

Synthesis of Optically Active 1,4-Benzoxazinones and 1,5-Benzoxazepinones by Regiocontrolled Ring Transformations of Oxirane Carboxylic Acids and Esters with Aromatic *o*-Hydroxyarylamines

Karsten Woydowski, Jürgen Liebscher

Institut für Chemie, Humboldt-Universität Berlin, Hessische Str. 1-2, D-10115 Berlin, Germany

Received 13 April 1999; accepted 28 May 1999

Abstract. Enantiopure diethyl oxirane dicarboxylate 1 reacts with o-aminophenols 2 either to 1,4-benzoxazin-2-ones 5 or to the 1,5-benzoxazepin-2-one 4 while a condensed 1,4-oxazin-3-one 6 was obtained with 2amino-3-hydroxypyridine. On the other hand optical active oxirane carboxylic acids 7 react with oaminophenols 8 in the presence of DCC (dicyclohexylcarbodiimide) or isobutyl chloroformiate affording oxirane carboxamides 9 that can be ring transformed to either 2,3-dihydro-4H-1,4-benzoxazin-3-ones 10 or 3hydroxy-2,3-dihydro-5H-1,5-benzoxazepin-4-ones 11 depending on the reaction conditions. © 1999 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

Glycidates are versatile bielectrophilic systems forming heterocycles in reaction with several binucleophiles, such as *o*-aminothiophenols ^{1, 2,3} or *o*-phenylenediamines^{4,5} by reaction at the carbonyl group and nucleophilic opening of the oxirane ring. They can either act as C₃-building block or as C₂-synthon (attack of the nucleophile at the carbonyl group and the β -position or α -position, respectively). Our results in the application of chiral glycidates lacking aryl substituents in the synthesis of optically active heterocycles demonstrated a strong dependence of the mode of reaction on the kind of binucleophile, the reaction conditions and the substitutents attached to the oxirane ring. Thus glycidates react with *o*-phenylenediamines affording either benzodiazepinones⁵ or hydroxyalkylquinoxalinones⁴ depending on whether a solvent is used or the reactants are

* Fax: 49-30-2093 8907; E-mail: LIEBSCHER@CHEMIE.HU-BERLIN.DE

heated as neat mixtures. Reactions of aliphatic glycidates with *o*-aminothiophenols result in the formation of hydroxyalkylbenzothiazinones¹ while aryl glycidates gave benzothiazepinones³. The well-known Ca-channel blocking drug Diltiazem® is synthesised by application of the latter reaction. Ring forming reactions of *o*-aminophenols with glycidates were not reported in the literature yet.

RESULTS AND DISCUSSION

Our investigations with optically active *cis* and *trans* alkyl glycidates derived from corresponding acids 7 revealed that these systems were reluctant to reactions with *o*-aminophenol even if the favorable neat procedure was applied. *trans*-Diethyl oxirane dicarboxylate 1, however, reacted with *o*-aminophenols 2 (X = CH) and 2amino-3-hydroxypyridine 2 (X = N). Refluxing reactants 1 and 2 (X=CH) in ethanolic solution gave the αarylamino-β-hydroxy ester 3 by nucleophilic opening of the oxirane ring by the amino

group. Further cyclisation by nucleophilic attack of the phenolic hydroxy group at an ester group was possible under Mitsunobu conditions (diethyl azodicarboxylate DEAD/PPh₃). But these strong dehydrating conditions caused additional elimination of the alcoholic hydroxy group thus resulting in the formation of the achiral 1,5benzoxazepinone 4. If the oxirane dicarboxylate was heated with *o*-aminophenols 2 (X = H) without a solvent to 155°C six-membered 1,4-benzothiazin-2-ones 5 were obtained by nucleophilic attack at one ester function and at the adjacent position of the oxirane ring. Obviously, the course of the reaction of 1 with 2 to either products 3 or 5 can be controlled by the reaction conditions. Remarkably, 2-aminopyridine 2 reacted in the opposite way with diethyl oxirane dicarboxylate 1, i. e. the phenolic OH group opened the oxirane ring while the amino group attacked one carboxylate thus affording the pyridoxazin-3-one 6. Presumably the 2-amino-3hydroxypyridine 2 (X = N, R = H) exists as a zwitterionic pyridiniumolate structure and thus primarily attacks the oxirane dicarboxylate ring via the stronger nucleophilic phenolate oxygen rather than via the amino group.

Since alkyl-substituted oxirane monocarboxylates were reluctant to reactions with o-aminophenols we further investigated reactions of corresponding enantiopure carboxylic acids 7. Reactions with o-aminophenols 8 in the presence of DCC or via activation with i-BuOCOCI resulted in primary attack of the amino group at the carboxyl moiety. Interestingly, the oxirane carboxamides 9 formed can selectively be ring transformed either to 1,4-benzoxazin-3-ones 10 (function of 7 as C2-building block) or to 3-hydroxy-2,3-dihydro-5H-1,5-benzoxazepin-4-ones 11 (function of 7 as C₃-building block) depending on the reaction conditions. Treatment of 9 with DBU in ethanol (Method C) afforded predominantly 10 while cyclisation in THF in the presence of ZnCl₂ (Method D) gave 11 in excellent yields in the trans-series 9. Both cyclisations occurred with inversion of configuration. The effect of ZnCl₂ in the formation of 11 might be similar to that exerted by Ti(OR), in intermolecular reactions of glycidic amides with nucleophiles,⁶ i. e. coordination of the zinc ion at NH and the oxirane O atom activating the oxirane ring and directing the attack of the phenolic OH to the β -position. The application of Ti(Oi-Pr)₄ to the glycidic amides 9, however, left the reactant unchanged. The cis glycidic amides gave no benzoxazepinones 11 when exposed to Method D, but chlorohydrines 14 by nucleophilic cleavage of the oxirane ring by chloride. Obviously an intramolecular β-attack at the oxirane ring is sterically hindered in the cis-series. The ring opening of glycidic amides to chlorohydrines is a well-known reaction.^{7,8} Considerable amounts of chlorohydrines 14 together with corresponding benzoxazepinones 11j and 11k were also formed if 3-unsubstituted glycidic amides 9 ($R^1=R^2=H$) were used (see Experimental part, Method D). The application of other Lewis acids in the reaction of glycidic amides 9 was not successful (see Table 1) since chlorohydrines 14 were predominantly or entirely formed (see also Experimental Part), decomposition occurred or no reaction took place. It should also be stressed that dichloromethane was not suitable as solvent even when ZnCl, was used.

