaction was warmed up to $25^{\circ} \mathrm{C}$ and stirred for 2 h . Work up as described above followed by flash chromatography of the residue on silica gel (2:2:1 hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}$) gave 17 mg of 9 , followed by 87 mg of a $60: 40$ mixture of 9 and 10 and 14 mg of a 1:9 mixture of 9 and 10 . The total yield is 118 mg (82.5%) of a $60: 40$ mixture of 9 and 10: \mathbb{R} (neat, mixture) 2967, 2115, 1748.

Data for 3,4,6-tri- O-acetyl-2-azido-2-deoxy- α-D-galactopyranosyl azide (9): 1 H NMR 5.50 (d, $1, J=4.3$), 5.44 (dd, $1, J=1.4,3.1$), 5.20 (dd, $1, J=3.1$, 10.9), 4.36 (m, 1), 4.12 (m, 2), 3.92 (dd, $1, J=10.9,4.3$), 2.16 (s, 3), 2.06 (s, 3), 2.06 (s, 3); ${ }^{13} \mathrm{C}$ NMR 170.4, 169.8, 169.5, 88.0, 68.6, 68.5, 66.9, 61.2, $57.0,20.4,20.3,20.1$. The ${ }^{1} \mathrm{H}$ NMR data are identical to those previously reported. 11

Data for 3,4,6-tri-O-acetyl-2-azido-2-deoxy- β-D-galactopyranosyl azide (10) were determined from the $9: 1$ mixture with $9: 1 \mathrm{H}$ NMR 5.37 (dd, $1, J=1.0,2.8$), 4.85 (dd, $1, J=10.7,2.8$), 4.61 (d, $1, J=8.9$), 4.15 (m, 2), 3.96 (t, $1, J=$ 10.7), 3.59 (dd, $1, J=10.7,8.9$), 2.17 (s,3), $2.06(\mathrm{~s}, 3), 2.06(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $170.3,169.9,169.6,89.0,72.5,71.2,66.9,61.0,60.3,20.6,20.6,20.5$. The 1 H NMR data are identical to those previously reported. 11
trans - and cis-1,2-Diazidocyclohexane (12a, 13a). Cyclohexene ($0.051 \mathrm{~mL}, 0.5 \mathrm{mmol}$) and 0.45 mL TFA were added to a suspension of
$\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(402 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(162.5 \mathrm{mg}, 2.5 \mathrm{mmol})$ in 4.5 mL of MeCN at $-20^{\circ} \mathrm{C}$ under N_{2}. The reaction was complete in 5 min . Work up as described above followed by flash chromatography of the residue on silica gel ($25: 1$ hexane-EtOAc) gave 71.9 mg (87.5%) of an inseparable $3: 1$ mixture of 12 a and 13a. The data are identical to those previously reported. 12
trans - and cis-1,2-Diazidocyclooctane (12b, 13b). Cyclooctene ($0.072 \mathrm{~mL}, 0.55 \mathrm{mmol}$) and TFA (0.45 mL) were added to a suspension of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(402 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(162.5 \mathrm{mg}, 2.5 \mathrm{mmol})$ in 4.5 mL of MeCN at $-20^{\circ} \mathrm{C}$ under N_{2}. The reaction was complete in 5 min . Work up as described above followed by flash chromatography of the residue on silica gel ($25: 1$ hexane-EtOAc) gave $82.2 \mathrm{mg}(74 \%)$ of an inseparable $5: 1$ mixture of $\mathbf{1 2 b}$ and 13b: 1H NMR 3.75 (m, $0.16 \times 2,13 b), 3.50(\mathrm{~m}, 0.83 \times 2,12 b), 1.35-2.00(\mathrm{~m}$, 12); ${ }^{13}$ C NMR (12b) $66.6,29.3,25.6,24.7$; (13b) $63.4,28.1,26.4,23.5$; IR (neat) 2930, 2859, 2096.
[1R-(1 $\alpha, 2 \alpha, 5 \alpha)$]-2-Azido-2-azidomethyl-6,6-dimethylbicyclo-[3.1.1]-heptane (16a). (1 S)-(-)- β-Pinene $(0.159 \mathrm{~mL}, 1.0 \mathrm{mmol})$ and TFA (0.30 mL) were added to a suspension of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(804 \mathrm{mg}, 3.0 \mathrm{mmol})$ and NaN_{3} ($325 \mathrm{mg}, 5.0 \mathrm{mmol}$) in 9.7 mL of MeCN at $-20^{\circ} \mathrm{C}$ under N_{2}. The reaction was warmed up to $25^{\circ} \mathrm{C}$ and stirred for 3.5 h . Work up as described above followed by flash chromatography of the residue on silica gel ($50: 1$ hexaneEtOAc) gave 191 mg (87%) of 16a: lH NMR 3.43 (s, 2), 2.36 (m, 1), 2.23 (dd, $1, J=4.9,6.2$), 2.02-1.78 (m, 5), 1.42 (d, $1, J=10.4$), $1.29(\mathrm{~s}, 3), 0.99(\mathrm{~s}, 3)$; ${ }^{13}$ C NMR 69.4, 59.9, 47.1, 40.2, 38.4, 28.2, 27.5, 25.1, 24.9, 23.3; IR (neat) 2925, 2106. The 2D NOSEY spectrum shows a cross peak between the $\mathrm{CH}_{2} \mathrm{~N}_{3}$ at $\delta 3.43$ and the CH_{3} at $\delta 0.99$ establishing the stereochemistry.
[1R-(1 $\alpha, 2 \alpha, 5 \alpha)]-2-A \operatorname{mino-7,7-dimethyl-2-bicyclo[3.1.1]hep-~}$ taneethanamine (16b). $\mathrm{Pd} / \mathrm{C}(5 \%, 23 \mathrm{mg})$ was added to a solution of 191 mg of 16 a in 5 mL of EtOH. The reaction mixture was stirred overnight under 1 atm of H_{2} and filtered through celite, which was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were concentrated under reduced pressure. Flash chromatography of the residue on silica gel ($4 \% \mathrm{Et}_{3} \mathrm{~N}$ in 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}$) gave $100 \mathrm{mg}(59.5 \%)$ of 16b: 1H NMR 2.69 (d, 1, $J=13.0$), 2.64 (d, $1, J=13.0$), $2.23(\mathrm{~m}, 1), 1.98-1.72$ (m, 9), $1.52(\mathrm{~m}, 1), 1.32(\mathrm{~d}, 1, J=10.3), 1.24(\mathrm{~s}, 3), 0.98(\mathrm{~s}, 3)$; ${ }^{13} \mathrm{C}$ NMR $56.9,52.3,51.1,41.2,38.7,28.6,28.0,27.9,25.2,23.9$; IR (neat) 3399, 2911.

