Reactivity of p-Phenyl Substituted β -Enamino Compounds using K-10/ultrasound. II [1]. Synthesis of Isoxazoles and 5-Isoxazolones Claudete J. Valduga, Denise B. Santis, Hugo S. Braibante and Mara E. F. Braibante*

Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil Received September 1, 1998

The condensation of 4-phenyl substituted β -enamino ketones **1a-d** and β -enamino esters **5a-d** with hydroxylamine hydrochloride using K-10 as the solid support under sonication was studied to evaluate the formation of isoxazole and 5-isoxazolone rings from β -enamino compounds with a substituted aromatic ring. Isoxazoles **2a-c**, **3c-d** and 5-isoxazolones **6a-c** and **7a-d** were obtained. The use of K-10/ultrasound in this reaction furnished novel results in some cases.

J. Heterocyclic Chem., 36, 505 (1999).

Introduction.

We have been interested in the synthesis of heterocycles such as pyrazoles [1-2], isoxazoles and its derivatives from β -enamino compounds as starting materials, using montmorillonite K-10 as solid support [3-5].

Much interest has been given to the 3-substituted isoxazole moiety, which is found in a variety of physiologically active compounds [6-8] which show muscle relaxant and anticonvulsant activities.

In this work the 3-(5)-methyI-5(3)-(4-phenyI substituted)-isoxazoles **2a-c**, **3c,d**, 3-(4-phenyI-substituted)-4,5-dihydro-5-isoxazolone **6a-c** and ethyl 3-[(4-phenyI-substituted)-5-oxo-4,5-dihydro-4-isoxazolyliden]-3-(4-phenyI-substituted)propanoates **7a-d** were obtained by the ring closure of β -enamino ketones **1a-d** and β -enamino esters **5a-d** with hydroxylamine hydrochloride using montmorillonite (K-10), as the solid support under sonication. This methodology was previously

Table 1
Selected Physical and Spectral [a] Data for Isoxazoles 2a-c, 3d and 5-Isoxazolones 6a-c,7a-d