Lewis acid	equivalents / reaction time	solvent	ratio 14 : 11e
Et ₃ Al	1.2/2h	CH ₂ Cl ₂	(decomp.)
Et ₃ B	2.5 / 3 d	CH ₂ Cl ₂	(no reaction)
Et ₂ Zn	1.2 / 2 d	CH ₂ Cl ₂	(decomp.)
Me ₃ SnCl	2.5 / 5 h	CH ₂ Cl ₂	(no reaction)
AlCl ₃ ; AlBr ₃	1.2 / 2 h	CH ₂ Cl ₂	100 : 0
$SnCl_2 \times 2 H_2O$	1.7 / 3 d	CH ₂ Cl ₂	70 : 30
ZnF ₂	1.7 / 2 d	CH ₂ Cl ₂	(no reaction)
ZnCl ₂	2.5 / 2 h	CH ₂ Cl ₂	50 : 50
ZnCl ₂	1.2 / 2 h	CH ₂ Cl ₂	46 : 54
ZnBr ₂	1.2 / 2 h	CH ₂ Cl ₂	60 : 40
ZnI ₂	1.2 / 2 h	CH ₂ Cl ₂	79 : 21
ZnCl ₂	2.5 (2 portions) / 30 h	THF	11:89
	1		

Table 1: Effect of different Lewis acids on the formation of 11a

Small quantities of 3-hydroxy-2,3-dihydro—5H-1,5-benzoxazepin-4-ones 11 were obtained as byproducts of the major 1,4-benzoxazin-3-ones 10 applying Method C, i. e. basic conditions to some *cis*substituted oxirane carboxamides 9. If solutions of oxirane carboxamides 9 in ethanol were heated in the presence of an acid such as perchloric acid primary ring opening of the oxirane moiety occurred by the solvent affording β -ethoxyalcohols 12. Further cyclisation under Mitsunobu conditions gave 2-(α -ethoxyalkyl)-1,4benzoxazin-3-ones 13. As compared with the 2-(α -hydroxyalkyl)-1,4-benzoxazin-3-ones 10 the configuration at the α -position of the side chain is reversed.

The structural elucidation of the different regioisomeric final products was possible by NMR techniques and X-ray crystal analysis. HMBC allowed to assign each structure 6, 10 and 11 unambiguously. Thus an HMBC shows a coupling between the OH hydrogen atom and the carbon atom in α -position of the alkyl substituent R¹ or R² for benzoxazines 10 proving the sequence HO-C(R¹/R²). Furthermore an X-ray crystal analysis could be obtained from the benzodiazepinone 11e (see Fig. 1).

All products 4, 5, 6, 10, 12, and 13 are new. So far no optically active 1,4-benzoxazin-3-ones or 1,5benzoxazepin-4-ones have been reported in the literature. Racemic 1,4-benzoxazin-2-ones were synthesised from *o*-aminophenols and α -halocarboxylic acids², corresponding acid derivatives¹⁰⁻¹³ or α -keto esters¹⁴ by ring closure or by hydrogenation of 1,4-benzoxazin-2-ones^{15,16}. Dihydropyrido[3.2-b]oxazin-3- ones were

Figure 1: X-ray crystal analysis of the 3-hydroxy-benzoxazepin-4-one 11e

prepared by similar cyclisations^{17,18} and found interest as pharmacologically active compounds¹⁹. In the 1,5benzoxazepin-4-one series²⁰⁻²⁴ only a few compounds with a 3-hydroxy substituent were reported. ²¹ Interestingly, racemic *cis* and *trans* 3-hydroxy-2-(4-methoxyphenyl)-2,3-dihydro-5*H*-1,5-benzoxazepin-4-one related to Diltiazem® and to 11 could not be obtained by reaction of the corresponding 3-(4-methoxyphenyl)glycidate and *o*-aminophenol, but had to be synthesised with *o*-nitrophenol.²¹ After nucleophilic opening of the oxirane ring by the phenolic hydroxy group the nitro group was hydrogenated allowing intramolecular amide formation to the benzoxazepinone.

The results presented here demonstrate a further important application of ring transformation of glycidic acids and esters with binucleophiles in the synthesis of new optically active heterocycles. The regioselectivity could be controlled by the reaction conditions.

EXPERIMENTAL

¹H NMR and ¹³C NMR spectra were recorded at 300 and 75.5 MHz respectively on a BRUKER AC-300 with tetramethyl silane as internal standard (solvent CDCl₃ if not otherwise mentioned). Optical rotation was determined with a PERKIN ELMER polarimeter 241. Silicagel (0.04 - 0.063 mm, MERCK) was used for preparative column chromatography. If not otherwise mentioned, chemicals were purchased from MERCK or ALDRICH. Starting materials 1 and 7 were prepared according to reported procedures. ²⁵⁻²⁸

2-Hydroxy-3-(o-hydroxyanilino)-succinate (3). A mixture of (R,R)-diethyl oxirane-2,3-dicarboxylate 1 (1 g, 5.3 mmol), 2-aminophenol 2 (0.64 g, 5.85 mmol), and a catalytic amount of p-TsOH (20 mg) was dissolved in ethanol and heated under argon for 4 h. After cooling to room temperature the mixture was evaporated and the remainder was purified by column chromatography with CHCl₃/MeOH (9/1) ($R_f = 0.49$) to give 3 as a light brown oil in 78 % yield. - ¹H NMR: 1.13-1.28 (m, 2 CH₃), 4.06-4.52 (m, 2 CH₂), 4.33 (d, *J*=2.9, CH-N), 4.59 (d, *J*=2.8, CH-O), 6.64-6.75 (m, 4 CH_{At}). The product was converted to 4 without further characterisation.

Ethyl-1,5-benzoxazepin-2-one-4-carboxylate (4). Triphenylphosphine (524 mg, 2 mmol) was added to a solution of **3** (500 mg, 1.7 mmol) in CH₂Cl₂ (13 ml). A solution of diethyl azodicarboxylate (453 mg, 2.6 mmol) in CH₂Cl₂ (20 ml) was added dropwise at 0°C. After 1 h stirring at room temperature the solvent was evaporated and the remainder was purified by column chromatography with hexane/Et₂O (1:1). Additional recrystallisation is possible. Yield: 31 %, yellow crystals, m.p. = 94-95°C (hexane), $R_f = 0.70. - {}^{1}H$ NMR: 1.23 (t, *J* = 7.10, CH₃), 4.13 (q, *J* = 7.10, CH₂), 5.81 (s, CH), 6.85-7.19 (m, 4 CH_{Ar}), 10.57 (s, NH). - ${}^{13}C$ NMR: 14.6 (CH₃), 60.7 (CH₂), 91.5 (CH), 115.2, 117.3, 123.1, 126.0 (CH_{Ar}), 124.6, 138.4, 140.4 (C_{Ar}), 156.3, 170.2 (COO). - C₁₂H₁₁NO₄ (233.24): caled. C 61.79, H 4.76, N 6.06; found C 61.73, H 4.79, N 6.00.

General Procedure for the Synthesis of 1,4-Benzoxazin-2-ones 5 and the Pyrido[3.2-b]-1,4-oxazin-3-one 6. A mixture of (R,R)-diethyl oxirane-2,3-dicarboxylate 1 (188 mg, 1 mmol) and 2-aminophenol or 2-amino-3hydroxypyridine 2 (1.05 mmol) was heated under stirring in an argon atmosphere to 155°C for 4-5h or to 110°C for 1h (for 5 or 6, respectively). After cooling to room temperature the mixture was dissolved in a small amount of the solvent mixture which was later on used for purification by column chromatography (5: CH₂Cl₂/acetone (95:5); 6 CHCl₃/MeOH (9:1) if X=N). Additional recrystallisation is possible.