2-Azido-2-cyclohexenone (18). Cyclohexenone ($0.048 \mathrm{~mL}, 0.5 \mathrm{mmol}$) and TFA (0.45 mL) were added to a suspension of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(402 \mathrm{mg}, 1.5$ mmol) and $\mathrm{NaN}_{3}(162.5 \mathrm{mg}, 2.5 \mathrm{mmol})$ in 4.5 mL of MeCN at $-20^{\circ} \mathrm{C}$ under N_{2}. The reaction was warmed up to $25^{\circ} \mathrm{C}$ and stirred overnight. Work up as described above followed by flash chromatography of the residue on silica gel ($4: 1$ hexaneEtOAc) gave 42 mg (31%) of 18: ${ }^{1} \mathrm{H}$ NMR 6.44 (t, $1, J=4.6$), 2.54 ($\mathrm{t}, 2, J=$ 6.6), 2.44 ($\mathrm{m}, 2$), $2.02(\mathrm{~m}, 2) ;{ }^{13} \mathrm{C}$ NMR 194.0, 135.2, 132.8, 38.3, 25.1, 22.6; IR (neat) $2110,1682,1620$. The data are identical to those previously reported. 15

3-Azidocyclooctene (20). TFA (0.20 mL) was added to a suspension of cyclooctene ($0.065 \mathrm{~mL}, 0.5 \mathrm{mmol}), \mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(536 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2}(91 \mathrm{mg}, 0.5 \mathrm{mmol})$ in 5 mL of acetic acid at $25^{\circ} \mathrm{C}$ under $\mathrm{N}_{2} . \mathrm{NaN}_{3}(65$ $\mathrm{mg}, 1.0 \mathrm{mmol}$) dissolved in 5 mL of acetic acid was then added by a syringe pump over 1.5 h . The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h and treated with saturated NaHSO_{3} solution. Flash chromatography of the residue on silica gel
(25: I hexane-EtOAc) gave 49 mg (65\%) of 20 followed by 13 mg (13\%) of a $1: 1$ mixture of 21a, 21b and a trace of $\mathbf{1 2 b}$.