¹³ C.NMR [e] δ	11.4, 100.1, 125.7, 127.6, 128.8, 129.9, 160.2, 169.6	11.2, 21.1, 99.4, 124.7, 125.4, 129.3, 139.9, 160.0, 169.6	11.2, 55.1, 114.2, 98.6, 120.3, 127.1, 160.0, 160.8, 169.4	11.4, 102.8, 124.3, 126.4, 132.9, 160.7, 167.1	33.8, 126.2, 128.7, 130.9, 131.7, 163.1, 174.6	21.5, 33.9, 124.8, 126.5, 129.8, 142.7, 163.1, 174.9	33.0, 54.0, 113.1, 118.9, 127.0, 160.8, 162.2, 174.4	(13.9), 18.1, (32.8), 33.9, (58.2), 61.1, 126.1, 126.5, 127.5, 128.4 (129.1), 129.3, 132.0, 135.4, 152.3, 163.2, 160.0, 144.9	[14.0], 18.2, 21.2, [32.7], 34.0, [58.3], 61.2, 124.7, 126.0, 126.5, 128.6, 129.2, 129.8, 132.4, 139.4, 142.7, 152.3, 163.1, 169.0, 175.1	13.4, (31.9), 33.4, 54.8, (60.4), 60.7, (113.0), 113.3, 113.9, 119.4, 126.9-130.2, 151.4, 161.9, 162.8, 173.0, 174.3	[13.9], 18.0, [32.2], 33.7, [38.3], 61.5, 117.7, 123.7, 126.9, 141.4, 148.2, 150.9, 165.6, 168.4
¹ H-NMR [e] δ, J(Hz)	2.31 (s, 3H, CH ₃), 6.31 (s, 1H, CH), 7.35-7.74 (m, 5H. arom)	2.31 (s, 3H, CH ₃), 2.36 (s, 3H, CH ₃), 6.27 (s, 1 H, CH), 7.16-7.66 (m, 4H, arom)	2.31 (s, 3H, CH ₃), 3.82 (s, 3H, CH ₃), 6.21 (s, 1H, CH), 6.88-7.72 (m,4H, arom)	2.39 (s, 3H, CH ₃), 6.55 (s, 1H, CH), 7.85-8.37 (m, 4H, arom)	3.84 (br, 2H, CH ₂), 7.40-7.64 (m, 5H, arom)	2.39 (s, 3H, CH ₃ Ph), 3.71 (s, 2H, CH ₃), 7.24 (d, 2H arom, J = 8.2), 7.53 (d, 2H, arom, J = 8.2)	3.81 (s, 3H, CH ₃), 3.82 and 3.90 (s, 2H, CH ₂), 6.96 (d, 2H arom, J = 8.4), 7.61 (d, 2H arom, J = 8.4), 7.61 (d, 2H	L20 (t, 3H, CH ₃ , J = 7.1), 3.78 {3.82} {s, 2H, CH ₂ }, 4.11 (q, 2H, CH ₂ , J = 7.1), 7.25-7.73 (m, 8H arcm)	1.94 (t, 3H, CH ₃ , 1 = 7.1), 2.33 (s, 3H, CH ₃), 2.38 (s, 3H, CH ₃), 3.73, {3.80} (s, 2H, CH ₂), 4.10 (q, 2H, CH ₂ , 1 = 7.1), 7.08-7.56 (8H, m, argm)	1.99 (t, 3H, CH ₃ , J = 7.1), 3.79 {3.83} (s, 2H, CH ₂), 3.83 (s, 3H, CH ₃), 4.10 (q, 2H, CH ₂), 6.90 7.05 (9H m morm)	2.06-7.7.5 (911, 111, aroun) 1.23 (t, 3H, CH ₃ , 1 = 7.6), 3.64 {3.87} (s, 2H, CH ₂), 4.18 (q, 2H, CH ₂ , J = 7.6), 7.73-8.28 (m, 8H, m, arom)
Analysis(%) Calcd.Found CHN	8.80	8.09	7.40	13.72	8.70	8.00	7.33	4.18	3.85	3.54	9.88
	5.70	6.40	5.86	3.95	4.40 4.46	5.18	4.74	5.11	5.82 5.91	5.35	3.55
	75.45	76.28	69.83	58.82	67.10	68.56 68.37	62.82 62.51	71.63	72.71 72.54	66.83	56.48 56.37
Molecular Formula	C ₁₀ H ₉ NO 159 19	C ₁₁ H ₁₁ NO 173.21	$C_{11}H_{11}NO_2$ 189.21	$C_{10}H_8N_2O_3$	$C_9H_7NO_2$	C ₁₀ H ₉ NO ₂ 175.19	C ₁₀ H ₉ NO ₃ 191.19	C ₂₀ H ₁₇ NO ₄ 335.36	C ₂₂ H ₂₁ NO ₄ 363.41	$C_{20}H_{21}NO_6 \\ 395.41$	C ₂₀ H ₁₅ N ₃ O ₈ 425.35
ک _ه (و]	99	98	110	186	149-151	131-133	134-136	93-95	129	143-145	98
Yield [c] (%)	91	94	68	66	28	2	75	2	08	56	99
No.	2a	2b	3 c	9 9	6a [b]	9 9	(ec [b]	7a	7b	JC	J d

Spectra, nmr in [a] deuteriochloroform/tetratmethylsilane, [b] dimethyl-d₆ sulfoxide/tetramethylsilane. [c] Yields given for pure isolated products. [d] Melting points were determined with Microquímica APF-301 apparatus and are uncorrected. [e] In braces duplicated signs (EZ).

described by the authors for use in reactions to obtain pyrazoles and pyrazolinones [1].

The condensation of β -enamino ketones **1a-d** with hydroxylamine can produce two types of isoxazoles: 3-methyl-5-phenylisoxazole **2** and 5-methyl-3-phenylisoxazole **3** (Scheme 1). To determine the regiochemistry of the isoxazoles formed, we promoted the thermally induced reductive cleavage of N-O bond with [Mo(CO)₆] to give corresponding starting β -enamino ketones. This reaction involves an N-complexed isoxazole pentacarbonyl-molybdenum intermediate [9], a convenient method for the characterization of the starting β -enamino ketones.