Ethyl (1'R, 3S)-Hydroxy-(2-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-3-yl)-acetate (5a). Yield: 60%, colourless crystals, m.p. = 125 -127°C (hexane:AcOEt 1:1), $R_f = 0.43$, $[\alpha]_{20}^{D} = -66.8$ ° (c = 1, CHCl₃). - ¹H NMR: 1,07(t, J = 7.15, CH₃), 3.43(d, J = 3.37, OH), 3.92-4.08 (m, CH₂), 4.31 (s, NH), 4.48 (m, CH-N), 4.71 (m, CH-O), 6.63 - 6.92 (m, 4 CH_{At}). - ¹³C NMR: 14.1 (CH₃), 63.3 (CH₂), 58.1 (CH-N), 72.3 (CH-O), 115.3, 117.0, 120.2, 125.6 (CH_{At}), 131.0, 140.4 (C_{At}), 164.2, 172.0 (COO). - C₁₂H₁₃NO₅ (251.26). calcd. C 57.36, H 5.23, N 5.58; found C 57.28, H 5.15, N 5.74.

Ethyl (1'R, 3S)-Hydroxy-(6-methyl-2-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-3-yl)-acetate (5b): (R=Me) yield: 50 %, colourless crystals, m.p. = 143-44 °C (hexane:AcOEt 1:1), $R_f = 0.45$, $[\alpha]_{20}^D = -43.6$ ° (c = 1, CHCl₃). - ¹H NMR: 1.08 (t, J=7.2, CH₃), 2.16 (s, CH₃), 3.92-4.08 (m, CH₂), 4.31 (s, NH), 4.45 (m, CH-N), 4.70 (d, J=2.9, CH-O), 6.45 and 6.79 (m, 3 CH_{At}). - ¹³C NMR: 14.1, 21.3 (CH₃), 58.0 (CH-N), 72.2 (CH-O), 115.7, 116.7, 120.8 (CH_{Ar}), 130.6, 135.6, 138.4 (C_{Ar}), 164.3, 172.1 (COO). – C₁₃H₁₅NO₅ (265.29): calcd. C 58.85, H 5.71, N 5.28; found C 58.81, H 5.83, N 5.22.

Ethyl (1'R, 2S)-Hydroxy-(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-2-yl)-acetate (6): Yield: 33 %, light brown crystals, m.p. = 147 -148°C (hexane:AcOEt 1:9), $R_f = 0.33$, $[\alpha]_{20}^{D} = +20.5$ °C (c = 1, MeOH). - ¹H NMR: 1.10 (t, J = 7.1, CH₃), 4.30 (q, J = 7.1, CH₂), 4.61 (m, <u>CH</u>-OH), 5.11 (d, J = 2.3, <u>CH</u>-OPh), 6.04 (s, OH), 6.91-7.84 (m, 3 CH_{Ar}), 11.26 (s, NH). - ¹³C NMR: 14.2 (CH₃), 60.9 (CH₂), 72.2 (<u>CH</u>-OH), 79.2 (<u>CH</u>-OPh), 119.3, 122.5, 140.4 (CH_{Ar}), 139.0, 141.0 (C_{Ar}), 164.7 (CON), 171.1 (COO). - C₁₁H₁₂N₂O₅ (216.23): calcd. C 52.37, H 4.80, N 11.11; found C 52.30, H 4.96, N 10.88.

General Procedures for the Synthesis of Oxirane-carboxanilides 9:

Method A: DCC (4.07 g, 20 mmol) was added to a solution of oxirane carboxylic acid 7 (20 mmol) and o-aminophenol 8 (20 mmol) in THF (150 ml). The mixture was kept at room temperature for 24 h. After dilution with Et₂O the appearing precipitate was filtered off and the filtrate was evaporated. The remaining material was purified by column chromatography with CH_2Cl_2 /acetone (95:5). Yield: 78-98 %; colourless crystals.

Method B: i-Butyl chloroformiate (2.59 ml, 21 mmol) was added to a suspension of the K salt of the oxirane carboxylic acid 7 (20 mmol) in THF (150 ml) at 0 °C under argon. After adding a catalytic amount of N-methylmorpholine (0.5 ml) the mixture was stirred for about 1 h. A solution of 2-aminophenol 8 (20 mmol) in THF (20 ml) was added at 0 °C and the mixture was stirred at room temperature for 20 h. After dilution with Et_2O the appearing precipitated was filtered off and the filtrate was evaporated. The remaining material was purified by column chromatography with $CH_2Cl_2/acetone$ (95:5). The resulting 9 (colourless crystals, yield: 45-73 %) were characterised by ¹H NMR spectroscopy and converted to 10 and 11 without further analytical investigations.

9a: (Method B) R_f = 0.53, yield: 48 %, ¹H NMR: 1.45 (d, *J*=5.5, CH₃), 3.45 (m, CH), 3.71 (d, *J*=4.7, CH), 6.92-7.44 (m, 4 CH_{Ar}), 8.30 (s, NH), 8.55 (s, OH).

9b: (Method B) $R_f = 0.63$, yield: 48 %, ¹H NMR: 1.35 (d, J=5.5, CH₃), 2.19 (s, CH₃), 3.35 (m, CH), 3.60 (d, J=4.7, CH), 6.81-6.88 (m, 3 CH_A), 8.01 (s, NH), 8.13 (s, OH).

9c: (Method B) R_f= 0.58, yield: 45 %, ¹H NMR: 1.45 (d, *J*=5.5, CH₃), 3.45 (m, CH), 3.76 (d, *J*=4.8, CH), 7.18-7.77 (m, 6 CH_{Ar}), 8.47 (s, NH), 8.50 (s, OH).

9d: (Method B) R_f = 0.35 (CHCl₃/MeOH 9:1), yield: 58 %, ¹H NMR (DMSO-d₆): 1.31 (d, *J*=4.5, CH₃), 3.39 (m, CH), 3.81 (d, *J*=4.1, CH), 7.04 (m, CH_{Ar}), 7.95 (m, 2 CH_{Ar}), 8.94 (s, NH), 9.13 (s, OH).

9e: (Method A) R_f = 0.70, yield: 98 %, ¹H NMR: 0.94 (t, *J*=7.1, CH₃), 1.44-1.70 (m, 2 CH₂), 3.08 (m, CH), 3.53 (d, *J*=2.1, CH), 6.77-7.19 (m, 4 CH_{Ar}), 7.99 (s, NH), 9.13 (s, OH).

9f: (Method A) $R_f = 0.73$, yield: 97 %, ¹H NMR: 0.93 (t, *J*=7.2, CH₃), 1.40-1-68 (m, 2 CH₂), 2.17 (s, CH₃), 3.06 (m, CH), 3.33 (d, *J*=2.1, CH), 6.82-7.19 (m, 3 CH_A), 8.00 (s, NH), 8.27 (s, OH).

9g: (Method B) $R_f = 0.67$, yield: 73 %, ¹H NMR: 0.95 (t, *J*=7.2, CH₃), 1.46-1.73 (m, 2 CH₂), 3.20 (m, CH), 3.46 (d, *J*=2.0, CH), 7.15-7.73 (m, 6 CH_{Ar}), 8.44 (s, NH), 8.55 (s, OH).

9h: (Method A) R_f = 0.59, yield: 78 %, ¹H NMR: 1.02 (t, *J*=7.2, CH₃), 1.51-1.78 (m, 2 CH₂), 3.16 (m, CH), 3.42 (d, *J*=2.1, CH), 6.91-7.28 (m, 3 CH_{Ar}), 8.15 (s, NH), 8.35 (s, OH).