Data for 20: ${ }^{1} \mathrm{H}$ NMR 5.77 (dddd, $1, J=1.5,8.1,9.7,10.6$), 5.48 (dd, $1, J$ $=7.7,10.6), 4.35(\mathrm{~m}, 1), 2.18-2.11(\mathrm{~m}, 2), 1.91(\mathrm{~m}, 1), 1.76-1.36(\mathrm{~m}, 7) ;{ }^{13} \mathrm{C}$ NMR 131.2, 129.5, 59.3, 35.3, 28.9, 26.4, 25.9, 24.1; IR (neat) 2932, 2858, 2095, 1651.

Data for trans-3,4-diazidocyclooctene (21a): IH NMR 5.92 (dddd, $1, J=$ $1.0,8.3,9.6,10.4$), 5.44 (ddd, $1, J=1.5,8.2,10.4$), 4.34 (ddd, $1, J=1.0,8.2$, 9.8), 3.47 (ddd, $1, J=4.1,9.8,10.2$), 2.20 (m, 2), 2.00-1.25 (m, 6); ${ }^{13} \mathrm{C}$ NMR 134.3, 127.1, 67.0, 63.2, 30.0, 28.3, 27.6, 22.3.

Data for cis-3,4-diazidocyclooctene (21b): 1H NMR 5.98 (dddd, $1, J=1.3$, $7.7,8.9,10.5$), 5.62 (ddd, $1, J=1.5,8.1,10.5$), 4.48 (ddd, $1, J=1.3,3.1$, 8.1), 3.79 (ddd, $1, J=3.1,4.0,9.2$), 2.48-1.30 (m, 8); ${ }^{3} \mathrm{C}$ NMR 134.2, 125.3, 66.0, 60.9, 29.8, 28.9, 26.7, 21.4.

Allylic Azide Formation from 1-Octene. TFA (0.20 mL) was added to a suspension of 1 -octene ($0.078 \mathrm{~mL}, 0.5 \mathrm{mmol}$), $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(536 \mathrm{mg}, 2.0$ mmol) and $\mathrm{Cu}(\mathrm{OAc})_{2}(182 \mathrm{mg}, 1.0 \mathrm{mmol})$ in 5 mL of acetic acid at $25^{\circ} \mathrm{C}$ under $\mathrm{N}_{2} . \mathrm{NaN}_{3}(65 \mathrm{mg}, 1.0 \mathrm{mmol})$ dissolved in 5 mL of acetic acid was then added with a syringe pump over 1.5 h . The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h and treated with saturated NaHSO_{3} solution. Flash chromatography of the residue on silica gel ($25: 1$ hexane-EtOAc) gave 37 mg (48%) of an inseparable 28:65:7 mixture of $23,24 \mathrm{E}$ and 24 Z , followed by $21 \mathrm{mg}(22 \%) 25$. The structures were assigned by comparison to analogous compounds. ${ }^{18 a, b}$

Data for 3-azido-1-octene (23) were determined from the mixture: 1 H NMR 5.74 (ddd, $1, J=7.7,10.6,16.0$), 5.264 (dt, $1, J=16.0,1.2$), 5.256 (dt, $1, J=$ $10.6,1.2), 3.80(\mathrm{dt}, 1, J=7.7,7.1), 1.6-1.2(\mathrm{~m}, 8), 0.89(\mathrm{t}, 3, J=6.8) ;{ }^{13} \mathrm{C}$ NMR 135.9, 117.9, 65.1, 34.2, 31.4, 29.2, 25.4, 14.0; \mathbb{R} (neat, mixture of $23-$ 24) $2929,2858,2099$.

Data for 1 -azido- $2 E$-octene (24 E) were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR $5.76(\mathrm{~m}, 1), 5.51(\mathrm{~m}, 1), 3.70(\mathrm{~d}, 2, \quad J=6.4), 2.08(\mathrm{td}, 2, J=7.0,7.0)$, 1.6-1.2 (m, 6), $0.89(\mathrm{t}, 3, J=6.8) ;{ }^{13} \mathrm{C}$ NMR 137.3, 122.6, 52.9, 32.2, 31.3, 28.7, 22.5, 14.0.