The isoxazoles 2a and 2b were the only products isolated from 1a and b after the reaction of 1a-d with hydroxylamine hydrochloride under K-10/ultrasound for 3 hours (Scheme 1). Under the same conditions, 1c gives a mixture of 2c and 3c in the ratio of 1.1:1.0 and the reaction of 1d yields 3d only. This was confirmed when the mixture of 2,3c and the isoxazole 3d were submitted a thermally induced reductive cleavage of the N-O bond in the presence of $[Mo(CO)_6]$ and water to give the β -enamino ketones 4c and 4d, while the same reaction with 2a and 2b gives the β -enamino ketones 1a and 1b respectively.

The structures of the β -enamino ketones obtained by isoxazole ring-opening were confirmed by nmr spectral data, 1H and ^{13}C in comparison with known β -enamino ketones **1a-d** previously reported [5], the nmr data of β -enamino ketones **4c** and **4d** are described in the Experimental.

When ethyl 3-amino-3-(4-phenyl-substituted) 2-propenoates **5a-d** were allowed to react with hydroxylamine hydrochloride in dichloromethane under reflux for 20 hours, the expected 3-(4-phenyl-substituted)-4,5-dihydro-5-isoxazolones **6a-c** were formed. Ethyl 3-amino-3-(4-nitrophenyl)-2-propenoate **5d** does not react under these conditions, only starting materials were isolated from the reaction. However when the same reaction was performed using K-10/ultrasound, ethyl 3-(5-oxo-3-[3-(4-phenyl-substituted)-4,5-dihydro-4-isoxazolyliden]-3-(4-phenyl-substituted) propanoates **7a-d** were isolated as a mixture of *E*- and *Z*-isomers (Scheme 2).

The proposed structure of 5-oxoisoxazolylidene 7 obtained agrees completely with its 1 H and 13 C nmr spectral data. The existence of an isomeric mixture (E/Z) was confirmed by duplicate signals (see spectral data, Table 1) and by gc/ms for 7b where two peaks at m/z 363 each, corresponding to stereoisomers E and Z, were observed. The relative proportion of isomers have been established on basis of 1 H nmr, resulting in a ratio (E to Z) of 1:3 for 7a,7c and 7d and 1:1.1 for 7b.

The formation of 5-oxoisoxazolylidene 7 in "one pot" was unexpected, it can be considered to proceed by the initial formation of 6 followed by condensation with a second molecule of the β -enamino ester. Probably it was

favored by the catalytic properties of K-10. These compounds are quite rare, and as far as we know, no general method for their preparation has been reported to date.

EXPERIMENTAL

Melting points were determined with a Microquímica APF-301 apparatus and are uncorrected. The ¹H and ¹³C nmr spectra were recorded on a Bruker AC-80 and a Bruker DPX-200 spectrometer in deuteriochloroform/tetramethylsilane or dimethyl-d₆ sulfoxide/tetramethylsilane. Elemental analyses were carried out on a Vario CHN-standard analyser. Capillary gc analyses were performed on a Carlo Erba, Mega Series 5400 chromatograph equipped with a split/splitless injector and FID detector. An ultrasound bath (water), Thornton, 50-60 Hz, 110/220 volts, 1.0 Amps was used, the water bath was maintained at rt; β-enamino compounds 1 and 5 were prepared by the procedure previously described [5].

3-(5)-Methyl-5(3)-(4-phenyl-substituted)-isoxazoles **2a-c**, **3c**,**d** and Ethyl 3-[(4-Phenyl-substituted)-5-oxo-4,5-dihydro-4-isoxazolyliden]-3-(4-phenyl-substituted) Propanoates **7a-d**.

General Procedure.