9i: (Method B) R_f = 0.59, yield: 78 %, ¹H NMR (DMSO-d₆): 0.99 t, *J*=7.2, CH₃), 1.46-1.70 (m, 2 CH₂), 3.27 (m, CH), 3.70 (d, *J*=2.8, CH), 7.10 (d, *J*=9.0, CH_{Ar}), 7.98 (m, CH_{Ar}), 9.01 (d, *J*=2.8, CH_{Ar}), 9.30 (s, OH), 11.90 (s, NH).

9j: (Method B) R_f = 0.49 (CHCl₃/MeOH 9:1), yield: 49 %, ¹H NMR: 2.91 (m, 1 H (CH₂)), 3.09 (m, 1 H (CH₂)), 3.58 (m, CH), 6.78-7.10 (m, 4 CH_{Ar}), 8.00 (s, NH), 8.26 (s, OH).

9k: (Method B) $R_f = 0.56$ (CHCl₃/MeOH 9:1), yield: 60 %, ¹H NMR δ 2.21 (s, CH₃), 2.93 and 3.03 (m, CH₂), 3.73 (m, CH), 6.78 (m, 2 CH_{Ar}), 7.77 (s, CH_{Ar}), 9.08 (s, NH), 9.77 (s, OH)

General Procedure for the Synthesis of 2-Substituted 3,4-Dihydro-2H-1,4-benzoxazin-3-ones 10 (Method C): Oxirane-carboxanilide 9 (1 mmol) was dissolved in ethanol (2 ml) and heated under reflux with a catalytic amount of DBU (20 μ l, for R⁴ = NO₂ 40 μ l) for 1.2 h (for *cis*-epoxides) or 1.5 h (for *trans*-epoxides) After cooling to room temperature the mixture was evaporated and the remainder was purified by column chromatography (10e - 10i: CH₂Cl₂/acetone = 95:5); 10a - 10c,10j and 10k: CHCl₃/MeOH = 9:1).

(2S, 1'R)-2-(1-Hydroxy-ethyl)-3, 4-dihydro-2H-1, 4-benzoxazin-3-one (10a): Yield: 86 %, colourless crystals, m.p. = 103°C (hexane:AcOEt = 1:1), $R_f = 0.29$, $[\alpha]_{20}^D = +18.4^\circ$ (c=1, CHCl₃). - ¹H NMR: 1.43 (d, J = 6.5, CH₃), 3.14 (d, J = 7.2, OH), 4.43 (m, <u>CH</u>-OH), 4.51 (d, J = 3.6, <u>CH</u>-OAr), 6.82 - 6.99 (m, 4 CH_{Ar}), 9.59 (s, NH). - ¹³C NMR: 18.4 (CH₃), 67.1, 79.2 (CH), 115.9, 116.4, 122.4, 124.3 (CH_{Ar}), 125.6, 143.2 (C_{Ar}), 166.9 (CO). - C₁₀H₁₁NO₃ (193.22): calcd. C 62.16, H 5.75, N 7.25; found C 62.11, H 5.83, N 7.19.

(2S, 1'R)-2-(1-Hydroxy-ethyl)-6-methyl-3,4-dihydro-2H-1,4-benzoxazin-3-one (10b): Yield: 88 %, colourless crystals, m.p. = 143 °C (hexane:AcOEt = 1:1), $R_f = 0.27$, $[\alpha]_{20}^{D} = +14.5^{\circ}$ (c=1, CHCl₃). - ¹H NMR: 1.34 (d, J = 6.5, CH₃), 2.18 (s, CH₃), 2.93 (d, J = 7.2, OH), 4.33 (m, <u>CH</u>-OH), 4.38 (d, J = 3.8, <u>CH</u>-OAr), 6.54-6.80 (m, 3 CH_{Ar}), 9.37 (NH). - ¹³C NMR: 18.8, 21.0 (CH₃), 67.5, 79.7 (CH), 116.6, 116.8, 125.2 (CH_{Ar}), 125.6, 132.7, 141.5 (C_{Ar}), 167.6 (CO). - C₁₁H₁₃NO₃ (207.25): calcd. C 63.74, H 6.34, N 6.76; found C 63.58, H 6.32, N 6.78.

(3S, 1'R)-2-(1-Hydroxy-ethyl)-3,4-dihydro-2H-naphth[2,1-b]-1,4-oxazin-2-one (10c): Yield: 80 %, colourless crystals, m.p. = 144.5-145°C (hexane:AcOEt = 3:7), $R_f = 0.23$, $[\alpha]_{20}^{D} = -57.7^{\circ}$ (c=1, MeOH). - ¹H NMR (DMSO-d₆): 1.25 (d, J = 6.5, CH₃), 4.17 (m, <u>CH</u>-OH), 4.54 (d, J = 3.3, <u>CH</u>-OAr), 4.92 (d, J = 5.5, OH), 7.23-8.25 (m, 6 CH_{Ar}), 10.90 (s, NH). - ¹³C NMR: 19.7 (CH₃), 66.2, 85.6 (CH), 118.0, 120.5, 123.3, 124.3, 126.3, 128.5 (CH_{Ar}), 119.5, 123.0, 129.4, 140.1 (C_{Ar}), 166.2 (CO). - C₁₄H₁₃NO₃ (243.28): calcd. C 69.11, H 5.40, N 5.76; found C 69.12, H 5.42, N 5.72.

(2S, 1'R)-2-(1-Hydroxy-ethyl)-6-nitro-3,4-dihydro-2H-1,4-benzoxazin-3-one (10d): Yield: 93 %, light yellow crystals, m.p. = 218-220°C (hexane:AcOEt), $R_f = 0.21$, $[\alpha]_{20}^{D} = +11.2°C$ (c=1, MeOH). - ¹H NMR (DMSO-d₆): 1.22 (d, J = 6.5, CH₃), 4.16 (m, <u>CH</u>-OH), 4.70 (d, J = 1.9 <u>CH</u>-OPh), 5.08 (d, J = 5.1, OH), 7.08-7.82 (m, 3 CH_{Ar}), 11.0 (s, NH). - ¹³C NMR: 19.5 (CH₃), 67.7, 81.2 (CH), 110.4, 116.2, 119.4 (CH_{Ar}), 127.4, 141.4, 149.9 (C_{Ar}), 165.0 (CO). - C₁₀H₁₀N₂O₅ (238.22): calcd. C 50.42, H 4.24, N 11.76; found C 50.14, H 4.27, N 11.56.

(25, 1'S)-2-(1-Hydroxy-butyl)-3,4-dihydro-2H-1.4-benzoxazin-3-one (10e): Yield: 98 %, colourless crystals, m.p. = 87°C (hexane:AcOEt = 9:1), $R_f = 0.27$, $[\alpha]_{20}^{D} = +43.5^{\circ}$ (c=1, CHCl₃). - ¹H NMR: 0.90 (t, J = 7.2, CH₃), 1.35-1.82 (m, 2 CH₂), 3.45 (d, J = 4.3, OH), 4.11 (m, <u>CH</u>-OH), 4.30 (d, J = 6.8, <u>CH</u>-OAr), 6.75-6.95 (4 CH_{Ar}), 9.17 (s, NH). - ¹³C NMR: 14.4 (CH₃), 18.7, 35.0 (CH₂), 71.6, 78.4 (CH), 116.3, 117.1, 123.2, 124.9 (CH_{Ar}), 126.1, 144.0 (C_{Ar}), 168.4 (CO). - C₁₂H₁₅NO₃ (221.28): calcd. C 65.13, H 6.85, N 6.33; found C 65.15, H 6.79, N 6.31.