Partial data for 1 -azido-2Z-octene (24z) were determined from the mixture: ${ }^{1}$ H NMR 3.80 (d, 2, $J=7.1$); ${ }^{13} \mathrm{C}$ NMR 136.4, 121.8, 52.8.

Data for 1,2-diazidooctane (25): 1 H NMR 3.46 (m, 1), 3.39 (dd, $1, J=4.0$, 11.6), 3.30 (dd, $1, J=7.4,11.6$), $1.60-1.20$ (m, 10), 0.90 (t, $3, J=7.4$); ${ }^{13} \mathrm{C}$ NMR 62.0, 54.8, 31.7, 31.5, 28.9, 25.8, 22.5, 14.0; IR (neat) 2932, 2860, 2103.

Acknowledgment. We thank the National Institutes of Health for Financial Support.

REFERENCES AND NOTES

1. Fristad, W. E.; Brandvold, T. A.; Peterson, J. R.; Thompson, S. R. J. Org. Chem. 1985, 50, 3647-3649.
2. Comparable yields of 1,2 -diazides are obtained by oxidation of alkenes with iodosobenzene and sodium azide in acetic acid at $35-50^{\circ} \mathrm{C}$: Moriarty, R. M.; Khosrowshahi, J. S. Tetrahedron Lett., 1986, 27, 2809-2812.
3. Enol ethers are converted to diazides with TMSN_{3}, iodosobenzene and TEMPO at $-45^{\circ} \mathrm{C}$: Magnus, P.; Roe, M. B.; Hulme, C. J. Chem. Soc., Chem. Commun. 1995, 263-265.
4. Tropper, F. D.; Andersson, F. O.; Braun, S.; Roy, R. Synthesis 1992, 618620.
5. Inazu, T.; Kobayashi, K. Synlett 1993, 869-870.
6. Lemieux, R. U.; Ratcliffe, R. M. Can. J. Chem. 1979, 57, 1244-1251.
7. Briner, K.; Vasella, A. Helv. Chim. Acta 1987, 70, 1341-1355.
8. Czernecki, S.; Ayadi, E. Can. J. Chem. 1995, 73, 343-350.
9. Tingoli, M.; Tiecco, M.; Chianelli, D.; Balducci, R.; Temperini, A. J. Org. Chem. 1991, 56, 6809-6813.
10. For the use of mixed solvents containing TFA see: Bewick, A.; Mellor, J. M.; Owton, W. M. J. Chem. Soc., Perkin Trans. 1 1985, 1039-1044.
11. Szilágyi, L.; Györgydeák, Z. Carbohydr. Res. 1985, 143, 21-41.
12. (a) Emmer, G.; Zbrial, E. Liebigs Ann. Chem. 1979, 796-802. (b) Loibner, H.; Zbrial, E. Helv. Chim. Acta 1976, 59, 2100-2113.
13. Beckwith, A. L. J.; Moad, G. J. Chem. Soc., Perkin Trans. 2 1980, 10831092.
14. Free-radical additions to β-pinene almost always proceed with ring cleavage See: Erman, W. F. Chemistry of the Monoterpenes. An Encyclopedic Handbook. Part B; Marcel Dekker: New York, 1985; p. 985.
15. Molina, P.; Pastor, A.; Vilaplana, M. J.; Foces-Foces, C.; Tetrahedron 1995, 51, 1265-1276.
16. (a) Snider, B. B. Chem. Rev. 1996, 96, 339. (b) Melikyan, G. G. In Organic Reactions; Paquette, L. A., Ed.; Wiley: New York, 1997; Vol. 49, Chapter 3.
17. Bewick, A.; Coe, D.; Mellor, J. M.; Pekel, A. T. Syn. Commun. 1981, 11 , 133-137.
18. (a) Kanai, T.; Kanagawa, Y.; Ishii, Y. J. Org. Chem. 1990, 55, 3274-3277.
(b) Murahashi, S.-I.; Taniguchi, Y.; Imada, Y.; Tanigawa, Y. J. Org. Chem. 1989, 54, 3292-3303. (c) McManus, M. J.; Berchtold, G. A.; Jerina, D. M. J. Am. Chem. Soc. 1985, 107, 2977-2978. (d) VanderWerf, C. A.; Heasley, V. L. J. Org. Chem. 1966, 31, 3534-3537. (e) Gagneux, A.; Winstein, S.; Young, W. G. J. Am. Chem. Soc. 1960, 82, 5956-5957.
(Received in the USA 02 November 1997)