Hydroxylamine hydrochloride (2 mmoles) in dichloromethane (1 ml) was added dropwise to the 3-amino-1-(4-phenyl-substituted)-2-buten-1-ones **1a-d** or 3-amine-1-(4-phenyl-substituted)-ethyl 2-propenoates **5a-d** (1 mmole) dispersed on montmorillonite K10 (0.3 g, Fluka), the mixture was placed in an ultrasound bath for 3 hours (6 hours for **5a-d**). The products were extracted by washing the montmorillonite with dichloromethane, then the organic layer was washed with water (3 x 10 ml), dried over magnesium sulfate, filtered and the solvent was removed *in vacuo* to yield the crude products. They were purified by recrystallization from ethanol to give: **2a** (91%), **2b** (94%) a mixture of **2,3c** (89%) and **3d** (99%); compounds **7a-d** were purified by recrystallization from dichloromethane/petroleum ether, yields for **7a** (64%), **7b** (80%), **7c** (56%) and **7d** (60%).

Thermal Reactions of Isoxazoles 2 and 3.

Following the general procedure [8] a solution of the isoxazole (1 mmole), water (1 mmole) and $[Mo(CO)_6]$ (1.2 mmoles) in acetonitrile (20 ml) was refluxed for 20 hours. The reaction mixture was filtered through celite, the filtrate was concentrated by rotatory evaporation to give β -enamino ketones 1a-c, 4c and 4d.

Compound 4c had ¹H nmr (80 MHz, deuteriochloroform): δ = 2.13 (s, 3H, CH₃), 3.78 (s, 3H, CH₃), 5.25 (s, 1H, CH), 6.81-7.88 (m, 4H, arom), 10.00 (br, 2H, NH₂); ¹³C nmr (20 MHz, deuteriochloroform): δ = 25.1, 55.4, 95.7, 113.8, 128.9, 132.9, 162.5, 163.0, 183.9.

Compound **4d** had ¹H nmr (80 MHz, deuteriochloroform): δ = 2.43 (s, 3H, CH₃), 4.93 (br, 2H, NH₂), 5.39 (s, 1H, CH), 6.56-7.75 (4H, m, arom); ¹³C nmr (20 MHz, deuteriochloroform ₃): δ = 25.1, 95.8, 122.3, 126.7, 144.5, 147.3, 182.6, 195.0.

3-(4-Phenyl-substituted)-4,5-dihydro-5-isoxazolones 6a-c.

3-Amine 3-(4-phenyl-substituted)ethyl 2-propenoates **5a-d** (1 mmole) were mixed with hydroxylamine hydrochloride (2 mmoles) in dichloromethane. The mixture was refluxed for 20 hours, washed with and distilled water (3 x 10 ml). The organic

layer was dried over magnesium sulfate, filtered and the solvent was evaporated by rotatory evaporation to give **6a** (58%), **6b** (64%), **6c** (75%). The compounds were purified by recrystallization from dichloromethane/petroleum ether.

Acknowledgement.

We are grateful to the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) (D.B.S) and to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (C.J V.) for fellowships.

REFERENCES AND NOTES

- * Author to whom correspondence should be addressed.
- [1] Part I: M. E F. Braibante, H. S. Braibante and C. J. Valduga,

- J. Heterocyclic Chem., 34, 1453 (1997).
- [2] M. E. F. Braibante, H. S. Braibante and L. Missio, J. Heterocyclic Chem., 33, 1243 (1996).
- [3] M. E. F. Braibante, H. S. Braibante and S. Salvatore, *Química Nova*, 13, 67 (1990); *Chem. Abstr.*, 114, 121,426. (1991).
- [4] M. E. F. Braibante, H. S. Braibante, L. Missio and A. Andricopulo, *Synthesis*, 898 (1994).
- [5] M. E. F. Braibante, H. S. Braibante, C. J. Valduga, and A. Squizani, *Synthesis*, 1109 (1998).
- [6] T. Tatee, K. Narita, S. Kurashige, S. Ito, H. Miyazaki, H. Yamanaka, M. Mizugaki, T. Sakamoto and H. Fukuda, *Chem. Pharm. Bull.*, 34, 1643 (1986).
- [7] A. N. Ocaña, M. J. Estrada, M. B. G. Paredes and E. Bárzama, Synlett, 695 (1996).
- [8] P. G. Baraldi, R. Bazzanini, A. Bigoni, S. Manfredini, D. Simioni, and G. Spalluto, *Synthesis*, 1206 (1993).
- [9] M. Nitta and T. Kobayashi, J. Chem. Soc., Perkin Trans I, 1401 (1985).