(25, 1'S)-2-(1 Hydroxy-ethyl)-6-methyl-3,4-dihydro-2H-1,4-benzoxazin-3-one (10f): Yield: 93 %, colourless crystals, m.p. = 127-128°C (hexane:AcOEt = 8:2), $R_f = 0.26$, $[\alpha]_{20}^{D} = +62.9^{\circ}$ (c=1, CHCl₃). - ¹H NMR: 0.90 (t, J = 7.2, CH₃), 1.40-1.77 (m, 2 CH₂), 2.20 (s, CH₃), 3.50 (d, J = 4.2, OH), 4.09 (m, <u>CH</u>-OH), 4.25 (d, J = 7.0, <u>CH</u>-OAr), 6.56-6.81 (m, 3 CH_{Ar}), 9.21 (s, NH). - ¹³C NMR: 12.8, 19.5 (CH₃), 17.1, 33.4 (CH₂), 69.9, 76.8

(CH), 115.1, 115.2, 123.8 (CH_{Ar}), 124.2, 131.4, 140.2 (C_{Ar}), 167.2 (CO). $-C_{13}H_{17}NO_3$ (235.31): calcd. C 66.35, H 7.30, N 5.95; found C 66.27, H 7.13, N 5.89.

(2S, 1'S) -2-(1-Hydroxy-butyl)-3,4-dihydro-2H-naphth[2,1-b]-1,4-oxazin-3-one (10g): Yield: 97 %, colourless crystals, m.p. = 180-181°C (hexane:AcOEt = 2:8), $R_r = 0.35$, $[\alpha]_{20}^{D} = -50.3^{\circ}$ (c=1, MeOH). - ¹H NMR (DMSO-d₆): 0.93 (t, J = 7.1, CH₃), 1.31-1.66 (m, 2 CH₂), 4.03 (m, <u>CH</u>-OH), 4.69 (d, J = 4.0, <u>CH</u>-OAr), 5.11 (d, J = 6.2, OH), 7.30-8.33 (m, 6 CH_{Ar}), 11.03 (s, NH). - ¹³C NMR: 14.2 (CH₃), 18.8, 34.8 (CH₂), 70.7, 80.2 (CH), 117.8, 120.6, 123.5, 124.4, 125.4, 128.5 (CH_{Ar}), 119.8, 123.0, 129.5, 140.1 (C_{Ar}), 165.6 (CO). - C₁₆H₁₇NO₃ (271.34): calcd. C 70.82, H 6.33, N 5.16; found C 70.53, H 6.36, N 5.21.

(2S, 1'S)-6-Chloro-2-(1-hydroxy-butyl)-3,4-dihydro -2H-1,4-benzoxazin-3-one (10h): Yield: 95 %, colourless crystals, m.p. = 138 °C (hexane:AcOEt = 8:2), $R_f = 0.31$, $[\alpha]_{20}^D = +40.9$ (c=1, CHCl₃). - ¹H NMR: 0.90 (t, J=7.7, CH₃), 1.36-1.82 (m, 2 CH₂), 3.31 (d, J=4.9, OH), 4.08 (m, <u>CH</u>-OH), 4.32 (d, J=6.3, <u>CH</u>-OAr), 6.76-6-89 (m, 3 CH_{Ar}), 9.36 (s, NH). - ¹³C NMR: 13.9 (CH₃), 18.3, 34.6 (CH₂), 71.4, 78.2 (CH), 115.8, 117.6, 124.1 (CH_{Ar}), 126.6, 127.5, 142.1 (C_{Ar}), 167.6 (CO). - C₁₂H₁₄NO₃Cl (255.72): calcd. C 56.36, H 5.53, N 5.48; found C 56.22, H 5.53, N 5.36.

(2S)-2-Hydroxymethyl-3, 4-dihydro-2H-1, 4-benzoxazin-3-one (10i): Yield: 90 %, colourless crystals, m.p. = 136-137°C (hexane:AcOEt = 2:8), $R_f = 0.16$, $[\alpha]_{20}^{D} = +15.6^{\circ}$ (c=1, MeOH). - ¹H NMR (DMSO-d₆): 3.72-3.86 (m, CH₂), 4.63 (dd, J = 2.9, 4.6, OH), 5.08 (t, J = 5.7, CH), 6.82-6.94 (m, 4 CH_{Ar}), 10.67 (s, NH). - ¹³C NMR: 63.3 (CH₂), 80.3 (CH), 117.7, 118.3, 124.0, 125.2 (CH_{Ar}), 129.1, 145.3 (C_{Ar}), 167.3 (CO). - C₉H₉NO₃ (179.19): calcd. C 60.32, H 5.07, N 7.82; found C 60.25, H 5.18, N 7.81.

General Procedure for the Synthesis of 2,3-Dihydro-3-hydroxy-1,5-benzoxazepin-4(5H)-ones 11 (Method D):

The carboxamide 9 (1 mmol) was dissolved in dry THF (3 ml) under an argon atmosphere. In case of the synthesis of 11e - i water-free ZnCl₂ (205 mg, 1.5 mmol) was added and the mixture was stirred for 8 h. Another portion of ZnCl₂ (136 mg, 1.0 mmol) was added and the mixture was stirred for additional 22 h. In case of the 3-unsubstituted 9 ($R^1 = R^2 = H$, synthesis of 11j - k) three portions of water-free ZnCl₂ (3 x 48 mg, 3 x 0.35 mmol) were added over a period of 8 h and the mixture was stirred for additional 15 h. The solvent was evaporated and the remainder was dissolved in CH₂Cl₂ (7 ml) (11e - h) or CHCl₃ (11i - k) and washed with diluted NH₄Cl/HCl-solution (7 ml) and dried with MgSO₄. After evaporation the crude product was purified by column chromatography (11e - h: CH₂Cl₂/acetone = 95:5; 11i - k: CHCl₃/MeOH = 9:1).

(2S, 3R)- 3-Hydroxy-2-methyl-2,3-dihydro-(5H)-1,5-benzoxazepin-4-one (11a): Yield: 10 % (Method C), colourless crystals, m.p. = 139-40 °C (hexane:AcOEt 7:3), $R_f = 0.52$, $[\alpha]_{20}^D = +119.8^\circ$ (c=1, CHCl₃). - ¹H NMR: 1.32 (d, J = 6.4, CH₃), 3.65 (d, J = 4.2, OH), 4.43 (m, <u>CH</u>-OAr), 4.74 (m, <u>CH</u>-OH), 6.92 - 7.08 (m, 4 CH_{Ar}), 8.65 (NH). - ¹³C NMR: 15.5 (CH₃), 70.1, 81.6 (CH),122.6, 123.1, 124.5, 127.2 (CH_{Ar}), 128.7, 148.7 (C_{Ar}), 173.4 (CO). - C₁₀H₁₁NO₃ (193.22): calcd. C 62.16, H 5.75, N 7.25; found C 62.22, H 5.59, N 7.16.

(2S, 3R) -3-Hydroxy-2,7-dimethyl-2,3-dihydro-5H-1,5-benzoxazepin-4-one (11b): Yield: 10 % (Method C), colourless crystals, m.p. = 124 -125°C (hexane:AcOEt 7:3), $R_f = 0.49$, $[\alpha]_{20}^{D} = +179.4^{\circ}$ (c=1, CHCl₃). - ¹H NMR: 1.31 (d, J = 6.4, CH₃), 2.23 (s, CH₃), 3.63 (d, J = 4.8, OH), 4.42 (m, <u>CH</u>-OAr), 4.71 (m, <u>CH</u>-OH), 6.73-6.96 (m, 3 CH_{Ar}), 8,61 (s, NH). - ¹³C NMR: 15.6, 21.0 (CH₃), 70.0, 82.0 (CH), 122.8, 122.9, 127.8 (CH_{Ar}), 128.6, 134.5, 146.6, (C_{Ar}), 173.4 (CO). - C₁₁H₁₃NO₃ (207.25): calcd. C 63.74, H 6.34, N 6.76; found C 63.50, H 6.32, N 6.75.

(8S, 9R)-3-Hydroxy-2-methyl-2,3-dihydro-5H-1,5-naphthoxazepin-4-one (11c): Yield: 16 % (Method C), colourless crystals, m.p. = 206-209°C (hexane:AcOEt 1:1), $R_f = 0.39$, $[\alpha]_{20}^{D} = +410.8°$ (c=1, MeOH). - ¹H NMR: 1.36 (d, $J = 6.3 \text{ CH}_3$), 4.33 (m, <u>CH</u>-OAr), (m, <u>CH</u>-OH), 5.21 (d, J = 8.1, OH), 7.32-8.05 (m, 6CH_{Ar}), 10.24 (s, NH). - ¹³C NMR: 16.2 (CH₃), 69.2, 85.6 (CH), 122.5, 122.7, 125.6, 126.2, 126.6, 128.3, (CH_{Ar}), 126.4, 127.5, 131.1, 146.8 (C_{Ar}), 173.0 (CO). - C₁₄H₁₃NO₃ (243.28): calcd. C 69.11, H 5.40, N 5.76; found C 68.90, H 5.43, N 5.76.

(2*R*, 3*R*) -3-Hydroxy-2-n-propyl-2,3-dihydro-5H-1,5-benzoxazepin-4-one (11e): Yield: 85% (Method D), $R_f = 0.36$, colourless crystals, m.p. = 137-138 °C (hexane/AcOEt 7/3), $[\alpha]_{20}^{D} = +267.5$ ° (c=1, CHCl₃). - ¹H NMR δ 0.95 (t, J=7.1, CH₃), 1.47-1.78 (m, 2 CH₂), 3.68 (d, J=5.3, OH), 3.91 (m, <u>CH</u>-OH), 4.22 (m, <u>CH</u>-OAr), 6.96-7.19 (m, 4 CH_{Ar}), 8.70 (s, NH). ¹³C NMR δ 14.3 (CH₃), 19.2, 34.4 (CH₂), 71.7 (<u>CH</u>-OH), 88.3 (<u>CH</u>-OAr), 122.8, 124.4, 125.1, 127.0 (CH_{Ar}), 130.1, 148.0 (C_{Ar}), 174.3 (CON). - C₁₂H₁₅NO₃ (221.28): calcd. C, 65.13; H, 6.85; N, 6.33, found C, 65.21; H, 6.78; N, 6.28.

Crystal Structure Analysis of 11e:²⁹ A colourless crystal of 11e with the dimensions 0.84 x 0.48 x 0.32 mm³ was measured on a STOE IPDS diffractometer using MoK_{α} radiation ($\lambda = 0.71073$ Å). Crystal data: C₁₂H₁₅NO₃ , M = 221.25, monoclinic space group P 21, a = 5.1056(11) Å, b = 15.759(4) Å, c = 13.849(3) Å, $\beta = 90.25(3)^{\circ}$, V = 1114.3(5) Å³ , Z = 4, D_c = 1.319 g/cm³, F(000) = 472, μ (MoK_{α}) = 0.095 mm⁻¹. At 200(2) K in the range of 2.97° < Θ < 25.25° 7361 reflections were measured (R_(sig) = 0.0640) of which 3939 were unique (R_(int) = 0.0614) and 3524, flagged as observed, had intensities larger than 2 σ (I). The structure was solved by direct methods and refined by least squares procedure within the SHELX program system. The final residuals were wR_{2 (all)} = 0.1073, $R_{1(all)} = 0.0476$ and $R_{1(obs)} = 0.0431$. The maximum and minimum peaks in the final difmap were 0.223 and -0.218 e/Å³, respectively.

(2*R*, 3*R*)-3-Hydroxy-7-methyl-2-n-propyl-2, 3-dihydro-5H-1, 5-benzoxazepin-4-one (11f): Yield: 87% (Method D), $R_f = 0.38$, colourless crystals, m.p. = 119-120 °C (hexane/AcOEt 7/3), $[\alpha]_{20}^{D} = +365.4$ ° (c=1, CHCl₃). - ¹H NMR δ 0.94 (t, J=7.0, CH₃), 1.50-1.74 (m, 2 CH₂), 2.24 (s, CH₃), 3.65 (d, J=5.4, OH), 3.88 (m, <u>CH</u>-OH), 4.19 (m, <u>CH</u>-OAr), 6.77 (s, CH_{Ar}), 6.87 (m, 2 CH_{Ar}), 8.53 (s, NH). - ¹³C NMR δ 14.3, 21.1 (CH₃), 19.2, 34.4 (CH₂), 71.8 (<u>CH</u>-OH), 88.6 (<u>CH</u>-OAr), 123.2, 124.2, 127.6 (CH_{Ar}), 129.7, 135.1, 145.6 (C_{Ar}), 174.3 (CON). – MS m/z(%): 235 (M⁺, 30), 163 (100), 150 (64), 123 (77). - C₁₃H₁₇NO₃ (235.31): calcd. C, 66.35; H, 7.30; N, 5.95, found C, 66.43; H, 7.27; N, 5.94.

(2*R*, 3*R*)-3-Hydroxy-2-n-propyl-2, 3-dihydro-5H-1, 5-naphthoxazepin-4-one (11g): Yield: 93% (Method D), $R_f = 0.40$, colourless crystals, m.p. = 125-127 °C (hexane/AcOEt 7/3), $[\alpha]_{20}^{D} = +449.5$ ° (c=1, CHCl₃). - ¹H NMR δ 0.96 (t, J=7.1, CH₃), 1.51-1.79 (m, 2 CH₂), 3.65 (d, J=6.2, OH), 3.93 (m, <u>CH</u>-OH), 4.41 (m, <u>CH</u>-OAr), 7.16-7.91 (m, 6 CH_{Ar}), 8.99 (s, NH). - ¹³C NMR δ 13.9 (CH₃), 18.9, 34.4 (CH₂), 71.2 (<u>CH</u>-OH), 91.3 (<u>CH</u>-OAr), 121.0, 123.4, 125.7, 127.2, 127.3, 128.4 (CH_{Ar}), 123.8, 127.7, 131.2, 145.6 (C_{Ar}), 174.6 (CON). - C₁₆H₁₇NO₃ (271.34): calcd. C, 70.82; H, 6.33; N, 5.16, found C, 70.79; H, 6.32; N, 5.05.

(2R, 3R)-7-Chloro-3-hydroxy-2-n-propyl-2,3-dihydro-5H-1,5-benzoxazepin-4-one (11h): Yield: 95% (Method D), $R_f = 0.34$, colourless crystals, m.p. = 111 °C (hexane/AcOEt 7/3), $[\alpha]_{20}^{D} = +289.5$ ° (c=1, CHCl₃). - ¹H NMR δ 0.94 (t, J=7.0, CH₃), 1.45-1.79 (m, 2 CH₂), 3.64 (d, J=5.3, OH), 3.91 (m, <u>CH</u>-OH), 4.22 (m, <u>CH</u>-OAr), 6.92-7.06 (m, 3 CH_{Ar}), 8.83 (s, NH). - ¹³C NMR δ 13.3 (CH₃), 18.7, 33.9 (CH₂), 73.1 (<u>CH</u>-OH), 88.1 (<u>CH</u>-OAr), 122.3, 125.1, 126.5 (CH_{Ar}), 129.6, 130.7, 146.2 (C_{Ar}), 174.1 (CON). - C₁₂H₁₄NO₃Cl (255.72): calcd. C, 56.36; H, 5.53; N, 5.42, found C, 56.59; H, 5.51; N, 5.40.

(2*R*, 3*R*)-3-Hydroxy-7-nitro-2-n-propyl-2,3-dihydro-5*H*-1,5-benzoxazepin-4-one (11i): Yield: 90% (Method D), $R_f = 0.33$, light yellow crystals, m.p. = 151-153 °C (hexane/AcOEt 7/3), $[\alpha]_{20}^{D} = +219.9$ ° (c=1, MeOH). - ¹H NMR (DMSO-d₆) δ 0.94 (t, *J*=7.0, CH₃), 1.44-1.76 (m, 2 CH₂), 3.98 (m, <u>CH</u>-OH), 4.37 (m, <u>CH</u>-OAr), 5.56 (d, *J*=5.9, OH), 7.22 (d, *J*=9.1, CH_{As}), 7.89-7.93 (m, 2 CH_{As}), 10.32 (s, NH). - ¹³C NMR δ 14.1 (CH₃), 18.5, 33.9 (CH₂), 72.4 (<u>CH</u>-OH), 87.3 (<u>CH</u>-OAr), 117.0, 120.3, 123.9 (CH_{As}), 132.2, 143.4, 153.2 (C_{As}), 172.8 (CON). -C₁₂H₁₄N₂O₅ (266.28): calcd. C, 54.12; H, 5.31; N, 10.52, found C, 53.92; H, 5.45; N, 10.25. (3R)-3-Hydroxy-2,3-dihydro-5H-1,5-benzoxazepin-4-one (11j): Yield: 35% (Method D, together with 60% of 14j-Cl v.i.), $R_f = 0.19$, colourless crystals, m.p. = 174-175 °C (hexane/AcOEt 1:1), $[\alpha]_{20}^D = +279.8$ ° (c=1, MeOH). - ¹H NMR (DMSO-d₆) δ 4.15-4.48 (m, 3 H; CH and CH₂), 5.42 (D, J=5.7, OH), 7.11 (m, 4 CH_{Ar}), 10.03 (s, NH). - ¹³C NMR δ 68.5 (CH), 75.8 (CH₂), 121.9, 122.4, 124.3, 125.3 (CH_{Ar}), 130.5, 149.2 (C_{Ar}), 173.2 (CON). - C₉H₉NO₃ (179.19): calcd. C, 60.32; H, 5.07; N, 7.82, found C, 60.42; H, 5.11; N, 7.68.

(3R)-2,3-Dihydro-3-hydroxy-7-methyl-1,5-benzoxazepin-4(5H)-one (11k): Yield: 38% (Method D, together with 59% 14k-Cl v. i.), R_f = 0.37, colourless crystals, m.p. = 147-148 °C (hexane/AcOEt 1/1), $[\alpha]_{20}^{D}$ = +288.5 ° (c=1, MeOH). - ¹H NMR (DMSO-d₆) δ 2.23 (s, CH₃), 4.21 (m, CH), 4.08 and 4.36 (m, CH₂), 5.31 (d, *J*=5.9, OH), 6.84-6.96 (m, 3 CH_{Ar}), 9.89 (s, NH). - ¹³C NMR δ 20.6 (CH₃), 68.4 (CH), 76.3 (CH₂), 121.6, 122.6, 125.9 (CH_{Ar}), 130.4, 133.5, 147.1 (C_{Ar}), 173.2 (CON). - C₁₀H₁₁NO₃ (193.22): calcd. C, 62.16; H, 5.75; N, 7.25, found: C, 62.01; H, 5.80; N, 7.17.

(2S, 1'S)-3,4-Dihydro-2-(1-ethoxy-ethyl)-2H-1,4-benzoxazin-3-one (13a): Oxirane-carboxyanilide **9a** (150 mg 0.77 mmol) was dissolved in ethanol (2 ml) and treated with $HClO_4$ (70 %, 33 µl, 0.33 mmol). The mixture was refluxed for 1 h and, after cooling to room temperature, diluted with CH_2Cl_2 (15 ml) and washed with water. The organic layer was dried with MgSO₄, evaporated and purified by column chromatography with CH_2Cl_2 /acetone (95:5) ($R_f = 0.41$) affording **12a** (145 mg, 83 %) as colourless crystals (characterisation only by ¹H NMR). **12a** ¹H NMR: 1.02 (t, *J*=7.0, CH₃); 1.10 (d, *J*=6.4, CH₃), 3.32 (m, CH), 3.48 (m, CH₂), 3.81 (m, CH), 3.97 (m, OH), 6.67-7.08 (m, 4 CH_{Ar}), 8.57 (s, NH), 8.77 (s, OH).

140 mg (0.59 mmol) of **12a** was converted to **13a** using 162 mg (0.62 mmol) Ph₃P and 98 μ l (0.62 mmol) DEAD by a procedure similar to 4 (ν s.). **13a**: Yield: 31 %, colourless crystals, m.p. = 113°C (hexane:AcOEt 8:2), R_f = 0.50, [α]^D₂₀ = -12.5° (c=1, CHCl₃). - ¹H NMR: 0.99 (t, J = 7.0, <u>CH</u>₃-CH₂), 1.24 (d, J = 6.5, <u>CH</u>₃-CH), 3.34-3.56 (m, CH₂), 3.98 (m, <u>CH</u>-OEt), 4.67 (d, J = 3.0, <u>CH</u>-OAr), 6.72-6.95 (m, 4 CH_{Ar}), 9.25 (s, NH). - ¹³C NMR: 15.6, 15.8 (CH₃), 65.5 (CH₂), 76.5, 79.2 (CH), 115.9, 116.8, 122.4, 124.5 (CH_{Ar}), 126.1, 144.0 (C_{Ar}), 166.4 (CO). - C₁₀H₁₅NO₃ (197.26): calcd. C 65.13, H 6.85, N 6.33; found C 65.13, H 6.86, N 6.34.

(2*R*, 3*R*)-3-Bromo-2-hydroxyhexane-anilide (14e-Br) ($R^1 = R^3 = R^4 = H$; $R^2 = n$ -Pr; Hal = Br): Obtained from 9e by Method D using AlBr₃ rather than ZnCl₂ (see also Table 1); $R_f = 0.52$ (CH₂Cl₂/acetone 95:5), colourless crystals. - ¹H NMR δ 1.04 (t, J=7.2, CH₃), 1.74-2.07 (m, 2 CH₂), 3.84 (s, br, OH), 4.70-4.78 (m, 2 CH), 7.02-7.39 (m, 4 CH_{Ar}), 8.75 (s, NH), 9.01 (s, OH). - ¹³C NMR δ 13.6 (CH₃), 21.5, 34.4 (CH₂), 58.8, 76.4 (CH), 119.7, 121.1, 122.6, 127.8 (CH_{Ar}), 124.9, 148.7 (C_{Ar}), 169.3 (CON).

(2R, 3R)-3-Chloro-2-hydroxyhexane-anilide (14e-Cl) ($R^1 = R^3 = R^4 = H$; $R^2 = n$ -Pr; Hal = Cl): Obtained from 9e by Method D using AlCl₃ rather than ZnCl₂ (see also Table 1); $R_f = 0.47$ (CH₂Cl₂/acetone 95:5), colourless crystals. - ¹H NMR δ 0.93 (t, J=7.2, CH₃), 1.62-1.87 (m, 2 CH₂), 3.70 (s, br, OH), 4.51 (m, CH), 4.62 (d, J=2.7, CH), 6.88-7.28 (m, 4 CH_{Ar}), 8.60 (s, br, NH), 8.89 (s, OH). - ¹³C NMR δ 13.7 (CH₃), 20.2, 33.7 (CH₂), 64.9, 76.1 (CH), 119.7, 121.1, 122.6, 127.8 (CH_{Ar}), 125.0, 148.7 (C_{Ar}), 169.5 (CON).

(*R*)-3-Chloro-2-hydroxypropaneanilide (14j-Cl) ($R^1 = R^2 = R^3 = R^4 = H$, Hal = Cl): The compound was formed in 60% yield as by-product in the synthesis of the benzoxazepinone 11j. $R_f = 0.19$, colourless crystals. -¹H NMR (DMSO-d₆) δ 3.79 (m, CH₂), 4.38 (m, CH), 6.79-7.11 (m, 4 CH_{Ar}), 9.21 (s, NH), 9.80 (s, OH). - ¹³C NMR δ 49.1 (CH₂), 73.1 (CH), 115.2, 119.9, 123.1, 124.9 (CH_{Ar}), 127.8, 145.2 (C_{Ar}), 169.2 (CON).

(*R*)-3-Chloro-2-hydroxypropane-(3-toluidide) (14k-Cl) ($R^1 = R^2 = R^3 = H$, $R^4 = Me$, Hal = Cl): The compound was formed in 59% yield as by-product in the synthesis of the benzoxazepinone 11k. $R_f = 0.31$, colourless crystals. - ¹H NMR (DMSO-d₆) δ 2.10 (CH₃), 3.78 (m, CH₂), 4.34 (m, CH), 6.61-6.69 (m, 3 CH_{Ar}), 9.14 (s, NH), 9.7 (s, OH). - ¹³C NMR δ 21.0 (CH₃), 48.2 (CH₂), 71.5 (CH), 114.8, 119.7, 124.5 (CH_{Ar}), 126.0, 128.0, 144.1 (C_{Ar}), 168.9 (CON).

Acknowledgement: We thank Dr. Burkhard Ziemer, Humboldt-Universität Berlin, for providing the X-ray crystal analysis. We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie.

REFERENCES AND NOTES

- 1. Woydowski, K.; Fleischhauer, J.; Schiffer, J.; Liebscher, J. J. Chem. Soc., Perkin Trans I 1999, 149-153.
- 2. Culvenor, C. C.; Davies, W.; Heath, N. S. J. Chem. Soc. 1949, 278-282.
- 3. Inoue, H.; Nagao, T. Cronicels of Drug Discovery, American Chemical Society, 1993, 207-237.
- 4. Woydowski, K.; Ziemer, B.; Liebscher, J. Tetrahedron Asymmetry 1998, 9, 1231-1237.
- 5. Woydowski, K.; Liebscher, J. Synthesis 1998, 1110-1112.
- 6. Chong, J. M.; Sharpless, K. B. J. Org. Chem. 1985, 50, 1563-1564.
- 7. Weber, F. G.; Giese, H.; Köppel, H.; Reinhold, M.; Ströbel, R. J. Prakt. Chem. 1985, 327, 133-143.
- 8. Möhrle, H.; Schaltenbrandt, R. Pharmazie 1985, 40, 387-39.
- 9. Teller, J. in Houben-Weyl, Methoden der Organischen Chemie (Editor E. Schaumann), Vol. E 9a, p. 141, Thieme Verlag Stuttgart, 1997.

- 10. Freedman, H. H.; Frost, A. E. J. Org. Chem. 1958, 23, 1292-1298.
- 11. Einhorn, A.; Ruppert, E. Liebigs Ann. Chem. 1902, 325, 305-339.
- 12. Bischoff, C. A. Ber. Dtsch. Chem. Ges. 1897, 30, 2926-2930.
- 13. Zahn, O. J. Prakt. Chem. 1900, 61, 532-544
- Andreichikov, Yu. S.; Varkentin, L. I.; Pitirimova, S. G.; Vilenchik, Ya. M. Khim. Geterotsikl. Soedin. 1977, 1126-1128.
- 15. Bartsch, H.; Schwarz, O. J. Heterocycl. Chem. 1983, 20, 45-48.
- 16. Biekert, E.; Hoffmann, D.; Meyer, F. J. Chem. Ber. 1961, 94, 1676-1682.
- 17. Rüfenacht, K.; Kristinsson, H.; Mattern, G. Helv. Chim. Acta 1976, 59, 1593-1613.
- 18. Clausson-Kaas, N.; Heide, H.; Olsen, G. Acta Chem Scand. 1969, 23, 2322-2324.
- Clausson-Kaas, N.; Ostermayer, F.; Renk, C.; Deuss, R. US-Patent 452528 (1965), Chem. Abstr. 1968, 69, 96746.
- 20. Bonsignore, L.; Cabiddu, S.; Loy, G.; Secci, M. J. Heterocycl. Chem. 1982, 19, 1241-1242.
- Hashiyama, T.; Watanabe, A.; Inoue, H.; Konda, M.; Takeda, M.; Murata, S.; Nagao, T. Chem. Pharm. Bull. 1985, 33, 634-641.
- 22. Bhalerao, U. T., Thyagarajan, G. Indian J. Chem. 1969, 7, 429-433.
- 23. Evans, D.; Lockhard, I. M. J. Chem. Soc. 1965, 4806-4812.
- 24. Levai, A.; Ott, J.; Snatzke, G. Monatsh. Chem. 1992, 123, 919-930.
- 25. Mori, K.; Iwasawa, H. Tetrahedron 1980, 36, 87-90.
- 26. Petit, Y.; Sanner, C.; Larcheveque, M. Synthesis 1988, 538-540.
- 27. Petit, Y.; Larcheveque, M. Org. Synthesis 1997, 75, 37-48.
- 28. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936-3938.
- 29. Full details have been deposited at: Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, whence this material can be obtained on quoting a full literature citation and the deposition number CSD 410682.